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ADVANCED SERIES IN PHYSICAL CHEMISTRY

INTRODUCTION

Many of us who are involved in teaching a special-topic graduate course may
have the experience that it is difficult to find suitable references, especially
reference materials put together in a suitable text format. Presently, several
excellent book series exist and they have served the scientific community
well in reviewing new developments in physical chemistry and chemical
physics. However, these existing series publish mostly monographs consist-
ing of review chapters of unrelated subjects. The modern development of
theoretical and experimental research has become highly specialized. Even
in a small subfield, experimental or theoretical, few reviewers are capable of
giving an in-depth review with good balance in various new developments.
A thorough and more useful review should consist of chapters written by
specialists covering all aspects of the field. This book series is established
with these needs in mind. That is, the goal of this series is to publish
selected graduate texts and stand-alone review monographs with specific
themes, focusing on modern topics and new developments in experimen-
tal and theoretical physical chemistry. In review chapters, the authors are
encouraged to provide a section on future developments and needs. We
hope that the texts and review monographs of this series will be more use-
ful to new researchers about to enter the field. In order to serve a wider
graduate student body, the publisher is committed to making available the
monographs of the series in a paperbound version as well as the normal
hardcover copy.

Cheuk-Yiu Ng
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PREFACE

The Born–Oppenheimer adiabatic approximation represents one of the cor-
nerstones of molecular physics and chemistry. The concept of adiabatic
potential-energy surfaces, defined by the Born–Oppenheimer approxima-
tion, is fundamental to our thinking about molecular spectroscopy and
chemical reaction dynamics. Many chemical processes can be rational-
ized in terms of the dynamics of the atomic nuclei on a single Born–
Oppenheimer potential-energy surface. Nonadiabatic processes, that is,
chemical processes which involve nuclear dynamics on at least two coupled
potential-energy surfaces and thus cannot be rationalized within the Born–
Oppenheimer approximation, are nevertheless ubiquitous in chemistry,
most notably in photochemistry and photobiology. Typical phenomena
associated with a violation of the Born–Oppenheimer approximation are
the radiationless relaxation of excited electronic states, photoinduced uni-
molecular decay and isomerization processes of polyatomic molecules.

During the last few decades, we have witnessed a change of paradigms
in nonadiabatic chemistry. First, the remarkable advances achieved in fem-
tosecond laser technology and time-resolved spectroscopy have revealed
that the radiationless decay of excited electronic states may take place
much faster than previously thought. The traditional theory of radia-
tionless decay processes, developed in the sixties and seventies of the
last century, cannot explain electronic decay occurring on a time scale
of few tens of femtoseconds. Second, the development and widespread
application of multi-reference electronic structure methods for the cal-
culation of excited-state potential-energy surfaces have shown that so-
called CONICAL INTERSECTIONS of these multidimensional surfaces,
predicted by von Neumann and Wigner in 1929, are the rule rather than

vii
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the exception in polyatomic molecules. As a result, the concept of coni-
cal intersections has become widely known in recent years. That conical
intersections may be responsible for ultrafast radiationless processes has
been surmised as early as 1937 by Teller. Nowadays, it is increasingly rec-
ognized that conical intersections play a key mechanistic role in molecular
spectroscopy and chemical reaction dynamics.

There are a number of intricate issues associated with conical inter-
sections, concerning both the electronic structure, the nuclear dynamics,
and the interaction of the molecule with the radiation field. Few of us are
familiar with all these aspects of the problem, which have been analyzed
in research papers scattered throughout the chemical physics literature. It
is the intention of the present book to make this knowledge available to
interested graduate students and researchers in the thriving field of femto-
chemistry.

The chapters of this book are all theoretical in character. This reflects
the fact that the conical intersection is a theoretical concept, and as such
is not directly accessible to experimental observation. Nevertheless, the
concepts, techniques and results discussed in this book are crucial for the
interpretation of the observations in time-resolved spectroscopy and chem-
ical kinetics on femtosecond time scales. It is hoped, therefore, that this
book is of value not only for the theoretician, but also for the practitioneer
in molecular spectroscopy, photochemistry, and collision-induced reaction
dynamics.

Wolfgang Domcke, Munich
David R. Yarkony, Baltimore
Horst Köppel, Heidelberg
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HISTORICAL INTRODUCTION

Josef Michl

Department of Chemistry and Biochemistry,
University of Colorado,
Boulder, CO 80309-0215

In the last half century, our understanding of the qualitative features of
organic photochemistry has undergone a spectacular transformation. In the
mid-1900s, the community of chemists investigating light-induced reactions
of polyatomic organic molecules was not even sure that the theoretical con-
cepts already well established in the ground electronic state, such as a single
potential energy surface dictating nuclear motions, would be applicable to
electronically excited molecules. How useful would the Born–Oppenheimer
approximation be, given the energetic proximity of other electronic states?
Would there be time for vibrational equilibration and could transition state
theory be applied? Kasha’s and Vavilov’s early formulation of their impor-
tant empirical rule provided a ray of hope that at least the lowest excited
state of each multiplicity could be thought of in such familiar terms. Of
course, although the existence of metastable excited states was known,
their recognition as triplet states and the appreciation of their importance
in organic photochemistry were yet to come.

It was clear that in large organic molecules internal conversion from
upper to lower excited states occurs on a subpicosecond scale. In the many
organic molecules that exhibit no emission, such ultrafast conversion evi-
dently occurred all the way to the ground electronic state, in some cases
accompanied by a chemical transformation, in others not. When a chemi-
cal transformation did occur, it seemed to be almost always accompanied

ix
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by electronic relaxation all the way to the ground state. Only in very few
exceptional cases, mostly simple proton transfer reactions, was the chemical
product produced in an electronically excited state.

The initial versions of the theory of internal conversion seemed to
work fine for the weak coupling cases in which this process was rela-
tively slow and competed with fluorescence or with intersystem crossing
to a triplet state. However, this theory did not cast light on the nature of
the ultrafast process. Although theoreticians such as Teller1 in the thir-
ties, Kauzman2 in the fifties, and Förster3 in the early seventies seemed
to have no doubt that ultrafast internal conversion proceeded by passage
through conical intersections, in which potential energy surfaces touch,4

they did not attempt to provide any guidance as to the nature of molecular
geometries at which these points of rapid return occurred. This was first
provided by Zimmerman5 in his reformulation of the Woodward–Hoffman
rules. He pointed out that in the Hückel approximation, the ground and
excited potential energy surfaces touch at a point located on a symmetry-
forbidden path of a pericyclic reaction, providing a natural explanation of
the opposite nature of the rules for thermal and photochemical reactions of
this type. A general analysis was also provided by Dougherty.6 Oosterhoff7

introduced electron repulsion into the theoretical treatment, which caused
the exact degeneracy to be avoided along the symmetric path, and his
emphasis on the exclusive importance of the resulting minimum in the
“doubly excited state” for the interpretation of Woodward–Hoffman rules
led to a lively controversy with the rules’ authors, who preferred to empha-
size the presence or absence of correlation-diagram-imposed barriers in the
singly excited state at the start of the reaction path.8 Michl’s experiments
led him to conclude that both are important: with a barrier along the way,
the pericyclic minimum will not be reached even if it is present, and the
“allowed” product will not form unless extra energy is provided (e.g. by a
second photon) to pass above the barrier.9 His 1974 review10 summarized
the state of understanding of the physical nature of processes involved in
organic photochemistry at the time and of the qualitative MO arguments
that can be used for the rationalization of specific reaction paths. The
review referred to conical intersections as “funnels” and emphasized their
tendency to occur at biradicaloid geometries, making these the likely start-
ing points for vibrational relaxation after return to the ground state surface,
thus permitting the prediction of likely products. It stated that true surface
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touching “is a relatively uncommon occurrence and along most paths such
crossings, even if ‘intended’, are more or less strongly avoided”. At the time,
general searching for geometries of true touching was not computationally
feasible, and did not seem to be particularly important: given the higher
dimensionality of the regions of near touching, it seemed that most of the
internal conversion to the ground state would go through them. The qual-
itative MO arguments only provided a very approximate notion of what
the funnel geometries were likely to be. However, some of the intriguing
characteristics of conical intersections, such as dynamic effects, when a fate
of a molecule emerging on a ground state surface after passing through a
funnel may depend on the direction from which it entered the funnel on the
upper surface, were clearly recognized.

In the next phase of development, numerical computations started to
play a significant role. Several groups of authors explored conical intersec-
tions that are imposed by symmetry and therefore are easy to find. Quite
a few were known in very small systems, and Evleth and coauthors appar-
ently were the first to locate them in a large molecule.11 Salem’s extended
work on photoreactions of carbonyl compounds12 advanced Zimmerman’s
earlier more qualitative notions,13 and the results of Michl and collabora-
tors for H4, taken as a model pericyclic entity, rationalized the nature of
bonding14 and cross-bonding15 that occurs in pericyclic reactions, and the
role of excimers in them. Bonačić-Koutecký and Michl later explored several
other symmetry-imposed conical intersections related to cis-trans isomer-
ization processes16 and jointly with Koutecký came up with a generalized
version17 of the “3-state model” of biradical structure18,19 that provided
the first qualitative guide for searching for the geometry of a conical inter-
section starting from a symmetrical geometry, with an application to the
primary process in vision.20

The modern era in work with conical intersections is characterized by the
removal of the condition that a symmetry element be present. It was ush-
ered in by the groups of Yarkony21 and Ruedenberg,22 working with small
molecules, and the international team of Robb, Bernardi and Olivucci,23

working with larger organic molecules. Armed with new algorithms and
increased computer power, these groups showed that conical intersections
are far from “relatively uncommon”, as once thought, but instead are very
common, and it now appears likely that it will be hard to find an avoided
touching of surfaces that does not have a true touching in its vicinity. Of
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course, it continues to be true that the dimensionality of the space of near
touching is higher than that of true touching.

Robb, Bernardi, and Olivucci have been particularly prolific in identify-
ing conical intersections along the paths of a vast number of organic reac-
tions and refining the detailed understanding of organic reaction paths.24

They developed a 2-state VB model for the visualization of the origin
of the intersections25 which complements nicely the 3-state MO model17

mentioned earlier. Additional groups are publishing conical intersection
geometries,26 and although quantitative improvements are needed and can
be expected in the future, the computational problem seems to be under
control. Discussions of conical intersections have become standard in pho-
tochemistry textbooks.27

The opening sentence of this introduction stated that our understand-
ing of the qualitative features of organic photochemistry has undergone
a spectacular transformation in the last half century, and the above text
documents it clearly. How about the quantitative features? We are nowhere
near the end of the path. Unlike thermal reactions, whose absolute rates are
now fairly predictable from a combination of potential surface calculations
and transition state theory and/or modular dynamics, quantitative aspects
of organic photochemical reactions, such as quantum yields, still cannot
be predicted any better now than half a century ago. Although work on
improving our ability to obtain reliable potential energy surfaces clearly has
to continue, we need much more before this goal is achieved. We require pro-
cedures for the calculation of molecular dynamics on excited state surfaces
of polyatomic organic molecules and the requisite nonadiabatic coupling
matrix elements, particularly, in the regions of conical intersections. With-
out such information, we cannot even tell whether all the computational
effort that has gone into identifying the lowest energy points in the conical
intersection subspace in meaningful — one might guess that the internal
conversion is likely to occur as soon as subspace is entered, or even slightly
before, at a geometry at which the crossing is still weakly avoided, and that
the geometries of the energy minima within the subspace are hardly ever
reached.

In a fully quantum mechanical treatment of the issue, the geometry
of the point of return to the ground electronic state is not even sharply
defined. In short, we may not be doing so vastly better than we did at the
time of the 1974 review as we would like to think, and perspectives for the
future employment of imaginative theoretical photochemists are bright. At
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least, we know much more about what to ask next, and how to go about
getting the answers. These activities represent the subject of this book.
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1. Introduction

The purpose of this review article is to present a comprehensive account
of what is generally known as the Born–Oppenheimer approximation, its
meaning, its implications, its properties, and very importantly also its lim-
itations and how to cure them. This approximation and the underlying
idea have been a milestone in the theory of molecules and actually also
of electronic matter in general. Still today this approximation is basic to
all molecular quantum mechanics and even in those cases where it fails,
it remains the reference to which we compare and in terms of which we
discuss this failure.

The large mass of a nucleus compared to that of an electron permits an
approximate separation of the electronic and nuclear motion. Molecules are
complicated quantum objects and this separation greatly simplifies their
quantum mechanical treatment. It also allows us to visualize the dynamics
of molecules and provides the essential link between quantum mechanics
and traditional chemistry. We should be aware that even the notion of
molecular electronic states is a consequence of the approximate separa-
bility of the electronic and nuclear motion. Without this separability the
introduction of molecular electronic states would be relatively useless and
just a mathematical construction.

Most of our knowledge on the quality of the Born–Oppenheimer approx-
imation stems from studies of the nuclear motion in the ground electronic
state of diatomic and polyatomic molecules and in excited electronic states
of diatomics. In diatomics, there is only a single vibrational degree of free-
dom and the Born–Oppenheimer approximation is accurate in most cases.
In polyatomics, the electronic ground state is typically well separated ener-
getically from other electronic states, and this supports the a priori valid-
ity of the Born–Oppenheimer approximation in these cases. Historically,
the picture has thus emerged that this approximation is generally accurate
with the exception of some more or less exotic cases. In the last two decades
or so, there have been considerable advances in the development of experi-
mental and theoretical techniques and a growing number of polyatomics in
their excited electronic states have been investigated. These studies reveal a
fast growing number of cases where the Born–Oppenheimer approximation
fails. A particularly impressive failure is encountered in situations where
so-called conical intersections of the electronic energies exist. For such an
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intersection to appear, at least two nuclear coordinates are necessary. For
polyatomics with their dense electronic states and many nuclear degrees of
freedom, conical intersections of the electronic energies are generic features
and their absence is rather unusual. We, therefore, expect to see a growing
relevance of conical intersections in the future and shall concentrate in this
article on cases where the standard Born–Oppenheimer approximation may
fail and discuss its systematic improvement.

2. The Born–Oppenheimer Expansion

The objective of the present section is to provide a general ansatz to solve
the Schrödinger equation for problems with several degrees of freedom. The
ansatz is particularly efficient if there are slow and fast degrees of freedom.
To be specific, we consider molecules where the nuclei and electrons are the
slow and fast degrees of freedom, respectively, but shall keep the generality
of the approach in mind.

The common molecular Hamiltonian is

H = Tn + Te + U(r,R) (1)

where Tn and Te are the kinetic energy operators of the nuclei and electrons,
respectively, and U(r,R) is the total potential energy of the nuclei and the
electrons. The vector r denotes the set of electronic coordinates and R the
set of nuclear coordinates. At the moment, we do not have to be specific
about the choice of these coordinates and we will address the matter at
several places of this review.

By setting the kinetic energy of the nuclei equal to zero, one defines the
familiar electronic Hamiltonian:

He = Te + U(r,R). (2)

Obviously, He is an operator in the electronic space that depends paramet-
rically on R. Its eigenvalues Vi(R) and eigenfunctions Φi(r,R) fulfill

HeΦi(r,R) = Vi(R)Φi(r,R). (3)

The set of eigenfunctions {Φi(r,R)} form a complete basis in the electronic
space at every value of R∑

i

Φ∗
i (r

′,R)Φi(r,R) = δ(r − r′) (4a)
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and we write the orthonormality condition in the form∫
Φ∗

i (r,R)Φj(r,R)dr ≡ 〈i(R)|j(R)〉 = δij . (4b)

In the bra and ket notation, only the indices i and j are retained, and the
dependence of the electronic wavefunctions on the nuclear coordinates is
indicated.

Of course, we are interested in solving the Schrödinger equation for the
total Hamiltonian in Eq. (1) describing the electronic plus nuclear motion
in our system. To this end, we expand the total wavefunction Ψ in the
electronic eigenfunctions of He:

Ψ(r,R) =
∑

i

Φi(r,R)χi(R). (5)

This expansion is known as the Born–Oppenheimer expansion.1 For-
mally, Eq. (5) is exact, since the set {Φi(r,R)} is complete. It is only
when the expansion is truncated that approximations are introduced. The
Born–Oppenheimer expansion certainly provides a perfectly valid ansatz if
Ψ(r,R) describes a bound state solution of the full Schrödinger equation

HΨ(r,R) = EΨ(r,R). (6)

It has been argued, see, for instance,2 that the ansatz (5) may not be
justified for describing continuum states. There are sufficiently many argu-
ments which allow one to take the pragmatic stand point that the Born–
Oppenheimer expansion is valid also for continuum states, see, for instance,
Ref. 3.

From the Schrödinger Eq. (6) one can easily determine the coupled
equations for the expansion coefficients χi(R) in the ansatz (5). Inserting
Eq. (5) into (6), multiplying from the left by Φ∗

j (r,R) and integrating over
the electronic coordinates leads to

[Tn + Vj(R)]χi(R) −
∑

i

Λjiχi(R) = Eχj(R) (7a)

where the so-called nonadiabatic couplings Λji describe the dynamical inter-
action between the electronic and nuclear motion. They are given by

Λji = δjiTn − 〈j(R)|Tn|i(R)〉 (7b)

and are obviously operators in R-space.
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To proceed, we need a specific form of the nuclear kinetic energy oper-
ator. Using atomic units and conveniently scaled rectangular nuclear coor-
dinates, we may express Tn as follows

Tn = − 1
2M

∇∇∇ · ∇∇∇ = − 1
2M

∇∇∇2 (8)

where the gradient ∇∇∇ is a vector in nuclear space and the dot denotes the
usual scalar product. M is an averaged nuclear mass, see Sec. 5.2, where
an explicit choice of nuclear coordinates is discussed. Of course, in certain
cases one may wish to choose more general nuclear coordinates and express
the Laplacian in these coordinates. When better adapted to the geometric
structure at hand, these coordinates will be curvilinear and the Laplacian
(see, e.g. Ref. 4) and the nonadiabatic couplings (see Ref. 5) will have a
more involved appearance.

With the definition (8), we readily obtain the following explicit form for
the nonadiabatic couplings:

Λji =
1

2M
[2Fji · ∇∇∇ + Gji]. (9a)

These elements split into a derivative operator and a c-number. The non-
adiabatic derivative couplings are given by

Fji(R) = 〈j(R)|∇∇∇i(R)〉 (9b)

and are obviously vectors in the nuclear coordinate space. The nonadiabatic
scalar couplings Gji take on the following appearance

Gji(R) = 〈j(R)|∇∇∇2i(R)〉. (9c)

Note that some authors define the scalar couplings with a different sign
than done here.

It is illuminating to express the coupled equations of nuclear motion in
matrix notation. To this end, we define a diagonal matrix V of adiabatic
potential energy with diagonal elements Vj(R), which are the electronic
energies in Eq. (3), a matrix G with matrix elements Gji, and a matrix F
with matrix element Fji. We recall that the latter quantities are vectors
in nuclear space. We may thus view F as a matrix in electronic space,
where each element is a vector in nuclear space, or, equivalently, as a vector
in nuclear space with components which are matrices in electronic space.
F may be called a vector matrix. Furthermore, χ denotes a column vector
with components χj , and ∇ in our matrix notation is also a vector matrix,
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though a trivial one. It is the usual gradient in nuclear space, multiplied
by the unit matrix in electronic space. Using the above straightforward
notation, it is possible to rewrite the equations of nuclear notion (7) in the
following appealing form:5

[
− 1

2M
(∇∇∇ + F)2 + V − E

]
χ = 0. (10)

This equation provides a natural theoretical formulation of the nuclear
motion. Showing some analogy to gauge theories,6,7 it is a helpful start-
ing point for further investigations (see also Sec. 4).

The formulation (10) demonstrates that the coupled motion of elec-
trons and nuclei can be reduced to the study of nuclear motion in the
matrix potential V. The impact of the coupling on the electronic motion
has been transferred to the “dressed” kinetic energy operator, which now
reads −(1/2M)(∇∇∇ + F)2, instead of −(1/2M)∇∇∇2 for the “bare” nuclei.

For completeness, we would like to list below the relevant relations of
the nonadiabatic couplings. These follow immediately from the definitions
(9) and the orthonormalization (4b) of the electronic states:

F† = −F (11a)

G = (∇∇∇ · F) + F · F (11b)

(∇∇∇ · F)† = −(∇∇∇ · F) (11c)

∇∇∇ · F = (∇∇∇ · F) + F · ∇∇∇ (11d)

(2F · ∇∇∇ + G)† = 2F · ∇∇∇ + G (11e)
∂

∂Rα
Fβ − ∂

∂Rβ
Fα + [Fα,Fβ ] = 0. (11f)

Here, a few comments are in order. The matrix of derivative couplings
F is antihermitian. The matrix of scalar couplings G is composed of an
hermitian as well as an antihermitian part. Of course, the dressed kinetic
energy operator −(1/2M)(∇∇∇ + F)2 in our basic Eq. (10) is hermitian, as
is also the case for the nonadiabatic couplings Λ in Eq. (9a). The latter
follows immediately from the relation (11e). The notation (∇∇∇ · F) is self
evident from Eq. (11d). Since F is a vector matrix, it can be written as
F = (F1,F2, . . . ,FNn

), where the matrices Fα are simply defined by their
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matrix elements

(Fα)ji =
〈
j(R)

∣∣∣ ∂

∂Rα
i(R)

〉
(12)

and R = (R1, R2, . . . , RNn) are the Nn nuclear coordinates of the system
under consideration. The relation (11f) plays an important role in the con-
struction of diabatic states,5,8 see also Sec. 4.

The equation of motion of the nuclei (10) and the relations (11) are valid
for both real and complex choices of the electronic wavefunctions Φi(r,R)
and expansion quantities χi(R). If these quantities are chosen to be real,
the derivative coupling matrix F vanishes along its diagonal because of the
antisymmetric nature of this matrix. In contrast, the scalar coupling matrix
G contributes to the diagonal part of the dressed kinetic energy operator
via its symmetric component F ·F, see Eq. (11b). If, on the other hand, the
electronic wavefunctions are chosen to be complex functions, the deriva-
tive couplings do contribute to the diagonal of the dressed kinetic energy
operator. In some cases, for instance, in the presence of an external mag-
netic field, the electronic wavefunctions are in general necessarily complex
functions,9,10 see also Sec. 6.1. In other cases we may choose them to be
complex for convenience.

To this end, let us introduce a phase factor for each electronic state

Φ̃j(r,R) = eiϕj(R)Φi(r,R) (13)

thus defining new wavefunctions Φ̃j . These new wavefunctions are also
eigenfunctions of the electronic Hamiltonian He and fulfill all the equations
above. In particular, the equation of nuclear motion (10) and the relations
(11) are valid when the new functions are used instead of the original ones.
It is interesting to express the equation of nuclear motion in terms of the
original derivative couplings F and the phases ϕj(R). The result reads

[
− 1

2M
[∇∇∇ + F + 2i(∇∇∇ϕ)]2 + V − E

]
χ = 0 (14)

where (∇∇∇ϕ) is a diagonal vector matrix with elements (∇∇∇ϕi) · δij . Since
the phases ϕj(R) are at our disposal, we may choose them to simplify or
improve the calculations, for instance, to make the Φ̃j single valued in cases
where the Φj are not.18
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3. The Born–Oppenheimer Approximation

3.1. Separation of Electronic and Nuclear Motion

If the Hamiltonian were truly separable in the degrees of freedom defined
by r and R, the solution of the Schrödinger equation would, of course, be
a product of a function of r and a function of R. The separability one has
in mind when discussing electronic systems is of a different origin, however.
It relies on the different masses of the underlying particles and hence on
their different velocities. The fast electrons can instantly adjust to the slow
nuclei and, consequently, their wavefunction depends parametrically on the
coordinates of the nuclei. The total wavefunction thus reads:

Ψ(r,R) = Φ(r,R)χ(R). (15)

Inserting this adiabatic ansatz into the Schrödinger Eq. (6), followed by
multiplication from the left with Φ∗ and integration over the electronic
coordinates, immediately leads to the following equation for the nuclear
motion

[Tn − Λ + V (R)]χ(R) = Eχ(R) (16)

in the electronic state under consideration. For simplicity, we have dropped
the index of the electronic state. Clearly, this equation also follows from
the general Eq. (7a), when all nondiagonal elements of the nonadiabatic
couplings Λji, j �= i, in (7b) are put to zero. If the electronic wave-
function Φ is taken to be real, the derivative coupling F vanishes, and
Λ = G/2M , as is seen from Eqs. (9). The resulting equation is called
Born–Oppenheimer approximation.11 If, on the other hand, the electronic
wavefunction is complex, either by its nature or by choice (see preceding
subsection), the element Λ in Eq. (16) contains derivative couplings. When
the electronic wavefunction is deliberately chosen complex, it is appropriate
to call Eq. (16) the complex Born–Oppenheimer approximation, to distin-
guish it from the common, i.e. real equation.

In which cases is the adiabatic ansatz (15) expected to be accurate?
As shall become clear in the next subsection and from the discussion in
Sec. 5, the adiabatic ansatz is accurate for an electronic state which is well
separated energetically from all other electronic states. Under the same
electronic conditions, the ansatz improves with increasing nuclear mass. On
the other hand, we can expect that the larger the energetical distance of
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the other electronic states is from the state under investigation, the weaker
the dependence of Φ(r,R) on the nuclear coordinates. This immediately
implies that the nonadiabatic term Λ is the smaller, the better the ansatz
(15) is. Neglecting Λ in Eq. (16) leads to

[Tn + V (R)]χ(R) = Eχ(R) (17)

which is commonly called the Born–Oppenheimer adiabatic approxi-
mation11 or briefly the adiabatic approximation. The above discussion also
implies that as long as Λ is small, its inclusion does provide an improvement
to the adiabatic approximation. However, once Λ is sizeable, the adiabatic
ansatz (15) itself and hence also (16) become doubtful. A sizeable Λ indi-
cates in turn sizeable derivative couplings [see Eq. (11b)] and, consequently,
other electronic states may be intruding (see next subsection).

3.2. Group-Born–Oppenheimer Approximation

The nonadiabatic couplings enter the nuclear equation of motion scaled by
1/M — see Eqs. (7) and (9) — and one is tempted to assume their impact
to be small. A more precise analysis on their scaling with the nuclear mass
will be given in Sec. 5. Indeed, if we assume the Fji to be of the order of
unity, the impact on the nuclear motion would be small and the adiabatic
approximation discussed in the preceding subsection would be highly accu-
rate. This is, unfortunately, not the case. By applying the gradient ∇∇∇ to the
electronic Schrödinger equation (3), one readily obtains from the definition
(9b) the following useful expression for the derivative couplings (i �= j):

Fji(R) =
〈j(R)|(∇∇∇He)|i(R)〉

Vi(R) − Vj(R)
. (18)

Apart from special cases, e.g. where the numerator vanishes due to spatial
symmetries of the involved electronic states and nuclear coordinates, there
is no reason to assume that it takes on particularly small or large values
in general. However, the denominator does inform us on the situations in
which the derivative couplings become large. In the vicinity of a degeneracy,
the derivative couplings can be substantial and the adiabatic approxima-
tion for the involved electronic states can be expected to break down. In
particular, in the presence of conical intersections of the potential surfaces
Vi(R) and Vj(R), the nonadiabatic derivative couplings diverge and the
adiabatic approximation becomes meaningless12 (see also Chapter 2).
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From the above we may expect the adiabatic approximation to be appro-
priate for electronic states well separated energetically from other electronic
states to which they may couple. Equations (10) and (18) also provide us
with straightforward extensions of this approximation. Let us assume that
a group of electronic states are well separated energetically from all other
states to which they may couple. We denote the subspace of the full elec-
tronic space spanned by this group by g. Clearly, the energy gap between
g and its complement has only to be large in the relevant range of nuclear
coordinates. In analogy to the Born–Oppenheimer approximation, where
the matrix nuclear Schrödinger equation (10) has been limited to a single
electronic state, we obtain a truncated version of this equation for the group
g of states under consideration:5[

− 1
2M

{(∇∇∇ + F)2}(g) + V(g) − E

]
χ(g) = 0. (19)

The superscript g denotes the truncated quantities; both matrices and vec-
tors now refer only to the group g of electronic states. Due to the above
considerations, we call this useful result the group-Born–Oppenheimer
approximation. It should be clear that truncating Eq. (10) is equivalent
to truncating Eq. (7a).

It is worthwhile to have a closer look at Eq. (19). Because of the
quadratic structure of the dressed kinetic energy operator, −(1/2M)
(∇∇∇+F)2, its block in the space spanned by the states belonging to g cannot
be written as a single quadratic term, but rather as a sum of two quadratic
terms

{(∇∇∇ + F)2}(g) = (∇∇∇ + F(g))2 − F(c) · F(c)†. (20)

F(g) is that part of the full vector matrix F = {〈j(R)|∇∇∇i(R)〉} where |i〉
and 〈j| belong to our group g. The coupling between the group g and the
rest of the electronic Hilbert space is given by F(c) = {〈j(R)|∇∇∇k(R)〉},
where 〈j| belongs to g and |k〉 to the complement of g. We may now make
use of Eq. (20) to rewrite Eq. (19) and obtain[

− 1
2M

(∇∇∇ + F(g))2 + W(g) − E

]
χ(g) = 0 (21a)

where the matrix Hamiltonian is now in g space only, i.e. its elements i, j

refer to states in our set g, and we have dropped the superscript for brevity
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from ∇∇∇ and E. The quantities

W
(g)
ji (R) = V

(g)
i (R)δij +

1
2M

∑
k/∈g

〈∇∇∇j(R)|k(R)〉〈k(R)|∇∇∇i(R)〉 (21b)

are the elements of the dressed potential matrix W(g). In deriving (21b),
we have used the antihermitian property (11a) of derivative couplings.

To compute the dressed potential surface, it is convenient to intro-
duce the projector P̂ (g) which projects on the subset of electronic states g.
Introducing

P̂ (g) =
∑
i∈g

|i(R)〉〈i(R)| (22a)

leads to

W
(g)
ji (R) = V

(g)
i (R)δij +

1
2M

〈∇∇∇j(R)|(1 − P̂ (g))|∇∇∇i(R)〉 (22b)

which can be evaluated within the group g of states without summing
over the formally infinite set of states |k〉 which do not belong to g.
Equation (22b) is often even simpler than it looks. For instance, if our
group of coupled states contains two members — and this is a widespread
situation — then the nondiagonal term reduces to W

(g)
ji = 1/2M〈∇∇∇j|∇∇∇i〉

because of the orthogonality relation (4b) (real electronic wavefunctions are
assumed).

Let us return to the group-Born–Oppenheimer approximation (21a) and
pay further attention to the corrections in (21b) due to the rest of the
electronic states. From the definition of the derivative coupling (9b) and the
expression (18), we may conclude that these corrections have only a weak
impact on the nuclear dynamics in the g-manifold of states. The derivative
couplings in (21b) connect states within this manifold with states outside
the manifold, separated by a substantial energy gap. Furthermore, these
couplings are weighted by 1/2M in Eq. (21b). The situation is actually
equivalent to that discussed in the preceding subsection. By including a
single state in our group g of states, Eq. (21a) boils down to Eq. (16),
which — in particular for real electronic wavefunctions — is the well-known
Born–Oppenheimer approximation. This can be easily seen by using the
relations (9a) and (11b).

In analogy to Sec. 3.1, we may neglect in many cases to a good approxi-
mation the difference between the naked and the dressed potential matrices
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V(g)(R) and W(g)(R). This leads to the following simplified equation of
motion for the nuclei in the manifold g of coupled electronic states[

− 1
2M

(∇∇∇ + F(g))2 + V(g) − E

]
χ(g) = 0. (23)

Note that the potential matrix V(g)(R) is a diagonal matrix by definition,
in contrast to W(g)(R). Again, in analogy to the common treatment in
Sec. 3.1, we call (23) the group-Born–Oppenheimer adiabatic approximation
or briefly the group-adiabatic approximation. This approximation assumes
that the states within the manifold g are much stronger coupled to each
other — e.g. via the presence of a conical intersection of the potential
surfaces — than to the rest of the electronic space.

Additional properties of the nonadiabatic couplings are discussed in
Sec. 4.

4. Gauge Potentials and Quasidiabatic States

4.1. Gauge Invariance of Group-Born–Oppenheimer
Approximation

The full Eq. (10) and its group-Born–Oppenheimer approximation (21a)
are natural gauge theoretical formulations of the nuclear motion.5 Gauge
theories are widely used in other fields, e.g. elementary particle physics,7,13

the simplest one in electrodynamics, where the vector potential appears.4

We mention that there are also some other attempts in molecular physics
and quantum chemistry6,14–16 and that an intimate relation exists between
gauge theory and the geometric phase in adiabatic transport in quan-
tum systems.17–19 In the presence of a conical intersection, this geomet-
ric phase leads to the well-known sign change of the adiabatic electronic
wavefunction,20 which has stimulated the first investigation of gauge poten-
tials in the context of the Born–Oppenheimer approximation.21

It is beyond the scope of this work to enter the subject of gauge the-
ory deeply. We shall only illustrate some results relevant to the group-
Born–Oppenheimer approximation. For more details we refer to Ref. 5 and
references therein.

There is always a freedom of choice in using basis sets. In the preceding
sections we have used as basis set the eigenfunctions Φi of the electronic
Hamiltonian He, see Eq. (3). If we transform these basis functions to a new
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basis set Φ̃i by a unitary transformation U(g), U(g)U(g)† = 1, this implies
that we have transformed the nuclear wavefunction according to

χ̃(g) = U(g)†χ(g) (24)

because of the invariance of the total wavefunction Ψ(r,R) in Eq. (5). The
question immediately arises whether such a transformation leaves invariant
the form of the matrix Schrödinger equation (21a) in our subspace g of
interacting electronic states. If the answer is positive, one says that this
equation or equivalently the group-Born–Oppenheimer approximation is
gauge invariant under the gauge transformation U(g). Of particular interest
is, of course, the case where this transformation depends parametrically on
the nuclear coordinates R:

U(g)(R)U(g)†(R) = 1. (25)

It has been shown in Ref. 5 that the electronic basis set transformation
leads to the following matrix Schrödinger equation:[

− 1
2M

(∇ + F̃(g))2 + W̃(g) − E

]
χ̃(g) = 0. (26)

In other words, the group-Born–Oppenheimer is a gauge invariant approx-
imation. In the above equation, the dressed potential transforms as

W̃(g) = U(g)†W(g)U(g); (27a)

in addition, the relevant relation

F̃(g) = U(g)†F(g)U(g) + U(g)†(∇U(g)) (27b)

holds for the nonadiabatic derivative couplings in the new electronic basis.
Since we did not specify the set g of interacting states, the above also holds
for the full matrix Schrödinger equation (10); we just have to drop the
superscript g. Equation (10) is thus also gauge invariant. It is important
that the full equation and the truncated one share the basic property of
gauge invariance.

To facilitate the above, let us consider explicitly the common case in
which g contains two electronic states Φ1 and Φ2 which are taken to be
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real. The matrix of derivative couplings then reads

F(g) =
(

0 τ

−τ 0

)
(28)

where τ(R) = 〈Φi|∇∇∇Φ2〉. The most general gauge transformation is

U(g)(R) =
(

cos λ(R) sin λ(R)
− sin λ(R) cos λ(R)

)
. (29)

It is easy to show that

τ̃ = ∇∇∇λ + τ. (30a)

Here, τ̃ = 〈Φ̃1|∇∇∇Φ̃2〉 is just the derivative coupling in the transformed
electronic basis. Hence, Eq. (27b) now takes on the explicit appearance

F̃(g) =
(

0 τ̃

−τ̃ 0

)
=

(
0 τ

−τ 0

)
+

(
0 1

−1 0

)
· ∇∇∇λ. (30b)

A general remark on the transformed dressed potential in Eq. (27a) is
also in order. According to Eq. (22b), the potential matrix W(g) consists of
the diagonal matrix V(g) of the electronic energies and a, in general non-
diagonal, correction matrix. By transforming to a new electronic basis, the
matrix V(g), of course, becomes a nondiagonal matrix of potential energies
which we denote by Ṽ(g). What happens to the correction matrix? Because
of the projection operator in Eq. (22b), this matrix retains its form by the
gauge transformation. We obtain the general relation:

W̃
(g)
ji = Ṽ

(g)
ji +

1
2M

〈∇∇∇j̃(R)|(1 − ˆ̃P (g)|∇∇∇ĩ(R)〉 (31)

which obviously also holds in our above explicit example of two states.

4.2. Strictly Diabatic and Quasidiabatic Electronic States

It is often cumbersome to solve the group-Born–Oppenheimer
equation (21a) because of the terms F(g) · ∇∇∇. Furthermore, these terms
describe the coupling between electronic states in our g manifold via the
momenta of the nuclei, and we commonly have more experience in under-
standing the impact of couplings via potentials than via momenta. It has,
therefore, been popular and desirable, starting already many decades ago, to
formulate the nuclear equations of motion in a so called diabatic electronic
basis instead of the adiabatic one, which we have used above in Secs. 2
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and 3.22–26 Thereby these diabatic electronic states have been a priori
assumed to depend so weakly on the nuclear coordinates that the deriva-
tive couplings can be considered small or even put exactly to zero. The basic
question arises whether we can indeed eliminate the derivative couplings by
choosing an appropriate basis of electronic states. Following previous work,
we call a basis strictly diabatic if in that basis the derivative couplings
vanish8,27,28 and quasidiabatic, if in that basis these couplings are small,
but not zero.5

The gauge invariance of the group-Born–Oppenheimer approximation
provides a good starting point to discuss diabatic states. In contrast to
Eq. (21a), where this approximation is formulated in the adiabatic elec-
tronic basis, Eq. (26) is expressed in an arbitrary basis. Elimination of the
derivative couplings appearing in the latter equation amounts to setting to
zero the left hand side of Eq. (27b):

F(g)U(g) + (∇∇∇U(g)) = 0. (32)

Note that F(g) is the vector matrix of derivative couplings in the adiabatic
electronic basis and the gauge transformation U(g)(R) is the unitary trans-
formation matrix connecting the adiabatic and diabatic basis sets. In the
above example of two real electronic states, Eq. (32) is identical to Eq. (30a)
where τ̃ is set to zero:

∇∇∇λ + τ = 0. (33)

Does Eq. (32) have a solution or, equivalently, do strictly diabatic states
exist? There are two limiting cases where the answer to this question is obvi-
ously positive. If our set g of interacting electronic states contains all elec-
tronic states, then we can transform the adiabatic electronic states Φi(r,R)
to a set Φ̃i(r) which does not depend parametrically on the nuclear coordi-
nates. In this complete basis set of so called crude adiabatic functions,29 the
derivative couplings definitely vanish. The other limiting case is obtained
by restricting ourselves to a single nuclear coordinate, say Rα, keeping all
other coordinates frozen at arbitrary values. Along this path Rα we can just
integrate Eq. (33) over Rα, determine λ = λ(Rα) and obtain via Eq. (29), a
strictly diabatic basis along the path. Diatomics provide natural examples
for this limiting case.

In general, no strictly diabatic basis exists in a finite set g of interacting
electronic states.8,27,30 To see this, let us return to Eqs. (27b) and (32) and
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introduce the quantities

A(g)
αβ =

∂F(g)
β

∂Rα
− ∂F(g)

α

∂Rβ
+ [F(g)

α ,F(g)
β ] (34)

which are the α, β components of the so called gauge field tensor.4,7,13 A nec-
essary and sufficient condition for the existence of a solution of Eq. (32),
and hence of a strictly diabatic basis, is the equality ∂2U(g)/∂Rα∂Rβ =
∂2U(g)/∂RβRα. Using Eq. (32), this immediately implies that all the com-
ponents of the gauge field tensor have to vanish: A(g)

αβ = 0. This condition
is, in general, only fulfilled in the complete electronic space and not in a
subspace g; see the relation (11f) for derivative couplings. From the latter
relation, it is easy to show that

A(g)
αβ = F(c)

α F(c)†
β − F(c)

β F(c)†
α (35)

where F(c) comprises the derivative couplings between g and the comple-
mentary space and has been introduced in Eq. (20).

We briefly reformulate the above necessary and sufficient condition for
the existence of a strictly diabatic basis in the context of gauge theory.
In contrast to the gauge potential F(g), which transforms in a relatively
complicated manner via Eq. (27b), the gauge field tensor A(g) simply trans-
forms as

Ã(g) = U(g)A(g)U(g). (36)

This can be shown using Eqs. (34) and (27b), i.e. the gauge field tensor
is gauge invariant. Single valuedness of the electronic basis requires that
A(g) = 05,13,16 and because of Eq. (36), the gauge field tensor vanishes
for all unitary transformations. It can generally be shown that the gauge
potential can be eliminated by a gauge transformation, once the gauge field
tensor is zero.13

Owing to Eq. (35), there is no reason to expect that a strictly diabatic
basis exists. Nevertheless, one can construct quasidiabatic states which
are extremely useful in solving and understanding many relevant prob-
lems abundantly discussed in the literature. With their help it is possi-
ble to remove a substantial part of the derivative couplings and make the
group-Born–Oppenheimer Eq. (26) more transparent and better amenable
to explicit numerical calculations. That part of the derivative couplings
which can be removed by an unitary transformation U(g)(R) is called
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the removable part, and the remaining part the nonremovable part. In the
important two-state case, these parts of the derivative couplings have been
analyzed in some detail.5,8 In general, we may not expect to have elimi-
nated even the removable part exactly, and it is convenient to denote the
sum of all the remaining parts the residual couplings. Of course, as long as
we insert the residual couplings F̃(g) into Eq. (26), our solution is equiva-
lent to that of the original Eq. (21a). It is only if we neglect the residual
couplings that we have to check whether they are large or small.

In this context, let us briefly return to the two-state case. As discussed
above, strictly diabatic states exist in one dimension, e.g. for a diatomic
molecule with interatomic distance R. In a typical situation, the adiabatic
potentials exhibit an avoided crossing and the diabatic potentials cross each
other once a function of R. Assuming that the derivative couplings vanish
at infinite internuclear distance, and using Eq. (30) then gives∫

τ(R)dR = −
∫

dλ

dR
dR = −π (37)

and no residual coupling is found. In different situations, similarly sim-
ple results are obtained. With the aid of the same equation and dλ =∑

α ∂λ/∂Rα · dRα, we obtain

∑
α

∫
F(g)

α dRα = π

(
0 −1
1 0

)
+

∑
α

∫
F̃(g)

α dRα (38)

which provides an idea about the overall size of the residual couplings if
ab initio data on the couplings F(g) are available. For such data see, for
instance, Ref. 31.

To arrive at a quantitative criterion for quasidiabaticity, it has been
proposed5 to minimize the integral of ‖F̃(g)‖2, which is the Euclidean norm
for matrices, over the nuclear coordinates. This natural requirement leads
to the simple equation5

∇∇∇ · F̃(g) = 0 (39)

for the diabatic states, which in the language of gauge theory can be called
Lorentz gauge. In the two-state case, it has been shown that this gauge is
the best possible gauge, i.e. transforming to the Lorentz gauge eliminates
from the derivative couplings what can be eliminated. The removable part
is removed, and one is left only with the nonremovable part. We call the
states which result from the above criterion optimal quasidiabatic states.
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The expression (18) has been useful in assessing the relevance of the
derivative couplings in the adiabatic electronic basis. What to expect
for the residual couplings? By differentiating both sides of the identity
Ṽ

(g)
ji = 〈j̃|He |̃i〉 with respect to the nuclear coordinates, we obtain the

following expression (i �= j):

F̃(g)
ji (R) =

〈j̃|(∇∇∇He)|̃i〉 − ∇∇∇Ṽ
(g)
ji

Ṽ
(g)
jj − Ṽ

(g)
ii

. (40)

Here, the Ṽ
(g)
ji (R) are the elements of the potential energy matrix in

the quasidiabatic basis [see also Eq. (31)]. In contrast to Eq. (18) where
the numerator cannot be expected to be small or even to vanish in gen-
eral, the numerator in Eq. (40) can be made small by appropriately choos-
ing the electronic basis. This happens when this basis depends only weakly
on the nuclear coordinates. In the extreme case in which the basis is inde-
pendent on the nuclear coordinates, the numerator in Eq. (40) vanishes by
definition. We have seen above that in the two-state case a strictly dia-
batic basis can be determined along a single coordinate (e.g. for a diatomic
molecule). Having only a single coordinate at our disposal, there is no reason
to expect the denominator in Eq. (40) to vanish (avoided crossing situa-
tion), but the numerator can be made zero.

What happens in conical intersection situations? In the adiabatic elec-
tronic basis the derivative couplings become singular as one approaches the
conical intersection12 (see also Chapter 2). Starting from the Hamiltonian
in a quasidiabatic basis with no singularities in the residual derivative cou-
plings, we readily obtain singular couplings in conical intersection situations
when transforming the Hamiltonian to the adiabatic electronic basis. Obvi-
ously, in these cases the part that becomes singular as one approaches the
conical intersection is removable. We may transform back from the adiabatic
basis to the initial quasidiabatic basis where no singularities are present.

Can the nonremovable part also exhibit singularities as one approaches
a conical intersection? The nonremovable part of the derivative couplings
originates from the fact that the gauge field tensor A(g) does not vanish [see
Eqs. (34) and (35) and text]. Since by construction this tensor assumes only
finite values, there is no reason to expect the nonremovable part to exhibit
singularities at conical intersections, see also the discussion in Ref. 32 and
explicit examples in Ref. 5. Let us briefly consult Eq. (40) in a conical
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intersection situation and consider for simplicity two states Φ̃i and Φ̃j of
different spatial symmetry, and two coordinates, a totally symmetric one Rα

and a nontotally symmetric one Rβ , which can couple the two electronic
states. Expanding all quantities in Eq. (40) around the geometry of the
conical intersection Rα = Rβ = 0, we obtain by symmetry arguments:12

Ṽjj − Ṽii = aαRα + . . . ,

Ṽji = cβRβ + cβαRβRα + . . .

〈j̃|(∇∇∇He)|̃i〉 = (bβαRβ + . . . , bβ + bβαRα + . . .). (41a)

a, b and c are real numbers and, in particular, aα, cβ and bβ are nonzero.
Insertion into Eq. (40) gives in the vicinity of the conical intersection

F̃(g)
ji =

[(bβα − cβα)Rβ , (bβ − cβ) + (bβα − cβα)Rα]
aαRα

(41b)

The singularity at the conical intersection can be made to vanish if only two
conditions are fulfilled by the quasidiabatic basis: bβ = cβ and bβα = cβα.
Since we have two independent coordinates Rα and Rβ , these conditions
can be met. In general, the quasidiabatic basis can perform more effi-
ciently than just removing the singularity as one approaches the conical
intersection.

To conclude this section, we briefly comment on the practical approaches
to compute quasidiabatic states. A general account of the subject has been
reviewed in Ref. 5 and additional recent developments are discussed in
Ref. 41 and in this book.33 Basically, we can divide the various methods
proposed into two classes, depending on whether the derivative couplings
in the adiabatic electronic basis (or some other well defined basis) are used
or not. The method proposed by Baer34,35 is the most prominent proto-
type scheme belonging to the first class. Baer gives a general method, in
which use is made in a propagative manner of Eq. (32) to find a transfor-
mation U(g) from the adiabatic to a diabatic basis. In those cases in which
strictly diabatic states do exist, the method provides them by eliminating
the derivative couplings. In most cases, however, a strictly diabatic basis
does not exist as discussed above, and it has been argued that the methods
leads to nearly diabatic states.36 The analysis made in Ref. 5 demonstrates
that Baer’s method does lead to states which do fulfill the Lorentz gauge
locally, i.e. in a small neighborhood of the reference nuclear coordinates at
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which the propagative computation has started. In this neighborhood, the
states obtained are thus optimal quasidiabatic states.

The second class of methods to construct diabatic states does not make
use of the availability of derivative couplings. Such approaches, if success-
ful, have the advantage that derivative couplings need not be computed.
Although these couplings can now be computed by ab initio methods (see,
for instance, Ref. 31), their determination is still a formidable task, in par-
ticular for several potential energy surfaces and not too small molecules
with several nuclear degrees of freedom. The method of block diagonaliza-
tion of the electronic Hamiltonian,37 discussed and analyzed in detail in
Ref. 5, provides a promising proposal of broad applicability. The electronic
Hamiltonian He is usually represented as a matrix He in some initial elec-
tronic basis. Instead of diagonalizing this matrix to obtain the adiabatic
potential surfaces as eigenvalues, we may block diagonalize it, i.e. bring He

into a block diagonal form. One block — denoted g-block — comprises those
electronic states which belong to the group g of states chosen to participate
in the group-Born–Oppenheimer equation (26). The other block contains
the remaining states and is not of our concern. Obviously, the eigenvalues
of the g-block coincide with eigenvalues of the full Hamiltonian matrix He,
i.e. they are those adiabatic potential surfaces of the states participating in
the group-Born–Oppenheimer equation for the nuclear dynamics.

There are infinitely many transformations which bring a Hermitian
matrix into block diagonal form. It is intriguing and satisfactory that
a single elementary condition is sufficient to determine uniquely (up to
phase factors) the block diagonalizing transformation.38 It is the simple
and appealing requirement that this transformation does not do anything
but block diagonalize, i.e. it is as close as possible to the unit matrix.
The resulting transformation can be given explicitly and requires only the
knowledge of those eigenvectors of He which belong to the g-block. Start-
ing at some nuclear configuration, one can show that this block diago-
nalization leads locally to the Lorentz gauge, i.e. to optimal quasidiabatic
states in the neighborhood of this configuration.5 By using these quasidi-
abatic states obtained at a given nuclear configuration as the initial basis
for block diagonalization at a nearby nuclear configuration, one defines
a propagative block diagonalization procedure. This procedure has been
shown5 to yield identical results of those of Baer’s method.34,35 As dis-
cussed above, the latter method requires the derivative couplings, while the
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block diagonalization approach does not. We remind that if the nuclear
coordinate space is one dimensional, both methods give strictly diabatic
states. Variants of the block diagonalization approach have been formu-
lated and successfully used to generate quasidiabatic states in ab initio
computations.5,39,40

5. Analysis in Powers of (1/M)1/4

5.1. General

The large mass of a nucleus compared to that of an electron permits an
approximate separation of electronic and nuclear motion, which is the basis
for the treatments discussed in the preceding sections. Historically, there
were several attempts to expand the solutions of the Schrödinger equation,
i.e. the energies and the wavefunctions, in powers of a small quantity related
to the ratio of electronic and nuclear masses. The breakthrough has been
achieved by Born and Oppenheimer in their classic paper in which they
have chosen κ = (1/M)1/4 as the small quantity.42 As done in the preceding
sections, M is some average nuclear mass and we work in atomic units where
the electronic mass is 1.

When studying the expansion in powers of κ, traditionally one first sepa-
rates off the center of mass motion and expresses the remaining Hamiltonian
for relative motion of nuclei and electrons in suitable nuclear coordinates
describing molecular rotations and vibrations. The resulting expressions are
rather complex and depend on the particular choice of coordinates made,
see, for instance, Refs. 43–45. On the other hand, one also arrives at the cor-
rect analysis in powers of κ without first separating off the center of mass
motion. This has been demonstrated by many authors, see, for instance,
Refs. 3, 29 and 46–48.

The physics behind the expansion in powers of κ is most straightfor-
wardly understood by resorting to the nuclear kinetic energy operator Tn

in its simplest form, given in Eq. (8). There is no need to specify the under-
lying mass-scaled nuclear coordinates. It suffices to divide these coordinates
into various classes according to their physical nature. For transparency, we
divide the nuclear coordinates in this work into two extreme classes only;
all other classes lead to results in between the results we shall obtain for
these two classes below. Our first class comprises all quasi-rigid vibrations
of the system. All other nuclear coordinates, describing soft or even free,
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e.g. translational, nuclear motion, are collected in the second class. The
respective nuclear modes of motion will be briefly denoted as rigid and soft.
To be particularly simple, we initially assume that the electronic energy
Vj(R) under consideration depends only on the rigid coordinates.

Obviously, the energy Vj , which is the potential energy surface for the
nuclear motion, has a minimum value Vej at some equilibrium configuration
Reα, where the set α comprises the rigid coordinates. In the vicinity of
the minimum, the potential Vj is essentially quadratic, giving rise to a
multidimensional harmonic oscillator. According to the standard theory,
the frequencies of the harmonic oscillator scale as κ2 and the root-mean-
square displacements from the Reα scale as κ. Born and Oppenheimer have
exploited the latter property by introducing new coordinates Qα for the
displacement from equilibrium

Rα = Reα + κQα. (42)

For the harmonic oscillator, the root-mean square values of Qα scale as κ0

and can also be expected to be of order unity for all quasi-rigid motions
beyond the harmonic approximation.

Expressed in the new coordinates Qα, we may now rewrite the nuclear
kinetic energy Tn in Eq. (8) and obtain the convenient result

Tn = −κ2

2
∇∇∇2

Q − κ4

2
∇∇∇2

S (43)

where ∇∇∇Q is the gradient with respect to the coordinates Q and ∇∇∇S is the
gradient with respect to the remaining coordinates, i.e. the soft coordinates.
The kinetic energies for the quasi-rigid and soft motions scale differently
with the nuclear mass. To proceed, we expand the potential energy in a
power series in Qα about the minimum and readily obtain

Vj(Q) = κ0Vej +
1
2
κ2

∑
α,β

VjαβQαQβ +
1
6
κ3

∑
α,β,γ

VjαβγQαQβQγ +· · · . (44)

where the linear term in κ vanishes.
To complete the expansion of the general matrix Schrödinger equa-

tion (7) in powers of κ, we need to analyze the nonadiabatic coupling Λji

as well. Inspection of Eq. (9) shows that these couplings split into a term
ΛQ

ji, arising from the quasi-rigid motion, and a term ΛS
ji, corresponding to
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the soft motion

Λji = ΛQ
ji + ΛS

ji (45a)

which scale differently with κ. Remembering that ∇∇∇ = ∇∇∇κQ + ∇∇∇S , where
by definition ∇∇∇κQ = κ−1∇∇∇Q, we can easily see from Eq. (9a) that

ΛQ
ji = κ3FQ

ji · ∇∇∇Q +
1
2
κ4GQ

ji (45b)

and

ΛS
ji = κ4

(
FS

ji · ∇∇∇S +
1
2
GS

ji

)
. (45c)

The derivative couplings FQ
ji and FS

ji and the scalar couplings GQ
ji and

GS
ji are defined as usual, just replace ∇∇∇ in the definitions (9) by ∇∇∇κQ and

∇∇∇S , respectively. These couplings are, in general, functions of the nuclear
coordinates and should be expanded in powers of κ as well. Fortunately, the
leading terms of these quantities do not depend on κ, i.e. they scale as κ0.

Having completed the analysis of all the operators appearing in the
matrix Schrödinger equation

[Tn + Vj − E]χj =
∑

i

Λjiχi (46)

we may now turn to analyze the equation itself. To lowest order in κ,
one immediately obtains E = Vej , which is the electronic energy at the
equilibrium configuration. The nuclei are frozen in space, κ does not appear,
and only the electrons move. In the next order, κ2, we have:

κ2

2


−∇∇∇2

Q +
∑
α,β

VjαβQαQβ


χj(Q) = (E − Vej)χj(Q). (47)

Now the nuclear motion is harmonic, but the nuclei move only along the
rigid coordinates. The soft motion, e.g. translation, is frozen. What happens
in the order κ3? At first sight, one may be tempted to assume that the
cubic anharmonicity of Vj(Q) in Eq. (44) contributes to this order. From a
perturbational point of view, this is not the case, however. The harmonic
wavefunctions are even functions of the coordinates, and the expectation
values of all odd anharmonic terms vanish. These terms will contribute to
the energy in second order perturbation theory, i.e. earliest in κ4 (note
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that when adding cubic anharmonicity to Eq. (47), it appears within the
brackets as a linear term in κ).

Interestingly, the impact of the nonadiabatic couplings begins at the
same order of κ as that of the anharmonicity. As can be seen from
Eqs. (45b,c), the scalar nonadiabatic couplings enter the Schrödinger equa-
tion (46) already at κ4. When real electronic states are used, the diagonal
element Fjj of the derivative couplings vanish. In the presence of a mag-
netic field,10 or when phase factors are attached to the electronic states,
as discussed at the end of Sec. 2, the Fjj do not vanish in general. Conse-
quently, the derivative couplings lead to effects already in the order κ3 [see
Eq. (45b)]. Does this result imply that nonadiabatic couplings are more
relevant than anharmonicities? The answer depends on the values of the
nonadiabatic couplings in the actual system under investigation.

At what order of κ do other electronic states mix into the description
of the dynamics? As can be seen from Eq. (46), this mixing depends on
the nonadiabatic couplings Λji between our electronic state Φj and the
other states Φi, i �= j. For the rigid coordinates, these couplings scale as
κ3, but their contribution to the energy starts at second order perturbation
theory and hence as κ6. This mixing implies that the total wavefunction
ceases to be merely a product of an electronic and a nuclear wavefunction.
The adiabatic ansatz (15) looses its validity and one has to resort to the
expansion (5) of the total wavefunction.

Summarizing, if perturbation theory is applicable throughout and real
electronic wavefunctions are used, the lowest order contributions to the
energy are all proportional to even powers of the small parameter κ. In grow-
ing powers of κ, these contributions are:

κ0: Electronic energy.
κ2: Harmonic energy of quasi-rigid motion.
κ4: Contribution of soft motion, anharmonic contribution of quasi-rigid

motion; contribution of scalar nonadiabtic coupling.
κ6: Contribution of coupling between electronic states (derivative cou-

plings via quasi-rigid motion); contribution of coupling between soft
and quasi-rigid motion.

If perturbation theory is applicable, the smallness of κ not only justifies
the separation of electronic and nuclear motion, but also the separation of
quasi-rigid and soft motion. We know, however, that perturbation theory
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breaks down in many cases. A prototype case is encountered in the pres-
ence of a conical intersection between potential energy surfaces. The deriva-
tive couplings diverge at such intersections, and the participating electronic
states must be included on the same footing in the calculations. This leads
to the group-Born–Oppenheimer approximation discussed in Sec. 3.2. In
analogy to the above analysis, it is evident that the energetic contribution
of the derivative couplings between the electronic states within our group g

and the remaining states begins at κ6. Since the values of these derivative
couplings are of the order of unity, the smallness of κ justifies the group-
Born–Oppenheimer approximation. There is a price to pay, however. The
diverging derivative couplings between the electronic states of our group g

must be correctly included in the calculations of the nuclear motion, and
although they appear in the equations with a prefactor ∼κ3, see Eq. (45b),
one cannot resort to the smallness of κ.

5.2. Traditional Approach for Quasi-Rigid Molecules

In the traditional approach, the center of mass motion of the molecule
is explicitly separated off, and nuclear coordinates are introduced which
suitably describe molecular vibrations and rotations. The procedure is not
unique and the resulting kinetic energy operators depend on the choice of
coordinates made. We follow here the transparent analysis of Mead45 which
is briefly sketched below. The center of mass coordinate is defined as usual,
and the nuclear relative coordinates are introduced one at a time. Starting
with an arbitrary chosen nucleus, the new coordinate for each nucleus is
defined relative to the center of mass of the nuclei already introduced. This
definition of relative nuclear coordinates, which we denote by R̄α, leads to a
particularly simple form of the kinetic energy operators (Jacobi coordinates;
for a discussion of suitable nuclear coordinates, see Ref. 51). The relative
electronic coordinates ri are defined, as usual, relative to the center of mass
of the nuclei.

Now, an average nuclear mass M is introduced and coefficients bα =
µα/M are defined, relating the reduced masses of the above coordinates
R̄α to the average mass. Defining mass-scaled coordinates, Rα = b

1/2
α R̄α,

leads to the following kinetic energy operator

T = Te − 1
2M

∇∇∇2 + Tmp (48a)
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where the term Tmp is called mass polarization. With the above choice of
relative nuclear coordinates, the mass polarization takes on a particularly
simple appearance

Tmp =
κ4

2b

(∑
i

pi

)2

. (48b)

Here, b is a quantity defined by Mn = bM , where Mn is the total mass of
the nuclei, and the pi are the canonical electronic momenta. Other choices
of nuclear coordinates typically lead to more intricate expressions for Tmp

in which also the nuclear momenta appear. The electronic operator Te is
not affected by the choice of nuclear coordinates.

To separate rotational degrees of freedom from the vibrational ones, a
molecule-fixed coordinate system is introduced with three angles giving the
orientation of this frame relative to the laboratory. Variables conjugate to
these angles are provided by the vector J of angular momentum, which
is conveniently defined relative to the molecular-fixed frame. The effect of
a component of J is to rotate the nuclei about the respective axis, while
holding the electrons fixed, see e.g. Ref. 52. The remaining internal nuclear
degrees of freedom describe the vibrations of our quasi-rigid molecule. There
are various conventional methods to introduce them, depending on the pur-
pose at hand, for instance, analyzing vibrational spectra. For our present
purpose, i.e. analysis in powers of the small parameter κ, the particular
choice of these vibrational coordinates is irrelevant. For simplicity, we shall
not introduce a new notation for these coordinates and denote them by Rα,
as done in the preceding subsection. The nuclear kinetic energy now takes
on the following appearance in matrix notation:

Tn =
1

2M
[JA(R)J − ∇∇∇RB(R)∇∇∇R] (49)

where the matrix A(R) is the inverse of the nuclear inertia tensor and the
matrix B(R) depends on the particular choice of vibrational coordinates
made.

We are now in the position to make direct contact with the general
analysis in Sec. 5.1 by identifying these vibrational coordinates with the
rigid coordinates in Eq. (42). These, in turn, have lead to the introduction
of new coordinates Qα for the displacement from equilibrium. In analogy to
Eqs. (42) and (43), the nuclear kinetic energy in Eq. (49) is easily rewritten
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to give

Tn = −κ2

2
∇∇∇QB∇∇∇Q +

κ4

2
JAJ. (50)

As in Eq. (43), the kinetic energy for the quasi-rigid motion scales with κ2,
while that for the soft motion scales with κ4. Since the translational motion
has been separated off exactly and a quasi-rigid molecule is considered here,
we are left only with the rotational motion as soft motion.

The difference to the analysis made in the preceding subsection is that
matrices A and B appear in Eq. (50) which depend on the vibrational
nuclear coordinates. These can be expanded in a power series in the Qα in
the vicinity of the equilibrium geometry Reα, giving

A = Ae + κ
∑
α

AαQα +
κ2

2

∑
α,β

AαβQαQβ + · · · . (51)

and an analogous expression for B. The interpretation and analysis of the
nonadiabatic couplings presented in the preceding subsection is also valid
here. Just for completeness, we mention that the precise expressions for
these couplings follow from Eq. (45): replace there ∇∇∇Q and ∇∇∇S by B∇∇∇Q and
AJ, respectively, The derivative couplings with respect to the vibrational
coordinates are defined, as usual, as the electronic matrix elements of ∇∇∇R,
and those with respect to rotation as matrix elements of J. The scalar
couplings, which are, according to Eq. (9), electronic matrix elements of
the nuclear kinetic energy operator multiplied by 2M , follow immediately
from the terms of this operator in Eq. (49).

All the analysis and discussion of the preceding subsection can now be
carried over to the present situation. If perturbation theory is valid and
real electronic wavefunctions are used, the lowest order contributions to
the energy in growing powers of κ listed in Sec. 5.1 apply also here. One,
of course, has to identify the quasi-rigid motion and the soft motion in
Sec. 5.1 with vibrational and rotational motion, respectively. Then, the
discussion in Sec. 5.1 for cases in which perturbation theory breaks down,
in particular in the presence of conical intersections, also remains valid.
Where are the differences between the general analysis in Sec. 5.1 and the
present one for quasi-rigid molecules? First, mass polarization, see Eq. (48),
contributes here in the order of κ4. This contribution is obviously missing in
Sec. 5.1, where the translational motion has not been separated off a priori.
However, as discussed there, the translational motion starts to contribute
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also at κ4. Second, the leading contribution due to the coupling of vibrations
and rotations scales as κ6. In the present case it arises from the second
order contribution of the terms linear in κ in the expansion (51) of the
matrix A. Third, and most important, the main differences between Sec.
5.1 and the present traditional analysis are due to the matrices A and B.
Their expansions (51) give rise to additional contributions in higher orders
of κ and to a more general definition of anharmonicity.

6. Miscellaneous

The aim of the present section is to supplement the discussions of the Born–
Oppenheimer approximation and of conical intersections presented in this
book. In particular, we would like to briefly discuss three subjects: the
presence of external fields, nonstationary electronic states, and the role of
molecular rotations in conical intersection situations. Each of these subjects
presents by itself a large area of research and would deserve a detailed
account. Here, we shall only touch upon these subjects without going into
any details.

The basic idea underlying the Born–Oppenheimer approximation is the
separation of the electronic and nuclear motions in terms of the small
quality κ = (1/M)1/4 as elaborated in Sec. 5. The discussion in Sec. 3.2
has made clear that the existence of the small parameter κ is, however,
insufficient to solve the problem. The coefficients in the expansion of the
Schrödinger equation in powers of κ also play a relevant role. Indeed, some
of these coefficients can be very large — and in conical intersection situa-
tions even diverge — and hinder the separation of electronic and nuclear
motion, inspite of the smallness of κ. This has led to the introduction of
the group-Born–Oppenheimer approximation. We would like to stress that
the failure or even breakdown of the Born–Oppenheimer approximation is
a consequence of the forces prevailing in the system. For instance, if all the
forces among the light and heavy particles in the system were harmonic
forces, no conical intersections or similar diabolic features would appear,
and the Born–Oppenheimer approximation would turn out to be an excel-
lent approximation for all states throughout.53,54

6.1. Born–Oppenheimer Approximation in Magnetic Fields

Following the above line of thought, we may ask the question whether
the quality of the Born–Oppenheimer approximation is influenced by the
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presence of an external field.10 We shall discuss here very briefly the impact
of an external magnetic field. Details can be found in Ref. 49. Inspite of the
difficulties encountered in separating the center of mass motion in the pres-
ence of a magnetic field,9 it is possible to formulate a Born–Oppenheimer
expansion as done in Sec. 2 and to arrive at an equation analogous to
the basic Eq. (7a).49 The kinetic energy operator of the nuclei, Tn, how-
ever, must be replaced in the magnetic field by an effective operator. For a
homonuclear neutral diatomic molecule this operator takes on the following
interesting appearance:49

Tn(B) = − 1
M

[
∇∇∇ + i

Z

4
· [B × R]

]2

. (52)

Z and M are the charge and mass of one of the nuclei, respectively. B is
the magnetic field and R denotes the relative position vector of the two
nuclei.

The expression for the nonadiabatic couplings in Eq. (7b) is still valid in
the presence of the magnetic field B. One has just to use the operator Tn(B)
in Eq. (52) instead of Tn = Tn(B = O) in the field-free case. One peculiarity
is that the diagonal element of the derivative couplings cannot be made to
vanish in the magnetic field case. Another peculiarity is the appearance
of [B × R] · ∇∇∇ and ([B × R])2 in the expression for the nuclear kinetic
energy. These quantities, of course, diverge as the molecule dissociates,
i.e. |R| → ∞, for any field strength. The consequences are far reaching.
In particular, the Born–Oppenheimer adiabatic approximation (17) does
not provide a meaningful description of the nuclear dynamics. This can be
best seen in the dissociative limit, where one expects two separate atoms
moving in a magnetic field. Instead, this approximation treats the nuclei
with respect to their relative motion as naked charges in a magnetic field.

What is missing in the widely used Born–Oppenheimer adiabatic
approximation when a magnetic field is present? It does not contain the
effect of the screening of the nuclear charges through the electrons against
the magnetic field. As shown in Refs. 10 and 49, the screening is pro-
vided by the nonadiabatic couplings. These couplings can diverge at large
interatomic distances to compensate for the above mentioned misbehavior
encountered in the Born–Oppenheimer adiabatic approximation. How to
remedy the situation? By recognizing that in a magnetic field, the operator
Ṙ = −i[R, H] and not the canonical momentum −i∇∇∇ controls adiabatic-
ity, it has been possible to rearrange the Born–Oppenheimer expansion.
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In particular, this has led to the derivation of the well-behaved partially-
screened Born–Oppenheimer approximation,49 where the screening is cor-
rectly described. It should be noticed that in the absence of a magnetic field,
−i∇∇∇ and Ṙ are identical. The physical origin of the screening is discussed
in Ref. 50.

From the above it is easily anticipated that the mechanism of screening
of the nuclear charge against the magnetic field by the electrons also plays
an important role when several electronic states interact via nonadiabatic
effects — discussed in Sec. 3.2 — and in polyatomics in general. Since the
dynamics at conical intersections is sensitive to the nonadiabatic couplings
and magnetic fields have an impact on the latter and on the symmetry of
the system, it would be interesting to study this dynamics in the presence of
such fields. Surprisingly, magnetic fields can induce the appearance of con-
ical intersections even in diatomic molecules, where such intersections are
obviously absent otherwise.49,55 In an external magnetic field, the poten-
tial surfaces of a diatomic molecule depend not only on the internuclear
distance R, but also on the angle θ between the internuclear and magnetic
field axes. One of the rotational degrees of freedom acquires increasing
vibrational character with increasing field strength. This may lead to what
is known as hindered rotation.56–58 The potential surfaces can exhibit con-
ical intersections in R and θ space, which have been analyzed.49,55 Such
conical intersections have been detected in accurate numerical calculations
on H+

2 .59

6.2. Conical Intersections and Molecular Rotations

There is a vast number of rotational spectra which have been analyzed
assuming that the Born–Oppenheimer approximation holds. In compari-
son, there exist only a few investigations of rotational motion in non-Born–
Oppenheimer systems, where the nuclear motion takes place on coupled
potential surfaces. In this case we may expect that the vibronic coupling,
i.e. the interaction of vibrational and electronic motion, may have a strong
influence on the rotational motion. It has been proposed to speak of rovi-
bronic motion if the nuclear motion is governed by coupled electronic sur-
faces, because in this case the rotational, the vibrational, and the electronic
degrees of freedom are coupled in a nontrivial manner. If only a single elec-
tronic potential surface is involved, the term rovibrational motion seems
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appropriate, since in this case the electronic motion is separated from the
vibrational and rotational motions.60

Experimentally, there is clear evidence for complex rovibronic spectra,
see, for instance, Refs. 61 and 62. Theoretical work is available for linear
molecules,63–66 but only a few authors have considered the more general
case of rotational motion in the presence of vibronic coupling in nonlinear
molecules. Most of this work, see, e.g. Refs. 67–71, is on Jahn–Teller sys-
tems in the weak nonadiabatic coupling regime. A comprehensive general
theory of rovibronic coupling has been given in Ref. 60 and an application
to Na3 is available.72 Accordingly, if rotations are considered, the vibronic
coupling — i.e. the Hamiltonian in the group-Born–Oppenheimer approx-
imation (21a) in vibrational space — has to be augmented by Hrot which
takes on the following appearance:60

Hrot = Hrv +
∑
α

Hα
rotJα +

∑
α,β

Hα,β
rot JαJβ . (53)

Jα are the components of the total angular momentum and the quanti-
ties Hrv, Hα

rot, and Hα,β
rot are purely vibronic operators, which can couple

the various vibronic eigenstates. Obviously, Hrot gives rise to rotational cou-
pling between vibronic states degenerate by symmetry or close by in energy.
Representing Hrot as a matrix in the space of such a manifold of vibronic
states, leads to an effective matrix Hamiltonian for the rotational motion
in this manifold. The situation is analogous to the common vibronic cou-
pling, where the vibrations couple degenerate or quasidegenerate electronic
states. Now, rotations couple degenerate or quasidegenerate vibronic states,
giving rise to rovibronic states which may correspond to strong admixtures
of electronic, vibrational and rotational motions.

The Hamiltonian (53) describes the impact of the coupling of the elec-
tronic potential surfaces on the rotational motion. But, at the same time, it
also describes the coupling of the electronic states through rotations. One
can even anticipate systems where the coupling between closely neighboring
electronic states is mediated only through rotational motion. For instance,
in a homonuclear triatomic D3h molecule, the electronic states of A′

1, A′
2

and E′ symmetry cannot couple to those of A′′
1 , A′′

2 and E′′ symmetry
through vibrational degrees of freedom due to symmetry reasons. However,
components of the total angular momentum do allow for the coupling of
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electronic states with single primed symmetry to those of double primed
symmetry and the Hamiltonian (53) may mediate this coupling.

The Hamiltonian (53) gives rise to a variety of interesting rovi-
bronic phenomena which may depend on the angular momentum quantum
numbers. As an example, let us briefly discuss the widespread situation of
potentials with several equivalent minima and concentrate on the standard
Jahn–Teller effect, where one finds two coupled electronic potential sur-
faces, the lower of which exhibits three equivalent minima. The Jahn–Teller
vibronic coupling case is discussed in this book in Chapter 10. Typically,
three nearly degenerate vibronic states, a twofold degenerate one of E sym-
metry and one of A symmetry, couple rovibronically in this situation. The
energy splitting between the A and the E vibronic states is caused by the
tunneling motion between the different minima of the potential surface.
The effective Hamiltonian for the rotational motion is accordingly a 3 × 3
matrix. For details see Refs. 60 and 72.

We can distinguish between three different physical situations. In the
first case, the tunneling splitting is much smaller than the rotational con-
stants of the molecule. One may speak of strong localization of the vibronic
levels in the minima of the surface. In this case, the effective Hamilto-
nian can be transformed and it separates into three independent equivalent
asymmetric top rotational Hamiltonians. In the second case, the energy
splitting between the E and A vibronic states is of the same order as the
rotational energies. One can easily anticipate that this can cause nontrivial
resonance effects, since the rotational and tunneling motions are equally
fast. Indeed, this situation leads to a completely distorted pattern of rota-
tional, or better to say, rovibronic energy levels. It is impossible to fit them
to any rigid rotor or similar models. In the third case, the typical rotational
energies are smaller than the splitting between the A and E vibronic lev-
els. In this situation, the three dimensional effective Hamiltonian can be
separated into a one dimensional and a two dimensional effective Hamil-
tonian describing the rotational motions in the A and E vibronic state,
respectively. The resulting spectra are different from each other and do
not correspond to those of asymmetric top rigid rotors. The classification
described above partly depends on the total angular momentum quantum
number J . For instance, it is possible that for small values of J case three
is realized, while for high values of J the rovibronic level pattern is that of
case two.
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6.3. Born–Oppenheimer Approximation for Continuum
Electronic States?

In the Born–Oppenheimer approximation, the nuclear dynamics proceeds
on the potential energy surface of a single electronic state. If a group of
electronic states are energetically close by, we resort to the group-Born–
Oppenheimer approximation, where the nuclear dynamics takes place on
the respective coupled potential surfaces. But what do we do if these elec-
tronic states are unbound, i.e. lie in the continuum, and their number is
essentially infinite? It is in general an intractable problem to solve for the
dynamics in this manifold of coupled continuum states. Fortunately, many
elementary processes proceed via so called temporary, compound or reso-
nant electronic states, which carry most of the information associated with
the continuum states. Examples of resonant states are found in low-energy
electron-molecule collisions, where a temporary anion can be formed, and
in photon-molecule impact, where an inner-shell electron is ionized, form-
ing a nonstationary electronic state which can undergo an Auger decay. In
both cases, nuclear dynamics takes place in the resonant state, and this
dynamics is essential for describing the underlying collision processes. Res-
onant states can be viewed as discrete states embedded in and interacting
with the continuum,73 and this point of view attributes to them a poten-
tial energy surface. Unlike bound electronic states, this potential surface
is a complex-valued function of the nuclear coordinates, where the imag-
inary part is inversely proportional to the lifetime of the resonant state.
Nowadays, there exist several methods which are suitable for the computa-
tion of potential surfaces of resonances. Examples are the complex rotation
method,74 the complex absorbing potential technique,75 and the so called
R-matrix approach.76 The calculations of resonant states are in general by
far more involved than those of bound electronic states.

The nuclear dynamics in an isolated resonant state can be described
in analogy to that in a bound electronic state by the Born–Oppenheimer
approximation using the above mentioned complex potential surface. This
approximation has, however, a number of drawbacks not encountered in
the case of bound states. First, the resonant state is embedded in the con-
tinuum, and this continuum of electronic states may also contribute to the
nuclear dynamics and to the process to be described. In scattering processes,
the contribution of the continuum is denoted as background scattering.77
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Second, at energies close to a threshold, where the continuum begins, the
density of electronic states varies strongly, and this has a severe impact on
the resonant state and on the nuclear dynamics. In particular, an exchange
of electronic and rovibrational energy can take place at such energies which
cannot be described within the Born–Oppenheimer approximation. This
situation can be remedied by extending the complex potential surface to
become an energy dependent nonlocal complex potential which acts as an
operator in nuclear space, see Ref. 78 for a review on this subject and
Ref. 79 for a comparative study on the impact of such nonlocal potentials
versus local ones.

In collisions, the relative energy of the collision partners may vary freely
over a wide range and this can lead to situations which we do not encounter
in the dynamics of bound electronic states. In particular, in low-energy
electron-molecule collisions, the impinging electron can possess velocities
similar in magnitude to those of the rovibrational motion. Then, this elec-
tron is by no means the fast particle and the nuclei the slow ones, and a
basic assumption of the Born–Oppenheimer approximation does not hold.
At very low collision energies, the electron can even be the slow particle.
Background contributions may become relevant. Sometimes no dominating
resonance is present at all and sometimes numerous resonant states con-
tribute which are difficult to identify individually. For all these cases, the
separation of nuclear and electronic motion ultimately fails. In principle,
the situation can be cured if we were able to treat the nuclear motion and
the motion of the slow electron on the same footing. But what about the
other electrons of the system or, more precisely, can we separate the slow
electron from the normally behaving molecular electrons. Indeed, it has
been shown that there exists a potential — called the dynamical optical
potential — which describes the coupled motion of the nuclei and of the
slow electron.80 This potential rigorously accounts for the many-electron
nature of the target molecule, i.e. the impact of the other electrons is incor-
porated into this potential. The total Hamiltonian for the dynamics now
consists of the kinetic energy operators of the nuclei and of the slow elec-
tron, and, of course, of the dynamical optical potential. Loosely speaking,
the slow electron is treated in this approach as if it were a nuclear degree of
freedom, and we have arrived again at a Born–Oppenheimer approximation
appropriate for the problem at hand.
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Finally, let us return to the subject of conical intersections of potential
surfaces in the presence of a continuum of electronic states. We remark
that bound and continuum electronic states can exhibit conical intersec-
tions. Resonant electronic states posses complex potential surfaces, and the
question arises, whether these can also exhibit conical intersections. The
answer is, in general, negative. Because of the complex nature of the poten-
tials, both the real and imaginary parts of the potentials must fulfill similar
conditions to those which have to be met by the real potentials of electroni-
cally bound states in order to exhibit a conical intersection, and this is much
less probable. Nevertheless, this does not imply that potential surfaces of
resonant states do not exhibit interesting topologies and even intersections.
On the contrary. In the space of two nuclear coordinates — and this is the
minimum number of coordinates needed for a conical intersection — the
surfaces of bound electronic states intersect at a single point, the conical
intersection point. The surfaces of resonant electronic states, on the other
hand, show two points of intersection.81 Because of the topology of these
surfaces in the vicinity of these intersections, the phenomenon has been
named a square-root intersection. The impact of this intersection on the
nuclear dynamics should be similarly relevant to that of a conical intersec-
tion: the nondiabatic couplings are singular at the conical intersection point
as well as at the two intersection points of the square-root intersection.81

It should be mentioned that electron transmission spectra show that often
two or more close-lying electronic resonant states are present in polyatomic
molecules, see, for instance, Refs. 82 and 83.
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5. T. Pacher, L. S. Cederbaum and H. Köppel, Adv. Chem. Phys. 84, 293 (1993).
6. B. Zygelman, Phys. Rev. Lett. 64, 256 (1990).
7. C. Itzykson and J. B. Zuber, Quantum Field Theory (McGraw-Hill, New

York, 1980).
8. C. A. Mead and D. G. Truhlar, J. Chem. Phys. 77, 6090 (1982).



April 27, 2004 9:36 Conical Intersections: Electronic Structure, Dynamics and Spectroscopy chap01

38 Conical Intersections: Electronic Structure, Dynamics and Spectroscopy

9. B. R. Johnson, J. O. Hirschfelder and K. H. Yang, Rev. Mod. Phys. 55, 109
(1983).

10. P. Schmelcher, L. S. Cederbaum and H.-D. Meyer, Phys. Rev. A38, 6066
(1988).

11. C. J. Ballhausen and A. E. Hansen, Ann. Rev. Phys. Chem. 23, 15 (1972).
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1. Introduction

In the Born–Oppenheimer approximation nuclei move on the single poten-
tial energy surface created by the faster moving electrons.1 This approx-
imation works so well that is at the heart of the way we think about
nuclear motion. Processes in which the Born–Oppenheimer approximation
breaks down are known as electronically nonadiabatic processes. Despite
the reverence duly accorded the Born–Oppenheimer approximation, elec-
tronically nonadiabatic processes are ubiquitous.2 Indeed the study of
nonadiabatic processes goes back almost far as the Born–Oppenheimer
approximation itself.3 It is useful to group nonadiabatic processes into
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two classes. Non-Born–Oppenheimer processes4 are those for which the
breakdown of the Born–Oppenheimer approximation is so complete that
the notion of a potential energy surface is not useful and electronic and
nuclear motion must be treated on an equal footing. These processes usu-
ally involve very high nuclear kinetic energies. When the nuclear kinetic
energy is not excessive, the notion of a potential energy surface is viable
but nuclear motion cannot be restricted to a single surface. In this regime
the Born–Huang or coupled electronic state approximation is used.5 Within
the coupled electronic state approximation a nonadiabatic process involves
a radiationless transition between two electronic states. The propensity for
such a transition is large in the vicinity of nuclear configurations where
potential energy surfaces intersect.

Intersections of two, or more, potential energy surfaces are classified
according to the manner in which the degeneracy is lifted. When the
degeneracy is lifted linearly in displacements from the intersection, the
intersection is referred to as a conical intersection. The subspace of nuclear
coordinates in which the degeneracy is lifted linearly is the branching space6

or g–h space.7 Points of conical intersection are not isolated but are con-
tinuously connected forming seams. This seam space lies in the orthogonal
complement of the branching space. In this space the degeneracy is lifted
quadratically in nuclear displacements, if at all. Conical intersections them-
selves may be classified according to several criteria.

1.1. Classification of Conical Intersections

1.1.1. By Electronic State Symmetry: The Noncrossing Rule

Conical intersections can be classified according to the role played by point
group symmetry in their existence. Here, we use nonrelativistic symmetry
nomenclature for convenience although the discussion is equally applicable
to the relativistic case.

Intersections are symmetry-required when the two electronic states form
the components of a degenerate irreducible representation. The Jahn–Teller
intersection of the two lowest electronic states in Na3 which correspond
to the components of an E irreducible representation of the point group
C3v, provides an example of this class of conical intersection. Conical inter-
sections which are not required by symmetry are accidental intersections.
Accidental symmetry-allowed (different symmetry) intersections correspond
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to the intersection of two states of distinct spatial symmetry. The two low-
est excited singlet electronic states of H–S–H, the 11A′′ and 21A′′ states,
provide an example of this type of conical intersection. For C2v geome-
tries these states are of 1A2 and 1B1 symmetry, so that symmetry-allowed
accidental conical intersections may, and in fact do, occur.8–11 When poten-
tial energy surfaces of two states of same symmetry cross, the intersection
is referred to as an accidental same-symmetry conical intersection. An
example of a same symmetry intersection is provided by the excited 21A

and 31A states of the methyl analogue of H–S–H, methyl mercaptan,
CH3–S–H. This molecule clearly does not have the C2v structures that
yield the symmetry-allowed accidental intersections in H–S–H, but the 21A

and 31A states exhibit same symmetry conical intersections.8,11,12

According to the noncrossing rule (see Refs. 13 and 15) same symmetry
intersections of two potential energy surfaces are permitted in a space of
dimension N int − 2 (that is, in the seam space) where N int is the number
of internal degrees of freedom. Thus for diatomic molecules only states of
different symmetry can cross (except in the rarest of circumstances). This
situation led to the widely held idea that intersections of potential energy
surfaces are, usually, a consequence of point group symmetry and that, for
the most part, states of the same symmetry avoid one another. Indeed the
existence of same-symmetry intersections was a matter of some controversy
two decades ago.16,17 However recent computational advances have made
their determination relatively straightforward and have shown that they are
not at all uncommon opening new avenues of investigation.2 Today same
symmetry conical intersections are known to play a key role in electronically
non-adiabatic processes that conserve total electron spin.15,18−24

1.1.2. By Topography

Conical intersections are also classified according to the shape and orien-
tation of the double cone. Consider a line segment of length r whose polar
angle is θ, 0 < θ < π/2. If this line segment is rotated about the z-axis it
and its mirror image in the x–y plane create a symmetric, vertical double
cone whose pitch or steepness is uniform and proportional to cos θ. Asym-
metry is introduced if the tip of the line segment follows an oval rather
than a circular path as it is rotated. Finally tilt corresponds to rotating
the double cone’s principal axis so that it has polar coordinates (θt, φt).
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Table 1. Dimension of g–h Space (η)
and of Q space (NQ).a

Nel H0 He

η NQ η NQ

even 2 2 2 2
odd 2 4 5 4
oddb 2 4 3 4

aH0(He) is the Coulomb (Coulomb plus
spin-orbit) Hamiltonian.
bSpatial point group is Cs or higher.

These attributes, pitch, asymmetry and tilt, are convenient for discussing
dynamics near conical intersections.21,25−33

1.1.3. By Dimension of the Branching Space

Seams of conical intersection can be usefully classified according to η, the
dimension of the branching space with η = 2, 3 or 5 (Ref. 15) for intersec-
tions of two potential energy surfaces. Table 1 summarizes the dimension
of the branching space for two potential energy surface conical intersec-
tions. η = 2 is the most common case of a two state conical intersection
being applicable to the non-relativistic or Coulomb Hamiltonian (H0) and
to molecules for which N el, the number of electrons, is even. Alternatively,
η = 2 unless N el is odd and the spin-orbit interaction cannot be neglected.
In that case η = 5 in general, or η = 3 when Cs symmetry can be imposed.
The origin of this change in dimension was first explained by Mead34 and
will be discussed in Sec. 3.

1.2. Derivative Couplings

Although points of conical intersection are quite numerous, since the seam
space has dimension N int−η, when viewed from the full internal coordinate
space, conical intersections occupy zero volume and therefore might not be
expected to influence nuclear motion. This suggestion is, emphatically, not
the case. The reason for this is the derivative coupling,35 the interaction
that couples the adiabatic states. It is infinite at a conical intersection and
remains large in a volume surrounding the seam, making it possible for
conical intersections to exert considerable influence on nuclear dynamics.
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1.3. Geometric Phase Effect

A subtle consequence of a conical intersection is the geometric phase
effect. This signature property of a conical intersection went unnoticed for
approximately 30 years after conical intersections were first identified.13

The geometric phase effect modifies the nuclear Schrödinger equation. It
is a non-local effect, influencing any nuclear wave packet that, in a time-
dependent sense, traverses a closed loop containing the conical intersection,
regardless of its distance from the intersection. The geometric phase effect
was first identified by Longuet–Higgins36 in the context of the two-state
Jahn–Teller problem; incorporated into the single electronic state prob-
lem by Mead and Truhlar;37 extended to complex-valued Hamiltonians and
applied to general adiabatic processes by Berry;38 and ultimately extended
to systems with η = 5 by Avron et al.39,40 see also Refs. 31 and 34.

2. Adiabatic State Representation of Nonadiabatic
Processes

In this section we examine conical intersections, the derivative coupling, the
geometric phase, and how they affect nonadiabatic processes. We therefore
begin with an overview of these concepts and the Born–Huang approach
from which they originate.

2.1. Born–Huang Approach

The Born–Huang approach expands Ψk, the total wave function for state
k in a basis of Na, in principle arbitrary, single-valued electronic wave
functions

Ψk(xe,X) =
Na∑
i=1

Φ̃i(xe;X)χk
i (X). (1)

Here χk
i (X) is the component of the nuclear wave function corre-

sponding to the ith electronic state; Φ̃k(xe;X) = eiΩk(X)Φk(xe;X) is the
single-valued electronic wave function; the semi-colon indicates a paramet-
ric dependence, xe denotes the space fixed frame cartesian coordinates of
the N el electrons, and X ≡ (X1, . . . ,XNnuc

) ≡ (X1, . . . , X3Nnuc) denotes
the space fixed frame, mass scaled Xk = X′kM

1/2
k , cartesian coordinates

of the Nnuc nuclei. The phase factor exp(iΩk), known as the geomet-
ric phase,36–38 is discussed below. The electronic states themselves are
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expanded in a large basis:

Φi(xe;X) =
NCSF∑
α=1

Θα(xe;X)ci
α(X). (2a)

This approach is in principle exact provided the Φi are complete, and expan-
sion (1) is convergent as Na → ∞. However, in practice the expansion in
Eq. (1) must be severely truncated (Na kept small) for the approach to be
computationally viable.

2.2. Adiabatic Electronic States

To enable this truncation, the Φk are chosen to be the adiabatic states,
eigenfunctions of the electronic Hamiltonian He(xe;X), that is,

[He(xe;X) − Vk(X)]Φk(xe;X) = 0 (2b)

where the eigenvalue Vk(X) is the kth potential energy surface. Using
Eq. (2a), Eq. (2b) becomes

[He(X) − V(X)]c(X) = 0 (2c)

where

He
k,l(X) = 〈Θk(xe;X)|He(xe;X)|Θl(xe;X)〉xe (2d)

Vk,l(X) = Vk(X)δk,l, and ci
α, α = 1 − NCSF is denoted ci. The Θ

are configuration state functions (CSFs)42,43 constructed from molecular
orbitals φk(xe

1;X) determined from a state averaged multiconfigurational
self-consistent field (SA-MCSCF) procedure.44 The form of the CSF basis
is discussed in Appendix A. The SA-MCSCF procedure is discussed in
Chapter 3 of this volume. For some cases considered in this chapter, the
ck and He can be assumed real-valued. When this is not the case, that is,
ck ≡ ck,r + ick,i,He = He,r(X) + iHe,i(X) and the solution of Eq. (2c) is
obtained by taking explicit account of its real and imaginary parts so that
Eq. (2c) becomes

[He,r(X) + iHe,i(X) − Vk(X)I][ck,r(X) + ick,i(X)] = 0 (3a)

or noting that He,i(X)† = −He,i(X)(
He,r(X) − IVk(X) −He,i(X)

He,i(X) He,r(X) − IVk(X)

)(
ck,r(X)
ck,i(X)

)
= 0. (3b)

We will refer to wave functions with real-valued (complex-valued) ck as
real-valued (complex-valued) wave functions.
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2.3. Conical Intersections, Derivative Couplings and
Geometric Phase

2.3.1. A Model Hamiltonian

Before discussing the general situation, it is instructive to consider a simple
example which comes from formally evaluating Eq. (2c) in the two CSF
basis Θi(xe), i = 1, 2. The Hamiltonian in Eq. (2c) becomes

W(X) =
(

He
1,1(X) He

1,2(X)
He

1,2(X) He
2,2(X)

)
≡ IS(X) +

(−G(X) W (X)
W (X) G(X)

)
(4)

where S(X) = (He
1,1(X) + He

2,2(X))/2, G(X) = (−He
1,1(X) + He

2,2(X))/2
and W (X) = He

1,2(X). W has eigenvalues

V±(X) = S(X) ±
√

(G(X)2 + W (X)2) (5a)

and eigenfunctions

Φ1(xe;X) = Θ1(xe) cosΛ + Θ2(xe) sin Λ

Φ2(xe;X) = −Θ1(xe) sin Λ + Θ2(xe) cosΛ (5b)

where from Eqs. (B.3) and (B.12)

tan 2Λ(X) =
W (X)
G(X)

. (5c)

Xx is a point of intersection provided

G(Xx) = W (Xx) = 0. (6a,b)

Equations (6a) and (6b) define an intersection. The type of intersection
depends on the derivatives of these functions. The intersection is conical,
provided ∇G(Xx) ≡ g(Xx) �= 0 and ∇W (Xx) ≡ h(Xx) �= 0. If ∇G(Xx) =
∇W (Xx) = 0, but ∇∇G(Xx) �= 0, and ∇∇W (Xx) �= 0, the intersection is
in a class that includes the Renner–Teller intersection.45,46

The electronic state symmetry classifications described in the Intro-
duction are contained in the properties of G and W . The intersection is
symmetry required if Eqs. (6a) and (6b) are satisfied, provided only that
Xx has the correct symmetry. The intersection is accidental symmetry-
allowed, provided Eq. (6b) is satisfied when Xx has the correct symmetry.
The intersection is accidental same-symmetry, provided symmetry does not
guarantee that Eq. (6b) is satisfied.
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2.3.2. Intersection Adapted Coordinates

To characterize the neighborhood of Xx it is convenient to define inter-
section adapted coordinates, x, y, wi, i = 1-(N int − 2), where N int is the
number of internal coordinates. In this cartesian coordinate system the x-
and y-axes are chosen as unit vectors along the gradients g and h that is,

x =
g(Xx)

g
, y =

h(Xx)
h

(7a)

where

g = ‖g(Xx)‖ and h = ‖h(Xx)‖. (7b)

The pair (x,y) define the branching plane or g–h plane. The remainder of
the intersection adapted coordinate system, wi, i = 1-(N int − 2), spans
the seam space. These N int − 2 mutually orthonormal vectors need only be
orthogonal to the branching space. It is also convenient to define

sx = ∇S(Xx) · x, sy = ∇S(Xx) · y and

swi
= ∇S(Xx) · wi, i = 1-(N int − 2). (7c)

In an actual molecule, x and y correspond to molecular motions and can
be described in terms of atom centered displacements. Figure 1(a) reports
the g and h vectors at a conical intersection of the 1, 22A′ states in BH2.47

In Fig. 1(a), the molecule has C2v symmetry and the intersection is a
symmetry-allowed 2A1 − 2B2 conical intersection. The g- or x-direction
is a symmetry preserving a1 displacement while the h or y direction is a
symmetry breaking b2 mode. This symmetry is not an intrinsic property of
g and h as it would be if the two electronic states carried 2A1 and 2B2 irre-
ducible representations. However, since at the conical intersection, the two
degenerate electronic states can mix freely, they do not necessarily carry
C2v irreducible representations as they would at an arbitrary (nondegen-
erate) C2v geometry. This symmetry of x and y can be recovered by an
orthogonalization procedure discussed subsequently.
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H2
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x
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x=y=0

Branch2
z=-h/b2
x=0

confluence

curved seam
x=0 y=-h/bw2

Fig. 1. (a) g (filled arrows) and h (open arrows) for a point on the 1, 22A′ seam of
conical intersection in BH2. (b) Two linear branches of a single state seam meet at a
point of confluence (thick lines). Thin line: curved seam.

2.3.3. Describing Conical Topographies: Linear Terms — Pitch,
Asymmetry and Tilt

Using intersection adapted coordinates, the topograghical parameters,
pitch, asymmetry and tilt, described in the Introduction, can be quanti-
fied. With these definitions, W [Eq. (4)] becomes, through first order

Wl(x, y,w) =


sxx + syy +

N int−2∑
i=1

swi
wi


 I +

(−gx hy

hy gx

)
. (8)

Introducing polar coordinates, x = ρ cos θ and y = ρ sin θ and rescaling as

g cos θ = q(θ) cos λ(θ) h sin θ = q(θ) sin λ(θ)

q(θ)2 = (g cos θ)2 + (h sin θ)2 (9a)

so as to treat displacements along the x- and y-axes equivalently, gives

Wl(ρ, θ, w) =
[
ρ(sx cos θ + sy sin θ) +

N int−2∑
i=1

swi
wi

]
I

+ρq(θ)
(− cos λ sin λ

sin λ cos λ

)
. (9b)
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Wl(ρ, θ,w) has eigenvalues [Appendix B, Eq. (B.12b)]

V±(ρ, θ,w) =


ρ(sx cos θ + sy sin θ) +

N int−2∑
i=1

swi
wi


± ρq(θ) (10a)

=


ρ(sx cos θ + sy sin θ) +

N int−2∑
i=1

swi
wi




±ρδgh

√
(1 + ∆gh cos 2θ) (10b)

where ∆gh = (g2 − h2)/(g2 + h2) and δ2
gh = (g2 + h2)/2 and eigenvectors

given by Eq. (5b) with 2Λ = λ.
The sx and sy, ∆gh and δgh describe the tilt, asymmetry and pitch

of the double cone. sx and sy describe the tilt of the principal axis of
the cone. ∆gh describes the asymmetry in the pitch of the cone, which is
measured by δgh. The electronic state symmetry classification of the conical
intersection is reflected in these topographical parameters. The symmetry
required double cone characteristic of the extensively studied Jahn–Teller
problem48,49 has sx = sy = 0, and g = h by symmetry so that q = g and
∆gh = 0. It is therefore a vertical (non-tilted) symmetric, (∆gh = 0) cone.
For the accidental symmetry-allowed 2A1 −2B2 conical intersection only sy

vanishes by symmetry.

2.3.4. Describing Conical Topographies: Second Order Terms —
Branches, Confluences and Seam Curvature

The seam space of Wl [Eq. (8)] is the set of points with x = y = 0. These
points are isolated. By isolated we mean that there exists a small volume
surrounding the seam such that the only degeneracies in that volume are
the seam points themselves. While this is the case for Wl, higher order
terms can alter this situation. To illustrate, we consider the following simple
extension of Wl which replaces W , see Eq. (4), with W (c) = hy + byw,
so that

Wc(x, y, w) = ϑ(x, y, w)I +
( −gx hy + byw

hy + byw gx

)
(11)

where ϑ(x, y, w) is the diagonal term through second order [see Eq. (60a)
below] and is not of consequence here. Since W c is now factorable,
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W (c) = W (a)W (b) = y(h + bw), the single pair of conditions for a coni-
cal intersection, Eq. (6), become two independent pairs of equations

Branch 1: G(X) = 0 and W (a)(X) = 0 (12a)

or Branch 2: G(X) = 0 and W (b)(X) = 0. (12b)

Branch 1 has solutions for the w-axis, that is, for x = y = 0 while branch
2 has solutions for the line with x = 0, w = −h/b and y arbitrary. The two
branches of the seam intersect when W (a)(X) = W (b)(X), that is, x = 0
with y = 0 and w = −h/b. This intersection of two branches of the same
seam, pictured in Fig. 1(b), is referred as a confluence.47,50,51

As can be seen in Fig. 1(b), the seams of conical intersections considered
above are straight lines in the x, y, w coordinate system. This need not be
the case as the following simple example shows

Wq(x, y,w) = ϑ(x, y, w)I +
( −gx hy + dw2

hy + dw2 gx

)
. (13)

In this case the seam equations, Eq. (6), are satisfied for x = 0 and y =
−(d/h)w2, which is a parabola in the (w, y) plane. See Fig. 1(b). The effects
of this seam curvature will be considered below.

2.3.5. Illustrative Calculations

The properties of a seam of conical intersection discussed above are illus-
trated in Figs. 2(a)–2(c). Figure 2(a) illustrates a portion of the 2 dimen-
sional branching plane and Fig. 2(b) reports the seam (a line) for the
12A′ −22A′ conical intersection in BH2.47 Figure 2(a) illustrates the conical
topography in the branching plane. The connectivity is evident in Fig. 2(b)
which depicts the topography along the seam. Figure 2(b) is in a sense
misleading in that the wedge-like topography of the lower surface suggests
a barrier on that surface in the direction of the x-coordinate. However this
is not the case since there is a similar “wedge” along the y-direction so that
the seam looks like, a difficult to represent, a line of mountain peaks.

The seam connectivity pictured Figs. 2(a)–2(b) is that of an isolated,
single branch, seam. As shown above, more complicated connectivities exist.
Seams with two or more branches are possible and these branches may
intersect at confluences. A region of the 12A′ − 22A′ seam that exhibits
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Fig. 2. BH2: Conical intersection seams (bold lines): (a) Energy of two surfaces plotted
as a function g and h coordinates, denoted x and y. (b) Energy of two surfaces plotted
as function y and the seam coordinate r. (c) Energy of two surfaces plotted as function
y and r, both of which are seam coordinates at the confluence.
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a confluence is shown in Fig. 2(c). Clearly nuclear dynamics will be quite
different for the topographies pictured in Figs. 2(b) and 2(c).

2.3.6. Geometric Phase

2.3.6.1. An Example

The geometric phase effect is concerned with the X dependence of the
adiabatic electronic wave function. Consider the result of transporting a
Φi(xe;X) around a small circle. The expected result is that Φi should return
to itself, that is, Φi should be single-valued. That is indeed the result when
the circle does not contain a conical intersection.37 However, consider the
same process applied to the eigenfunctions of Wl, Eqs. (5b) and (5c), with
2Λ = λ. Then since tan λ = (h/g) tan θ with h, g > 0 as θ increases by
2π so does λ. Therefore cos((λ + 2π)/2) = cos(λ/2 + π) = − cos(λ/2) and
sin((λ + 2π)/2) = sin(λ/2 + π) = − sin(λ/2), so that

Φi(xe; ρ, θ + 2π,w) = −Φi(xe; ρ, θ,w), i = 1, 2. (14)

From Eq. (14), we see that when transported around a closed loop in nuclear
coordinate (X) space surrounding a conical intersection, both Φ1 and Φ2

change sign. Thus, the manifestly continuous Φi(xe; ρ, θ,w) are double-
valued, since at any point they may take on the values ±Φi(xe; ρ, θ,w)
depending on the path. The implications of this double valuedness are dis-
cussed in Sec. 2.4 below.

2.3.6.2. Geometric Phase Effect for Real-Valued Wave Functions

The above results are actually quite general. By way of illustration here
those results are re-expressed in terms of the ck(X), the eigenvectors of
He [Eq. (2c)], assuming He to be real-valued. Since He is real-valued, the
ck(X) can be chosen real-valued and are therefore determined up to the
factor ±1. This factor must be chosen to assure local continuity:

ck(X)† · ck(X + ε) → 1 as ε → 0. (15a)

Assume that the electronic Schrödinger equation is solved along a closed
loop beginning at X0 and ending at Xf = X0 and for each point on that
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X0

Xf
Xf

x

Xf’

conical
intersection

Fig. 3. Upper loop X0 → Xf surrounds the conical intersection at x. Lower loop
X0 → Xf ′ does not enclose a conical intersection.

loop Eq. (15a) holds. Then

ck(X0)† · ck(Xf ) = −1 (15b)

ck(X0)† · ck(Xf ) = 1 (15c)

are the only possibilities. The −1 (+1) result is obtained when closed loop
that does (does not) contain a single point of conical intersection,16,37,52

see Fig. 3.
There are two points to emphasize here. When a conical intersection

exists, the wave functions ck(X) that satisfy Eq. (15a) are not suitable
as a basis for the Born–Huang expansion, Eq. (1), as they are double-
valued, taking on either the value ±ck(X). To correct this deficiency, either
a similarly double-valued vibrational basis must be used in Eq. (1)53 or a
phase factor eiΩi(X) must be included to account for this deficiency, that
is, eiΩi(X) must change sign along the closed loop defined by X0 and Xf .
Secondly, by reducing the size of the loop in Fig. 3, Eqs. (15b) and (15c)
can be used to locate a point of conical intersection.6,54,55

2.3.6.3. The η = 3 and 5 Cases

The geometric phase effect is more complicated for the η = 5 and η = 3
conical intersections than for the η = 2 case. In the n = 2 case the wave
functions can be chosen real-valued. This is not the case for η = 5 or
η = 3, and other limits in Eq. (15a) are possible, since neighboring wave
functions will in general differ by a complex-valued phase. The η = 3 case
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has been discussed in general by Berry.38 For η = 5, the wave functions
are, in general, admixtures of two orthogonal degenerate wave functions
with complex-valued overlaps. This case, which has also been discussed
previously,39–41 is considered further in Sec. 3.

2.3.6.4. Geometric Phase Effect and Confluences

A point of confluence, although the intersection of two conical intersection
seams, is not itself a point of conical intersection. Indeed for Wc [Eq. (11)],
there is no geometric phase effect since

Φk(xe; ρ, φ + 2π,w) = Φk(xe; ρ, φ,w)

where x = ρ cos φ, z = ρ sin φ.

2.3.7. Derivative Couplings

We will encounter (Sec. 2.4) two types of derivative couplings, Ak.l. The
first derivative coupling, usually referred to as just the derivative coupling,
and Bk,l, the second derivative coupling, where

Ai,j(X) = 〈Φi(xe;X)|∇XΦj(xe;X)〉xe (16a)

and

Bi,j(X) = 〈∇XΦi(xe;X) · |∇XΦj(xe;X)〉xe . (16b)

Here ∇X is a 3NNuc component gradient with respect to the variables X.
Thus A(X) is a vector of matrices. When required, we will use

Aβ
i,j(X) =

〈
Φi(xe;X)

∣∣∣∣ ∂

∂Xβ
Φj(xe;X)

〉
xe

(16a′)

to denote the individual components.

2.3.7.1. Derivative Couplings from Model Hamiltonians

As noted in the Introduction, perhaps the most significant property of the
derivative coupling is its singular behaviour at the conical intersection. The
model Hamiltonians W,Wl,Wq and Wc allow us to illustrate the nature
of the singularity and its origin.
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Inserting Φk, the eigenfunctions in Eq. (5b), into definition (16a),
we find

A1,2 = ∇Λ =
(∇W )G − (∇G)W

G2 + W 2 . (17a)

Specializing to Wl in Eq. (8) gives

A1,2 = ∇λ/2 : Aρ
1,2 = 0 and Aθ

1,2 =
1
2

∂λ

∂θ
= gh/q2(θ) (17b)

or in cartesian coordinates

(Ax
1,2, A

y
1,2) = Aθ

1,2

(
1
ρ

)
(− sin θ, cos θ). (17c)

Thus the singularity in Ai,j is of order (1/ρ) and arises from the linear
terms in Wl. Since the overlap matrix elements, 〈Φk|Φl〉xe , k, l = 1, 2 are
real-valued and the Φk are a complete set for the model Hamiltonian,

B1,2 = 0 and Bi,i =

(
Aθ

1,2

ρ

)2

i = 1, 2. (17d)

In summary, as the conical intersection is approached, the first derivative
coupling diverges as Aθ

1,2/ρ. The second derivative coupling also becomes
infinite as (Aθ

1,2/ρ)2. The implications of this singularity are discussed
below.

It is also interesting to consider what happens to the derivative couplings
near a confluence. The Wc [Eq. (11)], exhibits a confluence at x = y =
0, w = −h/b. The derivative coupling for its eigenstates, obtained from
Eq. (17a), is given by:

A1,2 =
g[− sin θ(h + bw), cos θ(h + bw), (bρ/2) sin 2θ]

ρ(q2(θ) + f(w)(sin θ)2)
(18a)

where

f(w) = 2bhw + b2w2. (18b)

Several points are worth noting. Aω
1,2, ω = x, y has the expected (1/ρ)

singularity for all w �= −h/b, whereas the w component is nonsingular

Aw
1,2 −−−→

w→0

gb sin 2θ

2q2(θ)
. (18c)
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When w = −h/b, Aw
1,2 = 0 for w = x, y for all finite ρ. Thus the deriva-

tive coupling near a confluence, the intersection of two conical intersection
seams, differs qualitatively from that at an intersection itself.

To consider the effects of seam curvature, we use Wq [Eq. (13)] and find

A1,2 =
(−ghρ sin θ − gdw2, hgρ cos θ, 2dwgρ cos θ)

ρ2q2 + (ρ sin θ)w22dh + d2w4 . (19a)

Here it is interesting to juxtapose approaching the conical intersection in
the g–h (w = 0) plane and along the w-axis. Approaching the conical
intersection in the w = 0 plane, yields

A1,2 =
(−gh sin θ, hg cos θ, 0)

ρq2 . (19b)

Approaching the conical intersection for ρ = 0 along the w-axis,

A1,2 −−−→
ρ→0

(gdw2, 0, 0)
d2w4 (19c)

that is, A1,2 is singular as the result of seam curvature as w → 0 along the
w-axis.

2.3.7.2. Derivative Couplings and the Geometric Phase

The first derivative coupling of Wl satisfies an interesting integral rela-
tion. Its circulation, the line integral56 along a circle containing the conical
intersection, is equal to π, that is,

∮
A1,2 · dX =

∫ 2π

0
Aθ

1,2(θ)dθ =
1
2

∫ 2π

0

dλ

dθ
dθ =

1
2
(2π) = π. (20a)

This result is clearly related to the geometric phase effect noted above.
However, in practical examples it must be used with some care, since the
curl57,58 of Ak,l is not guaranteed to vanish for finite ρ37 as it does here.
An alternative approach to Eq. (20a) has been recently reported35 based



May 26, 2004 15:26 Conical Intersections: Electronic Structure, Dynamics and Spectroscopy chap02

60 Conical Intersections: Electronic Structure, Dynamics and Spectroscopy

on the following exact observation:

Φi(xe;X + δX) = Φi(xe;X) + ∇Φi(xe;X) · δX

= Φi(xe;X) +
∑

j

Φj(xe;X)〈Φj(xe;X)|∇Φi(xe;X)〉xe · δX

= Φi(xe;X) +
∑

j

Φj(xe;X)Aj,i(X) · δX (20b)

so that

Φ(xe;Xf ) = expT

(∫ Xf

X0
A · δX

)
Φ(xe;X0). (20c)

Equation (20c), is a generalization of Eq. (20a) to nonclosed paths of arbi-
trary shape.

2.3.7.3. A Useful Approximation

B is quite costly to evaluate. Below we derive a well known approxima-
tion, useful for all but the most precise calculations. Differentiating the
normalization condition 〈Φi(xe;X)|Φj(xe;X)〉xe = δij gives

A∗
j,i + Ai,j = 0. (21a)

Inserting a complete set of electronic states in Eq. (16b) gives

Bi,j(X) =
∑

k

〈∇XΦi(xe;X)|Φk(xe;X)〉xe · 〈Φk(xe;X)|∇XΦj(xe;X)〉xe

=
∑

k

A∗
k,i · Ak,j = (A† · A)i,j . (21b)

In Eq. (21b), the sum on k must extend to NCSF (the complete state
limit). When the sum is truncated at Na 	 NCSF. Equation (21b) provides
a commonly59 used approximation for Bi,j . This approximation properly
includes the effects of a conical intersection and is adequate for all but the
most precise calculations.
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2.3.7.4. Gauge Theoretic Interpretation60

The geometric phase can be expressed in terms of a modified momentum
operator as follows:

Ãi,j ≡ 〈eiΩiΦi(xe;X)|∇XeiΩj Φj(xe;X)〉xe

= 〈eiΩiΦi(xe;X)|i(∇XΩj)eiΩj Φj(xe;X) + eiΩj ∇XΦj(xe;X)〉xe

= ei∆Ωji [i(∇XΩj)δi,j + Ai,j ] (22a)

where ∆Ωji = Ωj − Ωi. Equation (22a) can be written in a gauge theoretic
form:60

e−i∆ΩjiÃi,j = 〈Φi|[i(∇XΩj) + ∇X]Φj〉x. (22b)

Thus the off diagonal first derivative coupling is determined up to a phase,
while the diagonal first derivative coupling depends explicitly on the gra-
dient of that phase. Note that here, for reasons discussed below, we have
not assumed that the overlap matrix and hence the derivative couplings are
real-valued. In a similar manner

B̃i,j ≡ 〈i(∇XΩi)eiΩiΦi(xe;X) + eiΩi∇XΦi(xe;X)

×|i(∇XΩj)eiΩj Φj(xe;X) + eiΩj ∇XΦj(xe;X)〉xe (23a)

= ei∆Ωji [(∇XΩi)(∇XΩj)δij + Bi,j − i(∇XΩi)Ai,j + i(∇XΩj)A∗
j,i]

(23b)

which using Eq. (21a) becomes

B̃i,j = ei∆Ωji [(∇XΩi) · (∇XΩj)δij + Bi,j − i∇X(Ωi + Ωj) · Ai,j (23c)

or in gauge theoretic form [see Eq. (22b)].

ei∆Ωij B̃i,j ≡ 〈[i(∇XΩi) + ∇X]Φi(r;X)|(i(∇XΩj) + ∇X)Φj(r;X)〉r. (23d)

Thus effect of the geometric phase is the operator transformation

∇X → i(∇XΩj) + ∇X. (24)

2.4. The Nuclear Schrödinger Equation

Additional insight into the significance of the quantities introduced above
can be obtained from the nuclear Schrödinger equation in the Born–Huang
approximation, which we briefly discuss below.
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The Hamiltonian is H = Tnuc + He(xe;X), where

Tnuc =
NNUC∑
i=1

pX′i · pX′i

2Mi
= −

NNUC∑
i=1

∇2
X′i

2Mi
≡ −

NNUC∑
i=1

∇2
Xi

2

≡ −1
2
∇2

X =
1
2
pX · pX (25a)

is the nuclear kinetic energy operator and He(xe;X) is the electronic Hamil-
tonian. Ψk [Eq. (1)] satisfies the time independent Schrödinger equation

(H − Ek)Ψk = 0. (25b)

To determine the form of the Schrödinger equation using Eq. (1), we
need the effect of Tnuc on a single term in Eq. (1). This is obtained from

〈Φ̃i(xe;X)χk
i (X)|pX · pX|χm

j (X)Φ̃j(xe;X)〉
= 〈pX[Φ̃i(xe;X)χk

i (X)]|pX[χm
j (X)Φ̃j(xe;X)]〉 (26a)

= 〈[pXΦ̃i(xe;X)χk
i (X) + Φ̃i(xe;X)pXχk

i (X)]

|[pXχm
j (X)Φ̃j(xe;X) + χm

j (X)pXΦ̃j(xe;X)]〉 (26b)

= 〈[pXχk
i (X)|[pXχm

j (X)]〉δij (26c)

+〈χk
i (X)[pXΦ̃i(r;X)]|[pXΦ̃j(xe;X)]χm

j (X)〉
+〈Φ̃i(xe;X)[pXχk

i (X)]|[pXΦ̃j(xe;X)]χm
j (X)〉

+〈χk
i (X)pXΦ̃i(xe;X)|Φ̃j(xe;X)pXχm

j (X)〉 (26d)

= 〈χk
i {|pX · pXχm

j (X)〉δij + |(B̃i,j(X) + ãi,j(X)∗ · pX)χm
j (X)〉

+|pX[·ãi,j(X)χm
j (X)]〉} (26e)

where −iA = a.
The above result enables the derivation of the coupled differential equa-

tions describing nuclear motion. Inserting Eq. (1) into the Schrödinger
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equation (25) and projecting onto the bra 〈Φ̃i(r;X)χk
i (X)| gives

〈
χk

i (X)
{∣∣∣∣
(

pX · pX

2
+ [bi,i(X) + Vi(X)] +

ai,i(X)∗ · pX

2
− Em

)
χm

i (X)
〉

+
∣∣∣pX

2
· [ai,i(X)χm

i (X)]
〉}

(27)

=
∑
i �=j

〈
χk

i (X)
{∣∣∣b̃i,j(X)χm

j (X)
〉

+
∣∣∣∣12pX · [ãi,j(X) χm

j (X)]
〉

+
∣∣∣∣12 ãj,i(X)∗ · pXχm

j (X)
〉}

where b̃i,j = B̃i,j

2 . Equation (27) can be rewritten as

〈
χk

i (X)
{∣∣∣∣
(

pX · pX

2
+ (bi,i(X) + Vi(X)) +

(pX

2
· ai,i(X)

)

+
(ai,i(X) + ai,i(X)∗)

2
· pX − Em

)
χm

i (X)
〉}

=
∑
i �=j

〈
χk

i (X)
{∣∣∣b̃i,j(X)χm

j (X)
〉

+
∣∣∣∣12(pX · ãi,j(X))χm

j (X)
〉

+
1
2

∣∣(ãi,j(X) + ãj,i(X)∗) · pXχm
j (X)

〉}
(28)

which in turn becomes{pX · pX

2
+ b̃i,i(X) + Vi(X) +

(pX

2
· ãi,i(X)

)
+ 1/2(ãi,i(X)

+ãi,i(X)∗) · pX − Em)
}

χm
i (X)

=
∑
i �=j

{
b̃i,j(X) +

1
2
(pX · ãi,j(X) + (ãi,j(X)

+ãj,i(X)∗) · pX)
}

χm
j (X). (29)

Before reducing Eq. (29) to its most compact form, note that the left
hand side is the single potential energy surface nuclear Schrödinger equa-
tion. The single surface solutions are coupled when the right hand side
of Eq. (29) is nonvanishing, that is when the first and second derivative
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couplings are nonvanishing. The diagonal second derivative coupling (the
adiabatic correction) bi,i constitutes a positive definite, mass dependent,
correction to the mass independent Born–Oppenheimer potential energy
surface Vi(X). From Eq. (17d), bi,i → ∞ as X → Xx, thereby creating a
node in the adiabatic wave function33,61,62 at Xx. Further discussion of this
term is found in Chapter 3 of this volume.

This equation simplifies in the η = 2 case, where He is real-valued. In
that case, ãi,i = ∇Ωi and ãi,j = −ieiΩj.iAi,j . The left hand side becomes:

{
pX · pX

2
+ [bi,i(X) + Vi(X)] +

(pX

2
· Ωi(X)

)

+∇Ωi(X)) · pX − Em)
}

χm
i (X) = 0 (30)

or in the absense of conical intersections{pX · pX

2
+ [bi,i(X) + Vi(X)] − Em)

}
χm

i (X) = 0. (31)

Equation (31) is the standard nuclear Schrödinger equation in the absence of
a conical intersection, while Eq. (30) evinces the changes attributable to the
geometric phase effect that result from a conical intersection. This changes
were termed the Molecular-Aharonov–Bohm (MAB) effect.63,64 The bi,i

term in Eq. (31), the adiabatic correction, modifies the Born–Oppenheimer
potential energy surfaces and makes them mass dependent.

Equation (29) can be written in more compact form. Noting that from
Eq. (21a) that ãi,j(X) + ãj,i(X)∗ = 2ãi,j(X), Eq. (30) can be rewritten in
matrix form and{

pX · pX

2
I + b̃(X) + V(X) +

1
2
(pX · ã(X))

+ã(X) · pX − EmI)
}

χm(X) = 0. (32)

Provided the electronic basis is complete, according to the last equality in
Eq. (21b)

(pXI + ã)† · (pXI + ã) = p†
X · pXI + ã† · pX + pX · ã + ã† · ã

= p†
X · pXI + (ã† + ã) · pX + (pX · ã) + ã† · ã (33a)
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can replace

p†
X · pXI + (ã† + ã) · pX + (pX · ã) + b̃ (33b)

so that Eq. (32) becomes{
(pXI + ã)† · (pXI + ã)

2
+ V(X) − EmI)

}
χm(X) = 0. (34)

Equation (34) serves to motivate the numerical methods discussed in
Chapter 3 for the evaluation of derivative couplings.

3. Perturbation Theory

The singular behaviour of the adiabatic energies, wave functions and deriva-
tive couplings near a conical intersection makes a formal analysis of that
region highly desirable. This analysis is accomplished using a generalization
of the perturbation theory developed by Mead in his seminal treatment of
X3 molecules.61

From Table 1, it is seen that there is more than one type of conical
intersection. For molecules with N el even (odd) η = 2 (η = 3 or 5). The
origin of the differences is, as explained by Mead,34 time reversal symmetry.
For N el odd (even) Φκ and TΦκ are (are not) linearly independent. Here
T is the time reversal operator. See appendix A. Thus for odd (even) elec-
tron systems, the intersection of two potential energy surfaces requires the
degeneracy of four (two) electronic states. As discussed below, this leads to
the values of η reported in Table 1.

Despite this essential difference, the perturbative analyses of the indi-
vidual cases have much in common. Further it will be shown that the lowest
order results for η = 2 are those obtained for the model Hamiltonian Wl

[Eq. (8a)]. Thus Sec. 2 contains most of the tools necessary to analyze the
η = 2 case. For this reason, in this section, to the extent possible, we treat
the most general, η = 5 case (the N el odd, spin-orbit included, no symme-
try case), first and then show how the simpler η = 3 case (the odd electron,
spin-orbit included, Cs or greater symmetry, case) and η = 2 (the N el even,
spin-orbit included case and the non-relativistic case) can be recovered as
limits. On the other hand, the η = 5 and 3 results are quite new compared
to those for η = 2. Thus, as the subsequent presentation attests, the for-
malism for η = 2 is further advanced and more substantative numerical
studies have been carried out.
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3.1. Crude Adiabatic Basis

It is a nontrivial matter to determine the coordinate dependence of the
eigenvalues of an NCSF × NCSF matrix in Eq. (2c) in the vicinity of a
degeneracy. This task is made possible, formally, by a change of basis and
computationally, by analytic gradient techniques described in Chapter 3 of
this volume. We begin our analysis by constructing this change of basis.

For a conical intersection of states k, l at Xx,k,l, define a crude adiabatic
basis:

Φc
k(xe;X) =

NCSF∑
a=1

ck
a(Xx,k,l)Θa(xe;X). (35)

Note that each point of conical intersection requires a distinct crude adia-
batic basis. The eigenstates are expanded in the crude adiabatic basis

Φk(xe;X) =
∑
l∈Q

ξk
l (X)Φc

l (x
e;X) +

∑
l∈P

Ξk
l (X)Φc

l (x
e;X) (36)

where Q is spanned by the functions degenerate at Xx,k,l and P is its
orthogonal complement. Thus Q has dimension NQ = 4(2) for the case of
an odd (even) electron molecule.

To realize the advantage of this transformation for describing Vk(X)
near an Xx,k,l, we expand everything in displacements δX, from
Xx,k,l, δX = X − Xx,k,l. He(X) is expanded to second order in the CSF
basis, giving:

He(X) = He(Xx,k,l) + ∇XHe(Xx,k,l) · δX

+
1
2
δX · ∇X∇XHe(Xx,k,l) · δX. (37)

Reexpressing He in the crude adiabatic basis gives

Hc(X) ≡ c†(Xx,k,l)He(X)c(Xx,k,l) (38a)

≈ c(Xx,k,l)†[He(Xx,k,l) + ∇XHe(Xx,k,l) · δX

+1/2δX · ∇X∇XHe(Xx,k,l) · δX]c(Xx,k,l) (38b)

≡ V (Xx,k,l) + Hc,[1](Xx,k,l) · δX + 1/2δX · Hc,[2](Xx,k,l) · δX

(38c)

where V (Xx,k,l)m,n = δm,nVm(Xx,k,l), and † denotes the complex conju-
gate transpose. Hc,[1] is a vector (length 3Nnuc) of (NQ × NQ) matrices,
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and Hc,[2] is a (3Nnuc × 3Nnuc) matrix of (NQ × NQ) matrices, where

Hc,[1]
m,n ≡ (hm,n

1 , hm,n
2 , . . . , hm,n

3Nnuc) (39a)

Hc,[2]
m,n ≡ (qm,n

1,1 , qm,n
1,2 , . . . , qm,n

3Nnuc,3Nnuc) (39b)

with

hm,n(X) = cm†
(Xx,k,l)[∇He(X)]cn(Xx,k,l) (40a)

and finally

qm,n
κ,κ′ (X) = cm†

(Xx,k,l)
[

∂2

∂Xκ∂Xκ′
He(X)

]
cn(Xx,k,l). (40b)

Next we expand ξ(X), Ξ(X) and Vk(X), as

ξk(X) = ξ(0),k(Xx,k,l) + ξ(1),k(X) + ξ(2),k(X) (41a)

Ξk(X) = Ξ(1),k(X) + Ξ(2),k(X) (41b)

Vk(X) = Vk(Xx,k,l) + V
(1)
k (X) + V

(2)
k (X) (42)

where the superscript (n) indicates the order of contribution from δX.
In Eq. (41b), we observed that since the crude adiabatic basis is used,
Ξ(0),k(X) = 0 for k ∈ Q This observation is key, since partitioning theory65

can now be used to show that the degeneracy is lifted at first order, that
is, linearly, in the Q-space only. It is therefore the Q-space that gives rise
to the branching space. Equation (2b) can be rewritten as(

QQHc − VkI QP Hc

PQHc PP Hc − VkI

)(
ξk

Ξk

)
=
(
0
0

)
(43a)
(43b)

where ABHc
i,j = Hc

i,j provided i ∈ A j ∈ B and A, B ∈ Q,P . Then solving
Eq. (43b) for Ξk and inserting into Eq. (43a) gives

(QQHc + QP Hc(VkI − PP Hc)−1PQHc − VkI)ξk = 0. (43c)

Since QP Hc
i,k(Xx,k,l) = 0 = Ξ(0),k

i , the second term in Eq. (43c) does not
contribute until second order. Then using Eq. (38c) to identify the first
order Hamiltonian [Appendix E, Eq. (E.3a)], the first order result is

(Hc,[1] · δX − IVk(X))ξ(0),k(Xx,k,l) = 0. (44)

These equations are valid independent of the value of NQ. The analytic
solution of Eq. (44) with its qualifying equalities, Eqs. (39)–(40), is the
lynchpin for the analysis of conical intersections.



May 26, 2004 15:26 Conical Intersections: Electronic Structure, Dynamics and Spectroscopy chap02

68 Conical Intersections: Electronic Structure, Dynamics and Spectroscopy

3.2. First Order: W(1),f

As discussed above, the analysis begins with the NQ = 4, η = 5 case, which
is readily reduced to the NQ = 4, η = 3 case, and ultimately reduced to
the NQ = 2, η = 2 case. We start with four adiabatic states Φi, Φj and
TΦi ≡ ΦTi, TΦj ≡ ΦTj , degenerate at Xx,i,j . Then using Eqs. (39a) and
(40a), Hc,[1] · δX in Eq. (44) becomes

Hc,[1] · δX = W(1),f =




hi,i hi,j hi,T i hi,T j

hj,i hj,j hj,T i hj,T j

hTi,i hTi,j hTi,T i hTi,Tj

hTj,i hTj,j hTj,T i hTj,Tj


 · δX. (45a)

Simplifying Eq. (45a) is an exercise in time-reversal algebra, see
Appendix A. Using Eq. (A.2b) yields the first equality below and using
Eq. (A.2a′) gives the second equality

W(1),f =




hi,i hi,j hi,T i hi,T j

hi,j∗
hj,j hj,T i hj,T j

−hTi,i∗ −hi,T j∗
hi,i hi,j∗

−hj,T i∗ −hj,T j∗
hi,j hj,j


 · δX

=




hi,i hi,j 0 hi,T j

hi,j∗
hj,j −hi,T j 0

0 −hi,T j∗
hi,i hi,j∗

hi,T j∗
0 hi,j hj,j


 · δX. (45b)

We then replace W(1),f by the sum of a traceless matrix and a diagonal
matrix so that

W(1),f = (si,j · δX)I + H(1),f · δX (46a)

where

H(1),f =




−gi,j hi,j 0 hi,T j

hi,j∗ gi,j −hi,T j 0
0 −hi,T j∗ −gi,j hi,j∗

hi,T j∗ 0 hi,j gi,j


 (46b)

2gi,j = hi,i − hj,j and 2si,j = hi,i + hj,j , all matrix elements are evaluated
at Xx,i,j and X = Xx,i,j + δX. Then Eq. (44) becomes

(W(1),f − IVi(X))ξ(0),i(Xx,i,j) = 0. (46c)
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To orient the discussion of Eqs. (46b) and (46c), note that for N el even the
time reversed states Ti and Tj are linearly dependent with states i and j

and so only the upper left 2 × 2 submatrix will be considered [Eq. (46g)].
For N el odd and CS spatial symmetry, the upper right hand 2 × 2 block
vanishes by symmetry so the 4 × 4 matrix reduces to two uncoupled 2 × 2
matrices [Eq. (46d)]. It is essential to point out here that all quantities in
Eq. (46b) are efficiently obtained using the analytic gradient techniques as
described in Chapter 3 of this volume.

For N el odd, in the absence of spatial symmetry, Eq. (46c) is applicable
in its full generality. When Cs or higher symmetry exists, hi,T j = 0 (Ref. 34)
so that W(1),f is replaced by W(1),Cs

W(1),Cs ≡ (si,j · δX)I +
(
H(1),Cs 0

0 H(1),C∗
s

)
· δX (46d)

where

H(1),Cs =
(−gi,j hi,j

hi,j∗ gi,j

)
. (46e)

For N el even, only the two independent functions degenerate at Xx,i,j , Φi

and Φj , need be considered. Further He is symmetric, see Appendix A.
When only H0 is used, He is again symmetric and hi,T j = 0 for all X,
regardless of the number of electrons. Only a single Ms conponent need be
considered. In these cases Eq. (46b) reduces to

W(1),nr = (si,j · δX)I + Hnr,(1) · δX (46f)

where

Hnr,(1) =
(−gi,j hi,j

hi,j gi,j

)
. (46g)

As discussed below W(1),nr [Eq. (46f)] and Wl [Eq. (11)] are equivalent.
We now explain the origin of the values for η given in Table 1. In

Appendix B, it is shown that the eigenvalues of W(1),m for m = f, Cs

and nr can be written as:

V±(X) = (si,j · δX) ±
√√√√ η∑

k=1

([v(k) · δX]2) (47)

where V− = V
(1)
i and V+ = V

(1)
j and v(1) = gi,j(Xx,i,j),v(2) =

Re hi,j(Xx,i,j) ≡ hr,i,j(Xx,i,j),v(3) = Im hi,j(Xx,i,j) ≡ hi,i,j(Xx,i,j),
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and v(4) = Re hi,T j(Xx,i,j) ≡ hr,i,T j(Xx,i,j),v(5) = Im hi,T j(Xx,i,j) ≡
hi,i,T j(Xx,i,j). From Eq. (47), the linearly independent, nonvanishing, vec-
tors v(i), i = 1−η lift the degeneracy in a linear manner and therefore span
the branching space. Therefore η = 5, 3, 2 for m = f, Cs and nr. Finally
from Appendix B for m = f and Cs, V± are doubly degenerate, while for
m = nr, V± are nondegenerate.

3.3. Intersection-Adapted Cartesian Coordinates

3.3.1. W(1),m in Intersection Adapted Coordinates

Before determining the eigenfunctions of W(1),m, it is expedient to intro-
duce the intersection-adapted coordinates,6 z, x, y, v, µ, displacements
along the z = gi,j(Xx,i,j)/g, x = hr,i,j(Xx,i,j)/hr, y = hi,i,j(Xx,i,j)/hi,
v = hr,i,T j(Xx,i)/tr, µ = hi,i,T j(Xx,i,j)/ti where g = ||gi,j(Xx,i,j)||,
hr = ||hr,i,j(Xx,i,j)||, hi = ||hi,i,j(Xx,i,j)||, tr = ||hr,i,T j(Xx,i,j)||, ti =
||hi,i,T j(Xx,i,j)|| directions respectively. With these definitions

W(1),f = (si,j · δX)I + H(1),f (x, y, z, v, µ) (48a)

where

H(1),f (x, y, z, v, µ)=




−gz hrx + ihiy 0 trv + itiµ

hrx − ihiy gz −(trv + itiµ) 0

0 −(trv − itiµ) −gz hrx − ihiy

trv − itiµ 0 hrx + ihiy gz




(48b)

gz = gi,j(Xx,i,j) · δX (49a)

hrx + ihiy = hi,j(Xx,i,j) · δX (49b)

trv + itiµ = hi,T j(Xx,i,j) · δX. (49c)

3.4. Intersection-Adapted Hyperspherical Coordinates

The above Cartesian coordinates do not provide the optimal description
of the conical intersection. We will show below that a set hyperspherical
coordinates provides the best representation. We begin by defining spherical
polar coordinates ρ(1), θ(1), φ(1), for the z,x,y (gi,j , hr,i,j , hi,i,j) axes and
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polar coordinates ρ(2), φ(2) for the v,w (hr,i,T j ,hi,i,T j) axes follows as:

z = ρ(1) cos θ(1) x = ρ(1) sin θ(1) cos φ(1) y = ρ(1) sin θ(1) sin φ(1) (50a)

and

v = ρ(2) cos φ(2) µ = ρ(2) sin φ(2). (50b)

We now introduce scaling factors h(1), q(1), q(2),

h(1)(φ(1))2 = (hr cos φ(1))2 + (hi sin φ(1))2 (51a)

q(1)(θ(1), φ(1))2 = (g cos θ(1))2 + (h(1)(φ(1)) sin θ(1))2 (51b)

q(2)(φ(2))2 = (tr cos φ(2))2 + (ti sin φ(2))2 (51c)

and the associated angles ξ(1), λ(1), ξ(2)

tan ξ(1) =
hi

hr tan φ(1) (52a)

tan λ(1) =
h(1)

g
tan θ(1) (52b)

tan ξ(2) =
ti

tr
tanφ(2). (52c)

The relations

tan θ(3) = ρ(2)q(2)/ρ(1)q(1) (53a)

ρ(3) = (ρ(1)q(1))2 + (ρ(2)q(2))2 (53b)

= ρ[(ρ(1)q(1)/ρ)2 + (ρ(2)q(2)/ρ)2] ≡ ρρ(3)
s (53c)

and

ρ = (ρ(2)2 + ρ(1)(2))1/2 (53d)

replace ρ(2) and ρ(1) with hyperspherical coordinates ρ(3), θ(3) and the
scaled hyperradius ρ

(3)
s .
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In terms of the quantities in Eqs. (50)–(52):

H(1),f =


−gρ(1) cos θ(1) ρ(1)h(1) sin θ(1)eiξ(1)
0 ρ(2)q(2)eiξ(2)

ρ(1)h(1) sin θ(1)e−iξ(1)
gρ(1) cos θ(1) −ρ(2)q(2)eiξ(2)

0

0 −ρ(2)q(2)e−iξ(2) −gρ(1) cos θ(1) ρ(1)h(1) sin θ(1)e−iξ(1)

ρ(2)q(2)e−iξ(2)
0 ρ(1)h(1) sin θ(1)eiξ(1)

gρ(1) cos θ(1)




(54a)

H(1),Cs =

(
−gρ(1) cos θ(1) ρ(1)h(1) sin θ(1)eiξ(1)

ρ(1)h(1) sin θ(1)e−iξ(1)
gρ(1) cos θ(1)

)
(54b)

and

H(1),nr =
(−gx hy

hy gx

)
=
(−gρ cos θ ρh sin θ

ρh sin θ gρ cos θ

)
= ρq

(− cos λ sin λ

sin λ cos λ

)
.

(54c)

Note that in Eq. (54c), we have relabelled the coordinates (z(1), x(1), y(1)) →
(x = ρ cos θ, y = ρ sin θ) for consistency with Sec. 2. The second Hamilto-
nian in (54c) has precisely the form of the final term in Eq. (8b) so that
the linear model discussed in Sec. 2 is completely general as promised. The
Hamiltonian in Eqs. (54a)–(54b) form the basis of our search algorithms for
locating and analyzing conical intersections with the spin-orbit interaction
included.

The five coordinates, ρ(3), θ(3), φ(2), θ(1), φ(1) (or the appropriate subset)
collectively denoted as ω, are used to describe the branching space.

3.4.1. Eigenvalues in Terms Hyperspherical Coordinates

From Eq. (47)

η∑
k=1

([v(k) · δX]2) = [ρ(1)q(1)]2 + [ρ(2)q(2)]2 = ρ(3)2 for η = 5

= [ρ(1)q(1)]2 for η = 3

= [ρq]2 for η = 2. (55a)
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Including the diagonal term for η = 2,

V
(1),nr
± (ρ, θ,w) −


ρ(sx cos θ + sy sin θ) +

N int−2∑
i=1

swi
wi




= ±ρ
√

((g cos θ)2 + (h sin θ)2)

= ±ρδgh

√
(1 + ∆gh cos 2θ) (55b)

where

δ2
gh =

(g2 + h2)
2

and ∆gh =
(g2 − h2)
(g2 + h2)

. (55c)

Equation (55b) is equivalent to Eq. (10) as promised previously.

3.5. Orthogonal Intersection-Adapted Coordinates

Since the ck, k ∈ Q, are defined only up to a unitary transformation among
themselves only the branching space, rather than the individual vectors, is
well defined. This flexibility can be used to determine a transformation of
the degenerate electronic states that does not change the form of Eq. (46a)
but causes the v(k), k = 1 − η, defined following Eq. (47), to be mutu-
ally orthogonal. The utility of this transformation should not be underes-
timated. The orthogonal representation provides a convenient method for
making characteristic parameters, v(k) continuous along the seam. This
transformation can be used to uncover any local symmetry present at a
no-symmetry conical intersection and, as illustrated in Sec. 4, it causes the
v(k) to carry the appropriate irreducible representation when symmetry is
present. In the η = 2 (Ref. 66), η = 3 (Ref. 67) and η = 5 (Ref. 105) cases
we have shown that the vectors defining the branching space can indeed
be chosen orthogonal, without altering the form of Eq. (45b, 46d, or 46f).
Appendix C discusses the derivation of these results. In particular, it is
shown for η = 2 that the orthogonal g̃i,j and h̃i,j

g̃i,j = (−gi,j cos β + hi,j sin β) (56a)

and

h̃i,j = gi,j sin β + hi,j cos β (56b)
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where

tan 2β =
2gi,j · hi,j

hi,j · hi,j − gi,j · gi,j
. (56c)

Examples of orthogonal intersection adapted coordinates are provided
in Sec. 4.

3.6. Eigenvectors

In order to characterize the singularity in the derivative couplings an ana-
lytic expression for the eigenvectors of Hm,(1) is required. This result will
also enable a discussion of the geometric phase effect and determination
of an approximate diabatic basis that eliminates the singular part of the
derivative coupling.41 In Appendix C, the eigenvectors of a matrix with the
general form of H(1),f are derived. The result is expressed as a transforma-
tion U(f) from Ψc

k to Ψe
k′ , k = i, j, T i, T j, and k′ = i, T j, j, T i

Ψe = U(f)(Θ(1), γ(1), Θ(2), γ(2))†Ψc (57a)

where

(57b)

where c = cos and s = sin.
Using the definitions in Eqs. (52)–(54), Θ(i) = λ(i)/2, γ(i) = ξ(i),

i=1,2, which are in turn functions of ρ(1), θ(1), φ(1) and ρ′, φ(2). Thus
H(1),f in Eq. (46b) is diagonalized by U(f)(λ(1)/2, ξ(1), λ(2)/2, ξ(2)) ≡
U(p)(λ(1), ξ(1), λ(2), ξ(2)).

It is useful to see how time reversal symmetry is reflected in U (f). Recall
that for the time reversal adapted crude adiabatic states basis functions,
the Kramers’ degenerate pairs are (1,3) and (2,4), that is, TΦc

1 = Φc
3 and

TΦc
2 = Φc

4, and from Eq. (36) Φk ≈ ∑4
l=1 Φc

l U
(p)
l,k . Then U(p) produces

two pairs of states with Kramers’ degeneracy, states (1,4) and (2,3), that
is, TΦ1 = Φ4 and TΦ3 = Φ2.
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Again this general result can be reduced to the η = 3 case by setting
γ(2) = λ(2) = 0 to give [see Eq. (C.14)]

U(Cs) =


cos Θ(1) 0 eiγ(1)
sin Θ(1) 0

−e−iγ(1)
sin Θ(1) 0 cos Θ(1) 0

0 e−iγ(1)
sin Θ(1) 0 cos Θ(1)

0 cos Θ(1) 0 −eiγ(1)
sin Θ(1)


 (57c)

Equations (57b) and (57c) were derived previously in Refs. 67 and 68
respectively.

The η = 2 or nonrelativistic case is obtained by setting γ(1) = 0 and
Θ(1) = λ/2 and using the rows 1 and 2 and columns 1 and 3 gives

U(nr) =
(

cos λ/2 sin λ/2
− sin λ/2 cos λ/2

)
. (57d)

3.7. Second Order: W(2)

The double cone pictured in Fig. (2a) is clearly not the linear cone of
Eq. (10a), rather it is curved. To describe this curvature and its impact on
nuclear dynamics, it is necessary to take the perturbation theory beyond
first order. From Eqs. (E.5a) and (E.5b), respectively, we have

V
(2)
k = ξ̃(0),k†

H(2−eff)ξ̃(0),k = (U(p)†
H(2−eff)U(p))k,k k = i, j (58a)

ξ̃
(1),j
i = (U(p)†

H(2−eff)U(p))i,j/(2ρ(2)) (58b)

ξ̃
(1),i
j = −(U(p)†

H(2−eff)U(p))j,i/(2ρ(2)) (58c)

where ρ(2) is defined in Eq. (50b). Then from Eq. (58a) the Hamiltonian
through second order is

W(2),m = ϑ(1−2)(ω,w)I + H(1),m + H(2−net),m (59a)

where we have removed the diagonal contribution to H(2−eff) and included
it in ϑ(1−2)(ω,w), the diagonal contribution through second order described
below, that is, H(2−net) = H(2−eff) –ϑ(1−2)(ω,w). Below the m superscript
will be suppressed when no confusion will arise.



May 26, 2004 15:26 Conical Intersections: Electronic Structure, Dynamics and Spectroscopy chap02

76 Conical Intersections: Electronic Structure, Dynamics and Spectroscopy

3.7.1. Parametrization

Unlike H(1),H(2−eff) has contributions from both the Q-space and the P -
space, so it is impractical to determine it by direct calculation. Rather
it is determined from fitting the energy and/or derivative couplings to a
functional form. Here we use a functional form for which the, in general,
curved seam is approximated by a piecewise linear seam. Below we consider
second order contributions in the branching spaces, with η = 2 and 3. For
η = 2 or 3, H(2−net) can be expressed a linear combination of the Pauli
matrices

H(2−eff) = P (ω,w; a)σz + P (ω,w; b)σx + P (ω,w; c)σy (59b)

where ω = (x, y, z) or (ρ, θ, φ), we have dropped the superscript (1) on the
variables and as above, for η = 2, P (ω,w, c) = 0, ω = (x, y) or (ρ, θ). In
the piecewise linear seam approximation

P (ω,w; p) = (p(ρ)
1 x2 + p

(ρ)
2 y2 + p

(ρ)
3 z2 + p

(ρ)
4 xy + p

(ρ)
5 xz + p

(ρ)
6 yz)

+
∑

i

(p(wi)
1 xwi + p

(wi)
2 ywi + p

(wi)
3 zwi) (60a)

and converting to polar coordinates

P (ω,w; p) ≡ ρ2P (2)
ρ (θ, φ; p) + ρ

∑
i

wiP
(2)
wi

(θ, φ; p) (60b)

where ϑ(1−2), the diagonal energy through second order is given by

ϑ(1−2)(ω,w) = S(ω,w) + P (ω,w; p) + N(w;n) (60c)

with

N(w,n) =
∑
i≥j

ni,jwiwj . (60d)

Below we will abbreviate P (ω,w; p) by P (p). For η = 2, p
(ρ)
k = 0, k = 3, 5, 6

and p
(w)
3 = 0 for all w. Note from Eq. (60b) that P vanishes when ρ = 0 as

required by the piecewise linear approximation.
From Eq. (58a), W(2) is diagonalized to second order by U(p). The

second order contribution requires H̃(2−net) = U(p)†
H(2−net)U(p) which is
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obtained by transforming the individual Pauli matrices σ̃w = U(p)†
σwU(p)

[Eq. (B.5)], and combining the results to give

H̃(2−eff) = (P (a) cos 2Θ − P (b) cos γ sin 2Θ − P (c) sin γ sin 2Θ)σz

+(P (a) cos γ sin 2Θ + P (b)(cos 2Θ + 2 sin2 γ sin2 Θ)

+P (c) sin 2γ sin2 Θ)σx + (P (a) sin γ sin 2Θ

−P (b) sin 2γ sin2 Θ − P (c)(cos 2Θ + cos2 γ2 sin2 Θ))σy (61)

where Θ = λ(1)/2 and γ = ξ(1). A key point here is that A, B, and C can
be determined from either the coefficient of σz, an energy contribution, or
from a derivative coupling. The later conclusion is based on Eqs. (58b) and
(61) and the analysis of the derivative coupling in Sec. 3.7.

To date, the analyses of second order terms have focused on the nonrela-
tivistic Hamiltonian,47 the η = 2 case, where γ = 0, and H̃(2−net) reduces to

H̃(2−net) = (P (a) cos λ − P (b) sin λ)σz

+(P (a) sin λ + P (b) cos λ)σx

≡ ρm0σz + ρm1σx (62a)

∆V
(2)
i,j = V

(2)
i − V

(2)
j

= 2ρm0 = 2(P (a) cos λ − P (b) sin λ) (62b)

m1 = ρM (ρ)(θ) +
∑

i

wiM
(wi)(θ) (62c)

where

M (x) = P (2)
x (a) sin λ + P (2)

x (b) cos λ, x = ρ, wi. (62d)

Equation (62b) serves to emphasize the connection to the energy. Numerical
issues associated with the use of Eqs. (62a) and (62b) are discussed in Sec. 4.

3.7.2. Confluences

One of the most significant aspects of the second order analysis is, as was
illustrated in Sec. 2, the ability to describe distinct branches of a single
seam of conical intersection, and their intersection at confluences. Here we
focus on the η = 2 case so that

W(2) = ϑ(1−2)(ω,w)I − G(x, y,w)σz + W (x, y,w)σx. (63a)

According to the discussion in Sec. 2, multiple branches of a seam exist
when W , here W (x, y,w), is factorable. Confluences exist when each of the
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factors of W (x, y,w) vanishes. Sufficient conditions for an intersection are
[see Eq. (59b)]

G(x, y,w) = P (ω,w; a) − gx = 0 (63b)

W (x, y,w) = P (ω,w; b) + hy = 0. (63c)

We seek conditions under which W (x, y,w) will be factorable. Consider the
frequently studied case of a symmetry-allowed conical intersection of two
states of different symmetry. Assume too that the molecule has a plane of
symmetry, the least restrictive case. In this case, since x ∼ a′ and y ∼ a′′,
where ∼ is read “transforms as”,

W (x, y,w) = p
(ρ)
3 xy +

∑
i∈a′′

p
(wi)
1 xwi +

∑
i∈a′

p
(wi)
2 ywi + hy. (63d)

As a consequence of the plane of symmetry, W1,2(x, y,w) will be factorable
if wi = 0 for all wi ∼ a′′, that is, for molecular geometries that preserve
the plane of symmetry. In this case

W = W (a)W (b) = y

(
h + p

(ρ)
3 x +

∑
i∈a′

p
(wi)
2 wi

)
= yheff(x,w) (64)

the seam equations become, on branch B(a), W (a) = G = 0, and, on branch
B(b), W (b) = G = 0. Note too that at the confluence, heff = ‖hi,j‖ [see
Eq. (54c)] vanishes. This necessary condition can be used to help locate
confluences.50,69

The seam equations [Eqs. (63b) and (63c)] can, in turn, be solved to
find the locus of the confluence. Since G = 0 is common to both seams, the
solution space for the confluence has dimension N int − 3. The confluence,
if it exists, occurs, since W (a) = 0, for y = 0, that is, for Cs geometries.
Further, as the seam is described in a piecewise linear manner, confluences,
Xc, are restricted to points for which G(0, 0, w) = W (a)(0, 0,w) = 0 and
the wi satisfy [on B(b)]

−
(

h +
∑

i

b
(wi)
2 wi

)/
b
(ρ)
3 = 0 . (65a)

Any X = (0, 0,w) satisfying Eq. (65a) can be written in terms of the
ζi = −h/b

(wi)
2 , the N int − 2 primitive solutions to Eq. (65a) as

w = (d1ζ1, . . . , dN int−2ζN int−2) with
N int−2∑

i=1

di = 1 (65b)
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which is a subspace of dimension N int − 3. In Sec. 4, an iterative procedure
for solving Eqs. (65a) and (65b) will be described.

In summary, we have demonstrated (a class of) confluences that is inti-
mately related to molecular symmetry. These confluences constitute a sub-
space of a symmetry-allowed or different symmetry portion of the seam
of conical intersection. The symmetry-allowed conical intersection has been
over the years the most commonly studied type of conical intersection. Thus
the comparatively recent discovery confluences would indicate that they are
a rare occurrence. However, very recent work indicates instead that their
only recent identification may reflect the limited data on the multidimen-
sional character of conical intersection seams in tetra atomic and larger
molecules.51

3.7.3. Portion of the Wave Function not Determined by the
Schrödinger Equation

Below we will see that in order to describe the distance dependence
of the derivative coupling the ξ̃

(1),m
k are required. Perturbation theory

(Appendices E and G) does not fully determine ξ̃
(1),k
m . Here we consider

this point, restricting our analysis to the η = 2 and 3 cases.
In Appendix E (Eq. (E.5b)), it is seen that the ξ̃

(1),k
m , k �= m are

determined from the perturbation theory but the ξ̃
(1),k
m , k = m are not

[Eqs. (E.2)]. In Appendix G, it is shown that the real part of ξ̃
(1),k
k is con-

strained to vanish by the normalization requirement, that is, Re ξ̃
(1),k
k = 0,

k = i, j. For real-valued wave functions (η = 2) this is sufficient since
Im ξ̃

(1),k
k = 0. With this choice of phase the wave function changes sign when

transported around a closed loop containing a conical interesection, see
Sec. 2.3.6.2. Scaling the wave function by an appropriate exp iΩ(X) makes
the wave function single-valued although wave function is now complex-
valued.

The situation is more complicated for the complex-valued wave func-
tions of the η = 3 and 5 cases, where Im ξ̃

(1),k
k �= 0 in the “nascent” wave

function. Again Im ξ̃
(1),k
k is not determined by normalization. However, it

can be made to vanish by judicious choice of the overall phase, Ωk, which
is assumed to have the form, Ωκ = Ω(0)

κ + ρΩ(1)
κ · · · . Then it is shown in

Appendix G that (for η = 3) to first order in ρ, Ω(1)
κ can be chosen such that

Im ξ̃
(1),k
k = 0. With this choice of ξ̃(1),k we can construct and analyze of the
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derivative couplings near the conical intersection. As with the real-valued
wave function, an alternative choice of the overall phase is required if the
wave function is to be single-valued.

3.8. Derivative Couplings

In the vicinity of a conical intersection, the key issue for the first and
second derivative coupling is the nature of the singularity. From Eq. (21b),
it is sufficient to consider the first derivative term. The derivative coupling
Ak,l(X) is given by

Ak,l(W) = 〈Φk(xe;X) |∇Φl(xe;X)〉xe = CIAk,l + CSFAk,l (66a)

where

CIAk,l =
∑
w

U†
k,w(X)∇Uw,l(X) (66b)

CSFAk,l =
w∑

w,w′
U†

k,w(X)fw,w′
Uw′,l(X)

fw,w′
= 〈Φc

w(xe;X) |∇Φc
w′(xe;X)〉xe (66c)

and Uw,k = ξk
w for w ∈ Q, Uw,k = Ξk

w for w ∈ P . Note that when the
Ak,l(X) are complex-valued Ak,k(X) is non-zero. Further, since the Φk are
determined only up to a phase

〈eiΩk(X)Φk(xe;X) |∇eiΩl(X)Φl(xe;X)〉xe = e−i(Ωk−Ωl)Ak,l(X) + iδk,l∇Ωl

(67)

and the diagonal derivative coupling, Ak,k(X) is only determined once that
phase is specified.

3.8.1. First Order

The lowest order singular contributions are given, for Ω(0)
k = 0, k = i, j, by:

CIA(1)
k,l =

∑
α∈Q

ξ̃(0),k
α (ω,w)∇ξ̃(0),l

α (ω,w) k, l ∈ i, j. (68)
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3.8.1.1. η = 2 (Ref. 70)

Choosing Ωi = 0, the ξ̃
(0),k
α are real-valued and given by Eq. (57d). Then

Ai,i = Aj,j = 0 and

A(1)
i,j = ∇λ/2 = (A(1),x

i,j , A
(1),y
i,j ) = A

(1),θ
i,j (1/ρ)(− sin θ, cos θ)

= A
(1),θ
i,j = gh/q2 (69)

in accord with Eq. (17b). See Eqs. (54) and (55) for the definitions of g, h,
q, θ and λ.

For notational simplicity, below in Eq. (70) ∇ indicates differentiation
with respect to a general set of independent variables. Here it is interesting
to note that in cartesian coordinates both A

(1),x
i,j and A

(1),y
i,j are singular,

approaching ∞ as (1/ρ), whereas in polar coordinates A
(1),ρ
i,j = 0 and A

(1),θ
i,j

is nonvanishing.

3.8.1.2. η = 3 (Ref. 68)

For η = 3, the ξ̃
(0),k
α are complex-valued. Using as overall phases Ωi =

exp(iγ(1)/2), Ωj = exp(−iγ(1)/2) and Eq. (57c) with Θ(1) = λ/2 and ζ =
γ(1)/2, gives68

A
(1)
i,j = 1/2(∇λ) + i(∇ζ)(1/2) sin λ (70a)

A
(1)
i,i = i(cos λ)/2∇ζ (70b)

A
(1)
i,i = −i(cos λ)/2∇ζ. (70c)

The singularity in A(1) is discussed below.

3.8.1.3. η = 5 (Ref. 41)

Choosing Ωi = Ωj = 0, and using Eq. (57a)

A(1)
Tj,i

= e−iγ(2)
(−∇Θ(2) + i∇γ(2)/2 sin 2Θ(2)) (71a)

A(1)
j,i = e−iγ(1)

(− cos 2Θ(2)∇Θ(1))

+ i[sin 2Θ(1) cos 2Θ(2)∇γ(1)/2] (71b)

A(1)
Ti,i

= e−i(γ(1)+γ(2))(− sin 2Θ(2)∇Θ(1))

+ i[sin 2Θ(1) sin 2Θ(2)∇γ(1)/2] (71c)

A(1)
i,i = −i(∇γ(1) sin2 Θ(1) + ∇γ(2) sin2 Θ(2)) (71d)
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A(1)
j,j = i(∇γ(1) sin2 Θ(1) − ∇γ(2) sin2 Θ(2)) (71e)

A(1)
Tj,j

= ei(γ(1)−γ(2))(sin 2Θ(2)∇Θ(1))

+ i[sin 2Θ(1) sin 2Θ(2)∇γ(1)/2]. (71f)

η = 3 results are obtained from Eqs. (71a)–(71e) by setting Θ(2) = γ(2) = 0.
In the η = 3 case, A(1)

Tj,i vanishes, as expected, since in this case the Φ and
TΦ blocks are not coupled. As in the η = 2 case, the cartesian gradients
reveal the the nature of the singularity. This result is obtained by the chain
rule. The details are presented in Appendix H and yield (note A

(1),ρ(2)

k,l = 0)
for s = x, y, or z:

A
(1),s
k,l =

(
∂θ(1)

∂s

[h(1)g]
q(1)2 +

∂φ(1)

∂s

[hi2 − hr2 ]
2h(1) sin 2φ(1) g sin 2θ(1)

2q(1)2

)

×A
(1),Θ(1)

k,l

2
+

∂φ(1)

∂s

[hihr]
h(1)2 A

(1),γ(1)

k,l +
ρ(1)ρq

′

ρ(2)2

×
(

∂θ(1)

∂s

[g2 − h(1)2 ]
2q(1) sin 2θ(1) − ∂φ(1)

∂s

[hi2 − hr2 ]
2q(1)

× sin 2φ(1) sin2 θ(1) − ∂ρ(1)

∂s

q(1)

ρ(1)

)
A

(1),Θ(2)

k,l

2
(72a)

for s = v or w:

A
(1),s
k,l =

ρ
(1)
q

ρq
′2+ρ

(1)2
q

(
∂φ(2)

∂s
ρ′ [t

i2 − tr
2
]

2q(2) sin 2φ(2) +
∂ρ′

∂s
q(2)

)

×A
(1),Θ(2)

k,l

2
+

∂φ(2)

∂s

titr

q(2)2 A
(1),γ(2)

k,l . (72b)

Here and in Eq. (73) below, k, l ∈ i, j, T i, T j and the A
(1),ω
k,l , ω = Θ(i), γ(i),

i = 1, 2, are given in Eqs. (71a)–(71e). Note that when they do not vanish,
∂φ(1)/∂s, ∂θ(1)/∂s ∼ 1/ρ(1), ∂θ(2)/∂s ∼ 1/ρ′ while ∂ρ/∂s ∼ ρ0, for ρ =
ρ(1) or ρ′. Then since the conical intersection is located at ρ(2)′ = 0 from
Eqs. (72a) and (72b), the singularities in the derivative couplings are seen
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to be of the form:

1
ρ′ A

(1),γ(2)

k,l ,
ρ′

ρ(2)2 A
(1),Θ(2)

k,l or
ρ(1)

ρ(2)2 A
(1),Θ(2)

k,l ,
1

ρ(1) A
(1),Θ(1)

k,l ,
1

ρ(1) A
(1),γ(1)

k,l

(73a)
which reduce for η = 3 to

1
ρ(1) A

(1),Θ(1)

k,l ,
1

ρ(1) A
(1),γ(1)

k,l . (73b)

Thus in all cases the derivative coupling has a (1/ρ(i)) singularity where
ρ(i) depends on η as described above.

3.8.2. Second Order

The derivative couplings determined from the first order wave functions
gives information only about the singular contribution. The next nonva-
nishing contribution to the derivative couplings requires consideration of
higher order terms in the perturbation expansion. The electronic wave func-
tion through first order is given by Eq. (G.3b)

Φe
i = Φ̃c

i + ξ̃
(1),i
j Φ̃c

j +
∑

α�=i,j

Ξ(1),i
α Φc

α (74)

where from Eqs. (58b) and (58c) ξ
(1),i
j = −ξ

(1),j∗

i . Thus writing

Ak,l = A(1)
k,l + A(2)

k,l · · · . (75)

A(2), the “next” nonvanishing contribution as a function of the distance
from the conical intersection, comes from

A
(2)
j,i = 〈ξ̃(1),j

i Φ̃c
i |∇Φ̃c

i 〉 + 〈Φ̃c
j |Φ̃c

j∇ξ̃
(1),i
j 〉 + 〈Φ̃c

j |ξ̃(1),i
j ∇Φ̃c

j〉 (76a)

A
(2)
i,i = 〈Φ̃c

i |(ξ̃(1),i
j ∇Φ̃c

j)〉 + 〈ξ̃(1),i
j Φ̃c

j |∇Φ̃c
i 〉 + 〈ξ̃(1),i

j Φ̃c
j |Φ̃c

j∇ξ̃
(1),i
j 〉.

(76b)

Here we have noted that the ξ(1),k and Ξ(1),k each are first order in the
distance from the conical intersection.
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Here we are primarily concerned with η = 2. Noting from Eq. (55a) that
ρ(2) → ρq(θ) and using Eqs. (62a) and (62b) in Eqs. (76a) and (76b) gives

A
(2),x
j,i = −M (x)/(2q) or 2qA

(2),x
j,i = −M (x) x = ρ, wi (77a)

A
(2),θ
j,i =

∂

∂θ

[∑
i

wiM (wi)

2q
+

ρM (ρ)

2q

]
. (77b)

The second of Eqs. (77a), when combined with Eq. (77b), permits the
parameters p

(x)
n , x = ρ, wi to be determined from derivative coupling data

in the g–h plane. Equation (77b), then provides a consistency check on
the parameters so determined. This approach is used in Sec. 4 as part of
the algorithm for locating confluences. More details concerning the use of
Eqs. (77a) and (77b) can be found in Refs. 47 and 66.

3.9. The Geometric Phase

As noted previously, the geometric phase was first introduced by Longuet-
Higgins36 to treat the Jahn–Teller problem, subsequently used by Mead and
Truhlar37 in the single electronic state nuclear motion problem, and ulti-
mately generalized to arbitrary adiabatic processes in the highly influential
work of Berry.38 Both Longuet-Higgins, and Mead and Truhlar, considered
Hnr,(1) [Eq. (46g)] while Berry considered H(1),Cs [Eq. (46e)] which con-
tains the work of Mead and Truhlar as a special case. Here we consider the
more general H1(f) [Eq. (46a)].

The scaled coordinates defined in Eqs. (D.1) and (D.2) will be used. This
is equivalent to taking g = hr = hi = tr = ti = 1 in Eqs. (D.9a)–(D.9c), in
which case in Eq. (57b) γ(i) = φ(i) and 2Θ(i) = θ(i) for i = 1, 2. A series of
values of (ρ(1), θ(1), φ(1), ρ′, φ(2)) defines a path in nuclear coordinate space.
Along such a path when θ(1) increases by 2π, Θ(1) increases by π. See text
following Eq. (D.7). However, this does not happen for Θ(2). θ(3) is derived
from ρ(1) and ρ(2) using Eq. (53a). Since ρ(1) and ρ(2) are strictly positive,
Θ(2) returns to itself along any closed path [see Eq. (53a)]. Then from the
Θ(i) dependence of U(p) in Eq. (57b), U(p) should be multiplied by eiΘ(1)

to make the adiabatic wave functions single-valued. These single-valued
adiabatic electronic wave functions form an appropriate basis for the solu-
tion of the nuclear Schrödinger equation using single-valued nuclear wave
functions.37 Here the analytic representation of the eigenfunctions make
it straightforward to guarantee single-valued wave functions. In numerical
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examples, to be considered in future work, the situation is more compli-
cated, since the two Kramers’ doublets may become mixed when traversing
a closed path.

Since the hamiltonian we consider is more general than that of Berry it
is interesting to ask under what circumstances the geometric phase of Berry
will be recovered. From Eq. (71d) for Ai,i, Berry’s result will be obtained
provided there is no contribution from the second term. This will occur
when the path has no component along ∇ξ(2). Consider two paths, path 1
[path 2] with only φ(1)[φ(2)] increasing from 0 to 2π. In these cases

Im
∮

A
(0)
i,i · dX = −

∮
sin2 Θ(i)∇γ(i) · dX

= −
2π∫
0

sin2 Θ(i)dφ = −2π sin2 Θ(i)

= −π(1 − cos θ(i)) (78)

where i = 1 (2) for path 1 (path 2). For path 1, Eq. (78) is Berry’s result,
as for example shown in Eq. (29c) of Ref. 68. This occurs despite the fact
that ρ(2) and hence hTj,i, the coupling to the full 5 dimensional branching
space, does not vanish. Path 2 is not included in Berry’s treatment.

4. Numerical Examples

In this section we illustrate the ideas developed in Secs. 2 and 3 with prac-
tical results drawn from our work on nonadiabatic processes in H2OH and
HNCO. We use the S1–S0 seam of conical intersection in HNCO to consider
issues of potential energy surface topography. In particular, we character-
ize the energy and derivative coupling near a conical intersection using
conical parameters, derived from the s,g and h vectors, efficiently deter-
mined using analytic gradient techniques described in Chapter 3 of this
volume. The accuracy of this perturbative representation of the vicinity of
the conical intersection is also considered. Subsequently, we illustrate how
the use of orthogonal intersection adapted coordinates (IAC) results in con-
ical parameters that are smoothly varying along a seam. We conclude our
HNCO studies by considering the possibility that a subspace of confluences
is embedded in the symmetry-allowed portion of the seam. We then con-
sider how the inclusion of the spin-orbit interaction changes things. This
analysis is based on the 2Σ+– 2Π portion of the 12A′ −22A′ seam of conical
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intersection in planar H2OH. Although the dimension of the relativistic and
nonrelativistic seam is different, we show how a combination of energy min-
imization and geometric constraints can lead to a meaningful association
of relativistic and non-relativistic conical intersection points. This associa-
tion is then used to compare for the nonrelativistic (η = 2) and relativistic
Cs symmetry (η = 3) cases: orthogonal IAC, the energies and the coni-
cal parameters, along the seam of conical intersection for the relativistic
Hamiltonian.

4.1. Topographies and Connectivity of Seams of Conical
Intersection HNCO:The S0(11A) − S1(21A) Seam

In this section, the efficient determination and compact representation of
the energy and singular part of the derivative coupling35 along the seam of
conical intersection is considered. These quantities, or their diabatic equiv-
alents, the diabatic energies, the potential couplings and the adiabatic to
diabatic states transformation angle,60,71−73 are essential to the treatment
of the nuclear dynamics. In addition, we consider the locus of confluences,
for this seam. These latter calculations serve to underscore the fact that
as a consequence of confluences the topography of a conical intersection
can change dramatically along the seam. It is essential to understand and
incorporate this geometry dependence into treatments of the associated
nonadiabatic process.

4.1.1. Motivation

The photochemistry of HNCO has been the subject of numerous recent
theoretical74−80 and experimental81−85 studies. Following photoexcitation
from S0 to S1, HNCO on S1, can decay in ground state H + NCO, that is,

HNCO(S0) + hv → HNCO(S1) → HNCO(S0) → H + NCO.

Since direct dissociation on S1 is precluded by a large barrier, indirect
dissociation following a radiationless transition to S0, facilitated by a seam
of conical intersections, has been suggested. For that reason the S0(11A) −
S1(21A) seam of conical intersection in HNCO has been the subject of much
recent work.51,78−80 The seam exists for both cis and trans arrangements of
HNCO. The trans structures are relevant to the indirect photodissociation,
noted above, while the cis structures may be relevant to the stability of
a cis moiety on the 22A potential energy surface, which has yet to be
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detected. In addition to a characterization of several portions of the seam,
a subspace of confluences embedded in the symmetry-allowed S0(1A′) −
S1(1A′′) portion of the seam of conical intersection for trans HNCO will be
discussed. This subspace of trans confluences is energetically accessible at
photon energies used to photodissociate HNCO. Its significance for HNCO
photodissociation will be considered.

4.1.2. Wave Functions

The Φi were approximated by restricted second order configuration inter-
action (SOCI)86 wave functions based on the following partitioning of the
molecular orbitals [1a–3a; 6] (4a–9a; 10) {10a–14a; 6}. Here the square
brackets [ ] denote the core orbitals, kept fully occupied in the SOCI expan-
sion; the rounded ( ) and curly { } brackets denote active spaces, as1 and
as2 respectively. In each case the number of electrons in the correspond-
ing molecular orbital set follows the semicolon. The core orbitals are the
1s orbitals of, carbon, nitrogen and oxygen. In the asymptotic NH + CO
region, {10a–13a; 6} describes the NH(1π2) electrons and the CO(1π4)
electrons, while in the N + HCO region {10a–13a; 6} describes H(1s) and
NCO(2π3, 7σ2) electrons. At higher energies, S2 may become involved in
the photochemistry. With an eye toward subsequent calculations that con-
sider S2, a fifth orbital (14a) was added to the active space. In the isocyanic
acid region, the ground 1A′ state is dominated by the closed shell configura-
tion 1a2–11a2, while the open shell electron configuration 1a2–10a211a12a

dominates the 1A′′ state.
The molecular orbitals were determined from a CAS SA-MCSCF proce-

dure. To facilitate convergence of the SA-MCSCF procedure, in which three
1A states were averaged with normalized weights (0.51, 0.50.049)/0.71587,
the core and active spaces were defined, for the orbital optimizations only,
as [1a–8a; 16]{9a′–14a′; 6}. Standard Dunning–Huzinaga double-zeta plus
polarization (DZP) basis87 sets, C[9s5p1d]/(4s2p1d) and H[4s1p]/(2s1p)
were used in a CI treatment consisting of 3,444,355 CSF’s, obtained from
all single and double excitations from the two active orbital spaces.

4.1.3. Energies and Derivative Couplings

In the vicinity of a seam of conical intersection, the linear or conical con-
tribution to the energy and the singular part of derivative coupling need
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not be determined from ab initio calculations. Rather the perturbation the-
ory of Sec. 3 can used to determine the energy and derivative coupling in
terms of the magnitudes of the conical parameters, sk,l,gk,l, and hk,l —
Eqs. (55b) and (69) — evaluated along the seam. Below the superscripts
labeling the states are omitted when no confusion will result. Here we
present data illustrating this assertion and use this approach to describe the
vicinity of the HNCO seam. We identify four regions of this seam, accord-
ing to whether the molecule is cis or trans, planar(p) or nonplanar(np).
The energy minimized point of conical intersection for a given set of these
attributes and a given value of R(C–N) is denoted Rx(ct, x, R(C–N)) =
(R(H–N), R(C–N), R(C–O), ∠HNC,∠NCO,∠HNCO), where 0 ≤ ∠HNC,
∠NCO ≤ π and ∠HNCO ∼ 0(π) is a cis (trans) arrangement of the HNCO,
and ct = cis or trans and x = p or np. This analysis benefits significantly
from the use of conical parameters [Eq. (54c)] based on orthogonal inter-
section adapted coordinates. Energies will be expressed in cm−1 relative to
the energy at Req−trans, the equilibrium structure of the trans conformer
on S1, V21A(Req−trans) = V1A′′(Req−trans) and it is convenient to define
Vx(Rx) ≡ V21A(R) = V11A(R).

4.1.3.1. Energy and Derivative Couplings from Perturbation Theory

In Eqs. (54c) and (69), the parameters s, g and h are used to determine the
energies and derivative couplings near a point of conical intersection. Below
we compare these perturbative results with those of ab initio calculations at
Rx(trans, p, 2.95). Figures 4 depicts the g–h plane for this point. From this
figure it is seen that the coupling mode, y, has a′′ symmetry and therefore
is the unique internal a′′ coordinate. The tuning mode x has a′ symmetry
and tends to decrease R(C–N) and increase ∠NCO.

Figure 5 demonstrates the utility of this perturbative analysis, report-
ing Vi(ρ, θ), V

(1)
i (ρ, θ) and Aθ(ρφ) and A(1),θ(ρ, θ) for ρ = 0.1 with the

origin at Rx(trans, p, 2.95). Of primary importance is the good agreement
between Vi and V

(1)
i and, Aθ(ρ, θ) and A(1),θ(ρ, θ), obviating the need for

ab initio calculations in this region. Further, even at this non-infinitesimal
value of ρ, (1/ρ)Aθ is > 35 times larger than any of the remaining deriva-
tive couplings, supporting their neglect. At Rx(trans, p, 2.95), the conical
parameters are g = 0.0540, h = 0.0109, sx = −0.1798 sy = 0.0. Since
|sx| � |sy|, dgh, VI(ρ, θ) is approximately proportional to − cos θ which is
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Fig. 4. HNCO: g11A,21A/g (top panel) and h11A,21A/h (bottom panel) for
Rx,11A,21A(trans, p, 2.95) in terms of atom centered coordinates.

confirmed by Fig. 5. This point is considered further below. Interestingly,
the maximum in Aθ occurs for θ = ±π/2, where it represents Ax. This
is readily understood from Eq. (69) and the small value of h. The largest
coupling near this 1A′-1A′′ conical intersection occurs not for the unique a′′
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(1)
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line) and Aφ(ρ = 0.1, θ) (open circles, solid line) A(1)φ(ρ = 0.1, θ) (filled circles) for
Rx11A,21A(trans, p, 2.95).

mode, but for the tuning mode with a′ symmetry. There is no contradiction
here, since for θ = π/2, the molecule is non-planar.

4.1.3.2. Conical Parameters Along the Seam

Figures 6(a) and 6(b) report the conical parameters sx, sy and g, h, respec-
tively, obtained from orthogonal intersection adapted coordinates. If orthog-
onal g and h had not been used g and h would vary erratically along the
path, making interpolation and extrapolation impossible. Significantly, from
Figs. 6(a) and 6(b), it can be seen that although these conical parameters
are by no means constant, the inequalities sx > g > h, discussed above for
Rx(trans, p, 2.95), are, in a qualitative sense, typical.
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The topography of a conical intersection can have a profound effect on
the nuclear dynamics. Time dependent wave packets can be used to study
these effects.21,25–32,88,89 We have performed such an analysis, focusing on
the effects of the general strength parameter dgh, the asymmetry parameter
∆gh, and the parameters sx, sy. For Rx(trans, p, 2.95), dgh = 0.0275, and
∆gh = 0.9979 (very asymmetric, maximum value if 1), sx/dgh = 6.540,
and sy = 0 (strongly tilted along the x-axis). Strong directional effects
are predicted as a result of the large tilt and asymmetry. For the S1 → S0

internal conversion the portion of a wave packet approaching on S1 from the
φ = 0(π) side will be efficiently funneled onto S0 (deflected away from the
conical intersection). The asymmetry will produce a torque that will tend
to swirl the wave packet away from φ = 0. These factors may be expected to
limit the efficacy of the conical intersection for inducing radiationless decay.

4.1.3.3. Confluences

According to the noncrossing rule,13 the HNCO seam of conical intersec-
tion may have both planar and non-planar portions, as reported above. In
a planar tetra-atomic molecule there is only one a′′ mode. Thus the 1A′–
1A′′ symmetry-allowed seam of conical intersection cannot be continuously
connected to the non-planar seam with both g and h non-vanishing. How-
ever these distinct portions of the same seam can intersect at a confluence
since there h will vanish. Indeed, from Fig. 6(a), h(Rx) → 0 near Rx(cis,
p, 2.66) (open circle in that figure) so that a confluence is anticipated near
this point. For the trans nuclear configurations the situation is not as clear.
A confluence may exist near R(C–N) > 3.1, depending on the sign of h

for R(C–N) > 3.1. Figures 6(a) and (6b) reports h(R)(sy(R)) using the
two choices for the sign of h. Given the available data neither alternative is
compelling. Rather than use the vanishing of h to determine whether con-
fluences exist, an iterative procedure is used based on Eqs. (65a) and (65b).

4.1.3.3.1 cis Confluences
The cis arrangement will be used to illustrate the iterative approach to
locating confluences and characterizing the subspace they span. An itera-
tion in the procedure consists of three elementary steps. At step (k):

(i) Construct: At R(k) use second order perturbation theory, Eq. (77a),
to determine a(w) and b(w) in Eq. (59b) from the derivative couplings.
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Then with the b(w) known, Eq. (65) can be used to determine the ζ
(k)
m ,

m = 1-(N int − 2). Our current implementation determines a(w) and
b(w) using a least squares fit to Eq. (77a) along a closed loop in the
g–h plane.

(ii) Displace: Choose σ(k) = (d(k)
1 ζ

(k)
1 , . . . , d

(k)
N int−2ζ

(k)
N int−2) that results in a

small displacement and construct R(k+1) = σ(k)w + R(k), where w is
the set of vectors defining the seam space at R(k).

(iii) Test: At R(k+1) determine ∆V,g and h. If ∆V is too large run one
iteration of the conical intersection locator described in Chapter 3 of
this volume (“relaxing”) to reduce ∆V . Check for h ∼ 0. If not h ∼ 0,
go to (i) with R(k+1) → R(k).

The iterative procedure is illustrated in Table 2. Iteration 0: Step (i)
Construct: Starting with R = (1.936, 2.67, 2.27, 104.0, 101.3, 0.0), the a(w)

and b(w) were determined from a fit to the derivative couplings along a loop
with ρ = 0.05a0, using Eq. (77a), see Refs. 47 and 46. Using these second
order parameters, Eq. (65a) is solved to give the ζ(0). Step (ii) Choose:
Since the representation of the seam is perturbative, its predictions at finite
distances are approximations, so that neither ∆V21A,11A nor h is expected
to vanish exactly. However, the large ζ

(0)
κ in Table 2 are inconsistent with

the perturbative nature of the equations. Instead, the linear combination
given by σ(0) = (z(0)

1 ζ
(0)
1 , . . . , z

(0)
N int−2ζ

(0)
N int−2) · w which changes principally

the angles, ∠HNC and ∠NCO, was used to construct R(1) = σ(0) + R(0)

Table 2. Sequence of points on the 11A-21A seam of conical intersection of HNCO
obtained from the iterative method of locating a confluence.

R(H–N) R(C–N) R(C–O) ∠HNC ∠NCO gh ∆V (cm−1)

Iteration 0
R(0) 1.936 2.67 2.27 117.3 111.4 0.927(−3) 0.082

ζi|i : 1.901|1 1.369|2 1.306|3 0.379|4 z0 = (0.26, 0.17, 0.0, 0.57)

Iteration 1
R(1) 1.968 2.644 2.272 104.0 102.2 0.443(−3) 280
R(1),r 1.966 2.662 2.287 103.3 102.4 0.362(−3) 0.062

ζi|i 2.234|1 −1.540|2 0.119|3 0.135|4 zB = (0.0, 0.0, 0.5, 0.5)

Iteration 2
R(2) 2.007 2.623 2.298 101.2 106.5 0.409(−4) 309
R(2),r 1.997 2.648 2.313 100.7 106.2 0.375(−4) 4.20
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with R(1) and z(0) given in Table 2. Step (iii) Test: Note that gh has
decreased by a factor of two. However, ∆V has also increased substantially.
∆V is reduced to acceptable levels by running one iteration of the conical
intersection search program producing the relaxed point, R(1),r. In the first
iteration, choosing z(1) as indicated in Table 2 and “relaxing”, predicts
R(2),r at which gh has been lowered by an additional order of magnitude.
Since the perturbation theory requires nonvanishing g and h, the iterative
procedure was halted at this point. A detailed study of the “converged”
region is described below.

4.1.3.3.2 trans Confluences
We now turn to the question of confluences in the trans configuration.
Here we focus on how Eq. (65) can be used to characterize the subspace of
the symmetry-allowed seam of conical intersection spanned by the con-
fluence. The relevant results are found in Table 3. Note that g is 100
times larger than h and slowly varying in this region. At iteration 0, with
R(0) ≡ Rx,ref , gh is quite small and can be used to consider the existence
of a subspace of confluences in this region.

DefineR(Js) = Rx,ref+sσJ ·w, where σJ = (δJ,1ζ1, . . . , δJ,N int−2ζN int−2).
R(Js) denoted R(J) when s = 1 or not defined. Then at R(Js), J = 1, 4,

h is significantly reduced from its value at Rx,ref and ∆V21A,11A(R(Js)) is
quite small. Thus RJ , J = 1 and 4, provide good approximations to the
location of two points of confluence and define a one dimensional space
using Eq. (65). The largest displacement by far is along R(2) with ζ2 =
0.383. Therefore, the appreciable reduction in h and modest increase in
∆V21A,11A indicate an additional confluence along w2 — giving a manifold
of confluences of dimension 2 — although the current specification is only
approximate. On the other hand, displacement along w3 by ζ3 leads to a
significant lifting of the degeneracy with only marginal decrease in h. The
fact that ∆V21A,11A(R(3)) is significantly greater than ∆V21A,11A(Rx,ref)
may reflect seam curvature which mixes the wi and x,y coordinates at
finite displacements from the origin, introducing a linear term into ∆V .
It may also reflect the possibility that the seam space does not reach its
maximum allowed dimension, introducing a quadratic term into ∆V . This
point is beyond the scope of this review.

To illustrate the multidimensional character of the confluence, Table 3
reports results for the linear combination of the primitive solutions
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Table 3. Analysis of the 11A–21A seam of conical intersectiona.

R(H–N) R(C–N) R(C–O) ∠HNC ∠NCO h ∆V J(s)

Reference
1.946 3.146 2.242 104.0 101.3 0.881(−3) 0.92

ζ1 = 0.111 ζ2 = 0.383 ζ3 = 0.144 ζ4 = 0.0184

Displacement 1
1 .916 3 .146 2 .246 99 .7 101 .2 0 .491 (−4 ) 32 1
1.911 3.146 2.247 98.8 101.2 −0.149(−3) 43.8 1(1.2)
1.921 3.146 2.245 100.6 101.2 0.177(−3) 21.6 1(0.8)

Displacement 2
2 .436 3 .153 2 .243 96 .3 101 .4 0 .195 (−3 ) 107 2
2.535 3.155 2.245 94.6 101.4 −0.163(−3) 152 2(1.2)
2.338 3.150 2.242 97.7 101.4 0.276(−3) 69.4 2(0.8)

Displacement 3
1.901 3.334 2.240 101.4 100.6 0.661(−3) 351 3

Displacement 4
1 .953 3 .154 2 .230 103 .9 101 .7 −0 .498 (−4 ) 4 .5 4
1.955 3.156 2.228 103.9 100.5 −0.302(−3) 6.77 4(1.25)
1.952 3.152 2.233 103.9 100.8 0.190(−3) 2.86 4(0.75)
1.950 3.150 2.236 104.0 101.1 0.421(−3) 1.61 4(0.5)
1.948 3.148 2.239 104.0 101.1 0.648(−3) 1.00 4(0.25)

Displacement A
2 .024 3 .150 2 .235 101 .4 100 .9 0 .244 (−4 ) 8 .8 A
1.985 3.148 2.239 102.7 101.1 0.426(−3) 2.63 A(0.5)

∗All structures are trans. Confluences are in italic type face. ∆V in cm−1. R(J) = Rx,ref +
sσJ · w, where σJ = (δJ,1ζ1, . . . , δK,JζK), K=Nint−2. σA = (0.26ζ1, 0.17ζ2, 0.0ζ3, 0.57ζ4).

ζi, σ
A = (0.26ζ1, 0.17ζ2, 0.0ζ3, 0.57ζ4). From the data in Table 3, RA =

Rx,ref + σA · w is clearly a point of confluence, as expected.
It is illuminating to compare h for the points R(Js) (for definition).

According to Eq. (65), h should vanish at s = 1. To this end, Table 3
reports ±h versus Js, for J = 1, 2, 4, that is, ±h along the direction ζi with
steps of sζi. The sign of h is chosen to reflect the linear behaviour of h near
s = 1. Consistent with the above analysis is the result that h goes through
zero for 0.95 < s < 1.05, quite close to the s = 1 prediction, for J = 1, 4, A

and for s ∼= 1.15 for J = 2, the more approximate confluence.

4.1.4. Implications for the S1 → S0 Internal Conversion

The manifold of trans confluences has the potential to affect HNCO inter-
nal conversion. The confluences are found for R(C–N) ∼= 3.15a0 (with
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J = 3 excluded as discussed above) and R(C–O) ∼= 2.24a0. With R(C–O)
stretched to R(C–O) ∼= 2.32, these confluences are in close proximity geo-
metrically, to Rx[R(C–N) = 3.15] ≡ (1.947, 3.15, 2.316, 103.3, 105.1, π),
the energy minimized conical intersection with R(C–N) = 3.15a0 (based
on interpolation of results in Table 2 of Ref. 80). Localization along a
coordinate, here R(C–O), is consistent with the reduction by one of the
dimensionality of the confluence subspace relative to the different symme-
try intersection subspace. Further, as Ex(RxR(C–N) = 3.15) ≈ 8500 cm−1,
these confluences are only on the order of 1500 cm−1 above (see Table 1),
the lowest energy intersections at R(C–N) = 3.15a0. They are above the
NCO(X2Π) + H) asymptote, which is at 9038 cm−1, based on the experi-
mental data in Ref. 80. Therefore for R(C–O) ∼= 2.24a0 (similar to its value
at the equilibrium structure in the ground state and in the trans excited
state80) as R(C–N) reaches 3.15a0, conical intersections whose energies sep-
arate very gradually along one “linear” coordinate may be accessed by the
dissociating HNCO. Therefore it is important to understand the nuclear
dynamics in this region and include these confluences in any detailed rep-
resentation of the seam.

4.2. Inclusion of Spin-orbit Effects. H2OH: The η = 3 Case

4.2.1. Motivation

The electronic quenching

OH(A2Σ+) + H2 → OH(X2Π) + H2 Channel A
OH(A2Σ+) + H2 → H2O + H Channel B

has been the subject of recent experimental studies.90,91 These reactions are
facilitated by the 12A′–22A′ seam of conical intersection which can route
the system to either channels A or B. C∞v, C2v and Cs portions of the
nonrelativistic seam have been reported.92 Here we are particularly inter-
ested in the C∞v portion of the 12A′–22A′ seam where the 12A′′ state
joins the 1, 22A′ states to form a 2Σ+ − 2Π seam of intersections. In
this case the fine structure splitting of the OH moiety lifts the degener-
acy obtained at the nonrelativistic (η = 2) level. Figure 7 describes the
effect of the spin-orbit interaction on this degeneracy. Starting with degen-
erate 12Π and 12Σ+ states at Xx,nr, including the spin-orbit interaction
within the 2Π manifold splits the 2Π state into a (lower energy) 2Π3/2 state
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Fig. 7. H2OH: Representation of degenerate states from nonrelativistic components.
(a) Degenerate zeroth order states at Xx,nr. (b) Spin-orbit interaction splits 2Π state. (c)
With full spin orbit interaction turned on, degeneracy is restored by changing geometry
to Xx,r.

and (higher energy) 2Π1/2 state. Then, with the full spin-orbit interaction
included, the molecule can distort to make either the upper pair, the 2E
and 3E states, or the lower pair, the 1E and 2E states, degenerate. From
Fig. 7 for C∞v geometries, the 2E–3E intersection is a “same symmetry”,
Ω = 1/2, 1/2, intersection, while the 1E–2E intersection is a different sym-
metry Ω = 3/2, 1/2 intersection. However, both intersections are conical
intersections since both Ω = 3/2 and Ω = 1/2 states decompose into one E′

and one E′′ (Kramers’ doublets) when the molecule is distorted to Cs con-
figurations. Here we consider the more computationally challenging same
symmetry, 2E–3E, intersection, focusing on the branching space. Points on
the 2E′–3E′ intersection seam were determined using the Lagrange mul-
tiplier constrained, analytic gradient driven, search algorithm, described
previously43 and in Chapter 3 of this volume. While only Cs symmetry was
imposed, all points located on the 2E′–3E′ seam of conical intersection,
which are degenerate to < 1 cm−1, had C∞v symmetry.

4.2.2. Wave Functions

The nonrelativistic adiabatic wave functions, Φi, i = 1, 22A′, were
determined at the SA-MCSCF/MRCI level. The molecular orbitals were
determined from a complete active space (CAS)93–95 SA-MCSCF proce-
dure, employing a (9s4p2d) contracted Gaussian basis set on oxygen and
a (4s2p) contracted set on each hydrogen, and averaging the 12A′, 22A′,
and 12A′′ states with weights of 0.51, 0.49, and 0.50, respectively. In the
SA-MCSCF procedure, the orbitals were partitioned into two subspaces,
[2a′ : 4] and [5a′, 1a′′ : 7], where [ms : n] denotes a core space containing a
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total of m orbitals of symmetry s and n electrons and [m′s : n′] denotes an
active space with m orbitals of symmetry s and n′ electrons. The core space
represents the oxygen 1s and 2s orbitals, whereas the active space contains
the remainder of the valence orbitals derived from the oxygen 2p and three
hydrogen 1s orbitals. Dynamical correlation effects were accounted for by a
subsequent CI procedure in which the orbitals were repartitioned into four
spaces: [1a′ : 2], {1a′ : 2}, {5a′, 1a′′ : 7}, and the remaining virtual orbitals.
The two CI active spaces will be referred to as AS1 and AS2, respectively.
The CI wave function was constructed from a CSF space that was first
order with respect to these active spaces.

From these nonrelativistic wave functions, relativistic basis states were
constructed using the methods in Appendix A. The resulting basis func-
tions are

Φ TΦ√
2Φ1E′ = Φ12A′(1/2) + iΦ12A′(−1/2)

√
2Φ1E′′ = Φ12A′(1/2) − iΦ12A′(−1/2)√

2Φ2E′ = Φ22A′(1/2) + iΦ22A′(−1/2)
√

2Φ2E′′ = Φ22A′(1/2) − iΦ22A′(−1/2)√
2Φ3E′ = Φ12A′′(1/2) − iΦ12A′′(−1/2)

√
2Φ3E′′ = Φ12A′′(1/2) + iΦ12A′′(−1/2).

Here MS is given in parentheses for the nonrelativistic states and the ΦiE

carry the E = E′ or E′′ representations of the Cs double group. The
relativistic wave functions, ΦkE , k = 1−3 and E = E′ or E′′, are the
eigenfunctions of He in this basis. The spin-orbit operator is described
within the Breit–Pauli approximation.96

Here the nonrelativistic (Coulomb, η = 2) and relativistic (Coulomb +
spin-orbit, η = 3) seams of conical intersection are compared. In Cs symme-
try, there are 5 symmetry preserving internal coordinates. The seam con-
ditions, the conditions that require X to be a point of conical intersection,
define η internal coordinates.43 Thus there is a many-to-one association
of nonrelativistic and relativistic seam points. This many-to-one associ-
ation can be reduced to one-to-one association by comparing the lowest
energy point of conical intersection for a fixed-value of the H2–H3 distance,
R(H2 − H3), see Fig. 8(a) for atom labelling. Below we show that this
approach results in meaningful comparisons.

4.2.3. Orthogonal Intersection Adapted Coordinates

The lowest energy point on the relativistic C∞v seam occurs at
Rmex,2E,3E = (2.7, 2.05, 2.56)a0, where R = (R(H1–O), R(O–H2),
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Fig. 8. H2OH: For η = 3, the vectors g,hr and hi. Nascent (a, b, c) and orthogonalized
(a′, b′, c′) results at Rx,2E,3E(2.33). For orthogonal vectors, hr = 0.0430, g = 0.0825,
and hi = 0.000233. All vectors are scaled by factors of 30 except the orthogonal hi which
is scaled by a factor of 6000.

R(H2–H3)). This point is 1990 cm−1 below the H2+OH(A2Σ+) asymptote.
By contrast, the minimum energy point on the C∞v portion of the non-
relativistic seam occurs for Rmex,12A,22A = (1.83, 2.2, 1.7)a0, which is
13, 860 cm−1 below the H2 + OH(A2Σ+) asymptote.92 This large change
in geometry, reflects the nuclear coordinate dependence of the compara-
tively small spin-orbit matrix elements. On the other hand, while the η = 3
seam is absent from the low-energy region of the nonrelativistic seam, where
it exists, the separation from the non-relativistic seam is not large.
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Fig. 9. H2OH: For η = 2, (a) the orthogonal vectors g,h and (b) seam vectors wi, i =
1−3. Orthogonal g and h and 3 seam coordinates at Rx,12A′,22A′

(2.33). g = 0.0835, h =
0.0514. The g,h vectors are scaled by a factor of 30. The w are normalized and scaled
by a factor of 2.

Figures 8 and 9 compare the g–h space for the relativistic hamil-
tonian with the g–h plane for the nonrelativistic hamiltonian. Figure 8
reports g2E,3E ,hr,2E,3E and hi,2E,3E and their orthogonalized counter-
parts, g̃2E,3E , h̃r,2E,3E and h̃i,2E,3E at Rx,2E,3E = (2.7688, 1.8790, 2.3375),
which is typical. The nascent g2E,3E , hr,2E,3E and hi,2E,3E are clearly
not symmetry-adapted. The orthogonalization procedure removes this
deficiency, with g̃2E,3E and h̃i,2E,3E being symmetry preserving σ



May 26, 2004 15:26 Conical Intersections: Electronic Structure, Dynamics and Spectroscopy chap02

Conical Intersections: Their Description and Consequences 101

displacements and h̃r,2E,3E being a π displacement. Figure 9 reports
g̃12A,22A, h̃12A,22A and the seam coordinates wk, k = 1−3 for Rx1,12A,22A =
(2.7740, 1.8732, 2.336). Comparing Figs. 8 and 9 illustrates the general
observation that g̃2E,3E is parallel to g̃12A,22A and h̃r,2E,3E is parallel to
h̃12A,22A. This comparison clearly depends on the use of the orthogonalized
vectors. h̃i,2E,3E is a linear combination of the two symmetry preserving
seam coordinates in Fig. 9.

Figure 10 reports additional points on the 2E′–3E′ intersection seam as
a function of geometrical constraint, R(H2–H3) = β. Note that C∞v sym-
metry was not imposed. The points located on the 2E′–3E′ seam of conical
intersection, which are degenerate to < 1 cm−1, all had C∞v symmetry.
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Fig. 10. The relativistic seam Rx,ij(R(H2–H3)):R(O–H1), (empty squares), R(O–H2)
(empty diamonds) V2E′ (R(H2–H3)) (empty circles) on the 2E–3E seam of conical inter-
section. Filled markers: 12A′–22A′ nonrelativistic seam of conical intersection.
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Figure 10 shows, that while the η = 3 seam is necessarily distinct from the
non-relativistic seam, the separation is not large. In future work, it will be
interesting to see how this conclusion changes as the magnitudes of the spin-
orbit interactions increases. Along the non-relativistic seam the relativistic
energy difference, ∆V3E,2E(Rx,12A′,22A(R(H2–H3)), is ∼ 70 cm−1, greater
than 50% of the OH(2Π) fine structure splitting, suggesting that when
heavier atoms such as chlorine, where Aso =∼780 cm−1,97 or even bromine
or iodine are involved, ∆Vj,i(Rx,IJ), [where I, J (i, j) denote the non-
relativistic (relativistic) states] will be much larger, so that nonadiabatic
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effects may be significantly reduced at the nonrelativistic seam by the inclu-
sion of spin-orbit coupling.

The lowest order contributions to the energy are described by the con-
ical parameters g2E,3E , hr,2E,3E , hi,2E,3E and s2E,3E

k , k = x, y, z, These
parameters are reported in Figs. 11(a) and 11(b). Their continuity is
attributable to the use of orthogonal intersection adapted coordinates. For
comparison, Figs. 11(a) and 11(b) report the nonrelativistic quantities,
g12A′,22A, h12A′,22A and s12A′,22A respectively. From Fig. 11(a), it is seen
that for the slowly changing g2E,3E , |g12A′,22A − g2E,3E |/g12A′,22A is small
while for the more rapidly varying hr,2E,3E , |h12A′,22A −hr,2E,3E |/h12A′,22A

is perhaps not unexpectedly, larger but still modest (< 0.4).
The relative magnitudes of g2E,3E , hr,2E,3E , hi,2E,3E and s2E,3E

k k =
x, y, z describe the orientation and shape of the double cone. The rela-
tion between these attributes and the near conical intersection dynamics
has been discussed previously for nonrelativistic conical intersection. For
the conical intersections encountered here, −s2E,3E

x < hr,2E,3E(−s2E,3E
z >

hi,2E,3E), so that the cone is slightly (significantly) tilted in the x(z)-
direction. Such a topography faciliates the downward (upward) transi-
tions from negative x(z)-direction. The linear coupling in the z-direction,
hi,2E,3E , is however quite small, so that quadratic terms dominate except
very close to the conical intersection. This will limit the role of this coordi-
nate in inducing nonadiabatic transitions. It will be interesting to see how
this changes as the size of the spin-orbit interaction increases.

5. Additional Topics

We have considered a large number of issues concerning conical intersec-
tions. Several interesting issues have not been discussed. Here we briefly
mention these topics and suggest directions for future research.

5.1. Seam Curvature and Higher Order Effects

The degenerate perturbation method described in Sec. 3 assumes/requires
that the degeneracy be lifted at first order. In this case, “first order” means
that displacements exclusively in the seam space, zeroth order in displace-
ments in the branching space [Eqs. (58)–(59)] do not lift the degeneracy.
In a triatomic system, the seam would locally be a straight line perpendic-
ular to the g–h plane, and globally the seam would be approximated by a
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piecewise linear curve. We therefore refer to the perturbative description
of general polyatomic molecules using the theory in Sec. 3 as the piece-
wise linear seam approximation. In Sec. 3.4, we showed how the piecewise
linear seam approximation could be extended to higher (second) order.
The higher order terms are needed to describe nonsingular parts of the
derivative coupling and higher order terms in the energy. These higher
order terms lead to the prediction of seams with two (or more) branches,
which may intersect at confluences. The success of the iterative procedure
for the location of confluences using the piecewise linear approximation
described in Sec. 4 support the utility of this approximation. However,
except in high symmetry molecules seam curvature is not entirely absent
and it will be important to determine its significance. Initial studies in
this regard have been carried out.47 These studies considered the second
order parameters determined by fitting energies and derivative couplings
in the vicinity of conical intersections. Corrections for the CSF contribu-
tion were included. More studies of this type are required. In addition a
theory of conical intersections that rigorously includes seam curvature is
needed.

5.2. Three State Intersections: Coalescences

In this chapter we have considered exclusively intersections of two (perhaps
two-fold degenerate) potential energy surfaces. More complicated types of
intersections are possible. The seam for states k, l and that for states l, m

may intersect to produce a conical intersection of three states. This situa-
tion, which we will refer to as a coalescence, is well-known when sufficient
symmetry is present to require it.48 However 3-state same symmetry coni-
cal intersections have been largely ignored, owing to their relative paucity
of occurrence, attributable to their five-dimensional branching space, and
hence N int − 5 dimensional seam space.48,99 The discovery of degenera-
cies of three potential energy surfaces with no-symmetry in recent work
on the 3p Rydberg states of ethylene,98 the excited states of allyl,106

and most recently the accidental intersections of the lowest three states
in pyrazolyl,107 suggest that “accidental” coalescences are not rare occur-
rences. It will be important to determine the prevalence, and implications
for nuclear dynamics, of this class of conical intersection.
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Appendices

Appendix A. Time-Reversal Adapted Configuration State
Functions

The N el-electron CSF basis ΘA,S,Ms are antisymmetrized eigenfunctions of
S2 and Ms and carry an irreducible representation A of the spatial point
group. When the spin-orbit interaction is included in the Hamiltonian, it is
convenient to also require that they be time-reversal adapted.34 A basis is
time reversal adapted, provided TΘa is in the basis whenever Θa is. Here
T , the time reversal operator, is given by100,101

I =
Nel∏
j=1

(iσyK)(j), and σy =
(

0 i

−i 0

)
. (A.1)

σy is a Pauli spin matrix and K denotes complex conjugation. From
Eq. (A.1), the time reversal operator, T , is an anti-unitary operator, that
is, for φ and ψ arbitrary functions, 〈φ|ψ〉∗ = 〈Tφ|Tψ〉, with T 2 = +I(−I)
if N el is even (odd). For a molecule with an odd number of electrons:

〈φ|Tφ〉∗ = 〈Tφ|T 2φ〉 = −〈Tφ|φ〉 = −〈φ|Tφ〉∗, so that 〈φ|Tφ〉 = 0 (A.2a)

that is, φ and Tφ are orthogonal. Further, since T commutes with He, ψ

and Tψ are degenerate

〈φ|HeTψ〉∗ = 〈Tφ|HeT
2ψ〉 = −〈Tφ|Heψ〉

= −〈ψ|HeTφ〉∗, so that 〈φ|HeTφ〉 = 0 (A.2a′)

and

〈φ|Heψ〉∗ = 〈Tφ|THeψ〉 = 〈Tφ|HeTψ〉. (A.2b)

The degeneracy of Φi and TΦi is referred to as Kramers’ degeneracy.102

For a molecule with an even number of electrons, φ and Tφ are linearly
dependent and with the choice φ = Tφ,

〈φ|Heψ〉∗ = 〈Tφ|THeψ〉 = 〈Tφ|HeTψ〉 = 〈φ|Heψ〉. (A.2c)
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Thus in this case 〈φ|Heψ〉 is real-valued. The fact that He can be
chosen real-valued has important implications for the theory of conical
intersections.

For odd electron molecules, the construction of a time reversal adapted
basis is facilitated by the symmetry properties of the CSFs. The time rever-
sal adapted CSF basis functions are given in terms of the ΘA,S,Ms by

ΘA,S,|Ms|,+ =
(
ΘA,S,Ms + iΘA,S,−Ms

)
/
√

2 (A.3a)

ΘA,S,|Ms|,− = −i(−1)S+Ms
(
ΘA,S,Ms − iΘA,S,−Ms

)
/
√

2. (A.3b)

From the properties of Clebsch–Gordon coefficients103 used to construct
the ΘA,S,Ms in a geneological104 manner; one shows:

TΘA,S,Ms = (−1)S+MsΘA,S,−Ms (A.4a)

so that

TΘA,S,|Ms|,+ = ΘA,S,|Ms|,−; TΘA,S,|Ms|,− = −ΘA,S,|Ms|,+. (A.4b)

From Eq. (A.4b), the space of pairs (ΘA,S,|Ms|,+, ΘA,S,|Ms|,−) are a time
reversal adapted CSF basis.

To simplify the notation, superscripts A, S and Ms will be suppressed
when no confusion will result. When point group symmetry is not an issue,
A will be suppressed. To simplify the sums, we will write Θi+MCSF =
TΘi,≡ ΘTi

with MCSF = NCSF/2. When the Coulomb Hamiltonian is
used TΘA,S,±|Ms| replaces TΘA,S,|Ms|,±.

Appendix B: Eigenvalues and Eigenvectors of a 2 × 2
Hermitian Matrix

In this appendix it is shown how the transformation properties of the
individual Pauli matrices can be used to facilitate diagonalization of h,
a complex hermitian Hamiltonian. The general 2 × 2 complex hermitian
and linearized cases are considered. The Pauli matrices σw are given by

σz =
(

1 0
0 −1

)
σx =

(
0 1
1 0

)
σy =

(
0 i

−i 0

)
(B.1a)

and also define 2σ− = σx + iσy and 2σ+ = σx − iσy

σ+ =
(

0 1
0 0

)
σ− =

(
0 0
1 0

)
. (B.1b)
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B.1. The General Case

Let h have the form

h = SI + Gσz + Hxσx + Hyσy

= SI + Gσz + (Hx + iHy)σ+ + (Hx − iHy)σ−. (B.2)

Then h can be diagonalized by a transformation

u =
(

cos Θ eiγ sin Θ
−e−iγ sin Θ cosΘ

)
. (B.3)

To accomplish this, we first compute

σ̃w = u†σwu, w = x, y, z (B.4)

and find

σ̃x = − cos γ sin 2Θσz + (cos 2Θ + 2 sin2 γ sin2 Θ)σx − sin 2γ sin2 Θσy

(B.5a)

σ̃y = − sin γ sin 2Θσz − σx sin 2γ sin2 Θ + (cos 2Θ + cos2 γ2 sin2 Θ)σy

(B.5b)

σ̃z = cos 2Θσz + cos γ sin 2Θσx + sin γ sin 2Θσy. (B.5c)

Thus

h̃ − SI = Kzσ̃z + Kxσ̃x + Kyσ̃y

= Kzσ̃z + (Kx + iKy)σ̃+ + (Kx − iKy)σ̃−. (B.6)

u is determined by using Eqs. (B.5) and (B.2) to evaluate an off-diagonal
term of h̃

Kx + iKy = Hx cos 2Θ − iHx2 sin γ sin2 Θeiγ

+ iHy2 cos γ sin2 Θeiγ + iHy cos 2Θ

+ G(cos γ sin 2Θ + i sin γ sin 2Θ) (B.7a)

= iHy2 cos γ sin2 Θeiγ + iHy cos 2Θ

+ Hx cos 2Θ − iHx2 sin γ sin2 Θeiγ + Geiγ sin 2Θ (B.7b)

= (Hx + iHy) cos 2Θ + 2 sin2 Θeiγ(−Hxi sin γ + iHy cos γ)

+ Geiγ sin 2Θ. (B.7c)
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Noting that Hx + iHy ≡ Heiξ, then

−Hxi sin γ + iHy cos γ =
1
2
(−Hx + iHy)(i sin γ + cos γ)

+(−Hx − iHy)(i sin γ − cos γ)

=
1
2
(−He−iξeiγ − Heiξ(−)e−iγ)

=
1
2
H(−ei(γ−ξ) + e−i(γ−ξ)). (B.8a)

the second term in Eq. (B.7c) vanishes provided γ = ξ, while the sum of
the remaining terms vanishes provided

tan 2Θ = −H/G. (B.8b)

The diagonal term, Kz, becomes

Kz = (−Hy sin γ − Hx cos γ) sin 2Θ + G cos 2Θ

= (iHyi sin γ − Hx cos γ) sin 2Θ + G cos 2Θ

= sin 2Θ(−He−iξeiγ − He+iξe−iγ)/2 + G cos 2Θ

= −H sin 2Θ + G cos 2Θ = [H2 + G2]1/2. (B.8c)

B.2. The Linear Hamiltonian

A linear Hamiltonian has the form

h = SI + gzσz + hrxσx + hiyσy. (B.2′)

Introducing spherical polar coordinates

z = ρ cos θx = ρ sin θ cos φ and y = ρ sin φ sin θ (B.9)

we have Hx = ρhr sin θ cos φ, Hy = ρhi sin θ sin φ, G = ρg cos θ.

Since h is a special case of Eq. (B.2), its eigenfunctions (equivalently
γ and Θ) and eigenvalues (equivalently Kz) follow Eqs. (B.8a,b,c). It is
convenient to introduce scaled quantities h(1)(φ), q(θ, φ) and the associated
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angles λ(θ, φ), ξ, defined by [see Eqs. (50)–(51)]

hi sin φ = h(1)(φ) sin ξ hr cos φ = h(1)(φ) cos ξ (B.10a)

where

h(1)(φ)2 = (hi sin φ)2 + (hr cos φ)2 (B.10b)

and

g cos θ = q(θ, φ) cos λ(θ, φ) h(1)(φ) sin θ = q(θ, φ) sin λ(θ, φ) (B.10c)

with

q2 = (g cos θ)2 + (sin θ h(1))2. (B.10d)

Then

Heiξ = h(1)ρ sin θeiξ (B.11a)

tan 2Θ = −H/G =
−ρh(1) sin θ

ρg cos θ
=

− sin λ

cos λ
= tan(−λ) (B.11b)

Kz = [(ρg cos θ)2 + (ρh(1) sin θ(1))2]1/2 = ρq. (B.11c)

Thus

h̃ = sI + ρq(θ, φ)σz with Θ = −λ/2 and γ = ξ (B.12)

Appendix C: Eigenvalues and Eigenvectors of a 4 × 4
Hermitian Matrix in a Time Reversal Adapted Basis

Here, analytic expressions for the eigenfunctions and eigenvalues of the
matrix M

M ≡
(

h v
v† h∗

)
(C.1a)

where

h =
( −gz hrx + ihiy

hrx − ihiy gz

)

v =
(

0 trv + itiw

−(trv + itiw) 0

)
≡
(

0 a

−a 0

)
(C.1b)
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are derived. Diagonalization of M is accomplished in three steps. Let

U(1) =
(
u(1) 0
0 u(1)∗

)
where u(1)†hu(1) = ε(1) (C.2a)

and

ε(1) =
(−[(gz)2 + (hrx)2 + (hiy)2]1/2 0

0 [(gz)2 + (hrx)2 + (hiy)2]1/2

)
(C.2b)

then

M(1) ≡ U(1)†MU(1)

=

(
u(1)†

0

0 u(1)∗†

)(
h v
v† h∗

)(
u(1) 0
0 u(1)∗

)

=




ε1 0 0 a

0 ε2 −a 0
0 −a∗ ε1 0
a∗ 0 0 ε2


 (C.3)

where we have noted that u(1)†vu(1) = v. Next reorder the transformed
functions using the permutation matrix

P =




1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0


 (C.4)

which puts them in the order 1, 4, 2, 3.

M(2) = P†M(1)P

=




ε1 a 0 0
a∗ ε2 0 0
0 0 ε2 −a

0 0 −a∗ ε1




≡ (ε1 + ε2)/2I +
(
h(2) 0
0 −h(2)

)
(C.5)

where ε1 + ε2 = 0 since M is traceless and

h(2) =
(

∆ε a

a∗ −∆ε

)
∆ε = (ε1 − ε2)/2

= −[(gz)2 + (hrx)2 + (hiy)2]1/2. (C.6)
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Finally define u(2) such that

ε(2) = u(2)†h(2)u(2)

(
−(∆ε2 + |a|2)1/2 0

0 (∆ε2 + |a|2)1/2

)
(C.7a)

where

∆ε2 + |a|2 = (gz)2 + (hrx)2 + (hiy)2 + (trv)2 + (tiw)2. (C.7b)

Then

M(3) = U(2)†M(2)U(2) =
(

ε(2) 0
0 −ε(2)

)
, (C.8a)

where

U(2) =
(
u(2) 0
0 u(2)

)
. (C.8b)

From Eqs. (C.7a) and (C.8), the pairs of roots (1, 4) and (2, 3) are degener-
ate. This is an example of Kramers’ degeneracy. The overall transformation
U is given by

U =




u
(1)
11 u

(1)
12 0 0

u
(1)
21 u

(1)
22 0 0

0 0 u
(1)∗

11 u
(1)∗

12

0 0 u
(1)∗

21 u
(1)∗

22






1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0




×




u
(2)
11 u

(2)
12 0 0

u
(2)
21 u

(2)
22 0 0

0 0 u
(2)
11 u

(2)
12

0 0 u
(2)
21 u

(2)
22


 (C.9a)

=




u
(1)
11 0 u

(1)
12 0

u
(1)
21 0 u

(1)
22 0

0 u
(1)∗

12 0 u
(1)∗

11

0 u
(1)∗

22 0 u
(1)∗

21






u
(2)
11 u

(2)
12 0 0

u
(2)
21 u

(2)
22 0 0

0 0 u
(2)
11 u

(2)
12

0 0 u
(2)
21 u

(2)
22




=




u
(1)
11 u

(2)
11 u

(1)
11 u

(2)
12 u

(1)
12 u

(2)
11 u

(1)
12 u

(2)
12

u
(1)
21 u

(2)
11 u

(1)
21 u

(2)
12 u

(1)
22 u

(2)
11 u

(1)
22 u

(2)
12

u
(1)∗

12 u
(2)
21 u

(1)∗

12 u
(2)
22 u

(1)∗

11 u
(2)
21 u

(1)∗

11 u
(2)
22

u
(1)∗

22 u
(2)
21 u

(1)∗

22 u
(2)
22 u

(1)∗

21 u
(2)
21 u

(1)∗

21 u
(2)
22


 . (C.9b)
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Appendix D: Representations of U

To obtain explicit expressions for the u(i), it is convenient to introduce
spherical polar coordinates (ρ(1), θ(1), φ(1)), polar (ρ(2), φ(2)) and hyper-
spherical coordinates (ρ(3), θ(3)). Two representations will be used, a scaled
coordinate system, in which displacements are energetically equivalent
along each axis, and unscaled coordinate system, for which the displace-
ment step sizes are equivalent along each axis.

D.1. Scaled Coordinates

z′ = gz = ρ(1) cos θ(1)

x′ = hrx = ρ(1) sin θ(1) cos φ(1)

y′ = hiy = ρ(1) sin θ(1) sin φ(1) (D.1)

and

v′ = trv = ρ(2) cos φ(2) w′ = trw = ρ(2) sin φ(2) (D.2)

so that

h ≡ h(1) = ρ(1)

(
− cos θ(1) eiφ(1)

sin θ(1)

e−iφ(1)
sin θ(1) cos θ(1)

)
and

h(2) =

(
−ρ(1) ρ(2)eiφ(2)

ρ(2)e−iφ(2)
ρ(1)

)
. (D.3)

Note that the underlying coordinate axes are linearly independent but not
necessarily orthogonal. See, however, Appendix F. Introducing the hyper-
polar coordinates ρ(3), θ(3) by

ρ(1) = ρ(3) cos θ(3) and ρ(2) = ρ(3) sin θ(3) (D.4)

then

h(2) = ρ(3)

(
− cos θ(3) sin θ(3)eiφ(2)

sin θ(3)e−iφ(2)
cos θ(3)

)
. (D.5)

In these coordinates, ρ(1)2 = (gz)2 + (hrx)2 + (hiy)2 and ρ(3)2 = (gz)2 +
(hrx)2 + (hiy)2 + (trv)2 + (tiw)2. Further h(1) and h(2) have the same form

h(i) = ρ(i)

(
− cos θ

(i)
eiφ(i′)

sin θ
(i)

e−iφ(i′)
sin θ

(i)
cos θ

(i)

)
(D.6)
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and can be diagonalized by the transformation

u(i) =

(
cos Θ(i) eiγ(i′)

sin Θ(i)

−e−iγ(i′)
sin Θ(i) cos Θ(i)

)
(D.7)

where Θ(i) = θ(i)/2, γ(i′) = φ(i), for (i, i) = (1, 1), (3, 2). The simple relation
between the Hamiltonian parameters and those of U comes from the use
of scaled coordinates to define the polar and spherical polar coordinates in
Eqs. (C.1) and (C.2). Alternatively, one can choose unscaled coordinates as
follows.

D.2. Unscaled Coordinates

Let

z = ρ(1) cos θ(1), x = ρ(1) sin θ(1) cos φ(1), y = ρ(1) sin θ(1) sin φ(1) (D.8a)

and

v = ρ(2) cos φ(2), w = ρ(2) sin φ(2). (D.8b)

Then define

h(1)(φ(1)) cos ξ(1) = hr cos φ(1), h(1)(φ(1)) sin ξ(1) = hi sin φ(1) (D.9a)

and

q(1)(θ(1), φ(1)) cos λ(1) = g cos θ(1)

(D.9b)
q(1)(θ(1), φ(1)) sin λ(1) = h(1)(φ(1)) sin θ(1)

q(2)(φ(2)) cos ξ(2) = tr cos φ(2), q(2)(φ(2)) sin ξ(2) = ti sin φ(2) (D.9c)

h ≡ h(1) = ρ(1)q(1)

(
− cos λ(1) eiξ(1)

sin λ(1)

e−iξ(1)
sin λ(1) cos λ(1)

)

h(2) =

(
−ρ(1)q(1) ρ(2)q(2)eiξ(2)

ρ(2)q(2)e−iξ(2)
ρ(1)q(1)

)
. (D.10)
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Introducing the hyper polar coordinates

ρ(3) cos λ(3) = ρ(1)q(1) and ρ(3) sin λ(3) = ρ(2)q(2) (D.11)

h(2) becomes

h(2) = ρ(3)

(
− cos λ(3) sin λ(3)eiξ(2)

sin λ(3)e−iξ(2)
cos λ(3)

)
. (D.12)

h(1) and h(2) have the form of Eq. (D.6) and can be diagonalized by
the transformation in Eq. (D.7) with Θ(1) = λ(1)/2, γ(1) = ξ(1) and
Θ(2) = λ(3)/2, γ(3) = ξ(2). U, Eq. (C.9b), is given by

(D.13)

where c = cos and s = sin.

Appendix E. Degenerate Perturbation Theory

Here we collect some results from degenerate perturbation theory.61 The
degenerate states are i, j. Assume that

Φk = Φ(0)
k + Φ(1)

k + Φ(2)
k + · · · , k = i, j (E.1a)

H = H(0) + H(1) + H(2) + · · · , (E.1b)

Vk = V
(0)
k + V

(1)
k + V

(2)
k + · · · , k = i, j (E.1c)

where V(0)
i = V(0)

j . Then

(H(0) − V
(0)
i )Φ(1)

i + (H(1) − V
(1)
i )Φ(0)

i = 0 (E.2a)

(H(0) − V
(0)
i )Φ2

i + (H(2) − V
(2)
i )Φ(0)

i + (H(1) − V
(1)
i )Φ(1)

i = 0. (E.2b)

Then taking the dot product of Φ(0)
k with Eq. (E.2a) gives,

using k = i, j (
QH(1)Q − V

(1)
i

)
Φ(0)

i = 0 (E.3a)
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using k �= i, j

PΦ(1)
i =

(
V

(0)
i − H(0)

)−1
H(1)Φ(0)

i (E.3b)

where Q projects onto the space spanned by Φ(0)
i and Φ(0)

j , and P projects

onto the orthogonal complement. The dot product of Φ(0)
k k = i, j with

Eq. (E.2b) and using (E.3) gives

〈
Φ(0)

k

∣∣∣∣ (H2−eff − V
(2)
i

)
Φ(0)

i

〉
= −(V (1)

k − V
(1)
i )ε(1),i

k (E.4a)

where 〈Φ(0)
k |Φ(1)

m 〉 ≡ ε
(1),m
k and

H(2−eff) = H(2) + H(1)
(
V

(0)
i − PH(0)P

)−1
H(1)

≡ H(2) + H(2,QPQ). (E.4b)

Equation (E.2b) gives the second order energy and a first order contribution
to the wave function

V
(2)
i = 〈Φ(0)

i |H(2−eff)|Φ(0)
i 〉 for k = i, j (E.5a)

ε
(1),i
j = 〈Φ(0)

j |H(2−eff)|Φ(0)
i 〉/(V (1)

i − V
(1)
j ) for k = j. (E.5b)

Appendix F: Orthogonal Intersection Adapted Coordinates

In this appendix the unitary transformation of the electronic wave func-
tions required to make the vectors in the branching space orthogonal is
discussed. Our approach will be to start from the most general, η = 5 case
and recover the η = 3 and η = 2 results as special cases. Note that straight-
forward orthogonalization of gi,j(Xx,i,j) ≡ v(1)(Xx,i,j), hr,i,j(Xx,i,j) ≡
v(2)(Xx,i,j), hi,i,j(Xx,i,j) ≡ v(3)(Xx,i,j), hr,i,T j(Xx,i,j) ≡ v(4)(Xx,i,j), and
hi,i,T j(Xx,i,j) ≡ v(5)(Xx,i,j), changes the form of the Hamiltonian in
Eq. (46a). Instead the orthogonalization must be accompished by a uni-
tary transformation of the electronic states.
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F.1. Formulation

F.1.1. η = 5

Let

(
Φ̃i Φ̃j Φ̃Ti Φ̃Tj

)
= (Φi Φj ΦTi ΦTj)U with Uk,l =

〈
Φk

∣∣∣ Φ̃l

〉
(F.1)

define the transformation from the “nascent” electronic wave functions Φ,
k = i, j, T i and Tj to the Φ̃k, k = i, j, T i and Tj for which the v(I)(Xx,i,j)
are orthogonal.

A general 2n × 2n unitary matrix U consists of 4n2 complex-valued
matrix elements, that is 8n2 parameters. Viewed as column constraints, the
requirement U†U = I constitutes, (i) 2n(2n−1)/2 orthogonality equations,
(U†U)k,l ≡ O(k, l) = Or(k, l) + iOi(k, l) = 0, for 1 ≤ k < l ≤ 2n, defining
2n(2n − 1) parameters and, (ii) 2n normalization equations, (U†U)k,k =
N(k) = 1, for 1 ≤ k ≤ N , defining 2n parameters. Thus a total of 4n2

parameters are defined leaving 4n2 parameters undefined or free. Pairwise
orthogonality of v(i) constitutes η!/((η−2)!2!) = η(η−1)/2 equations, that
is, 10 for η = 5. Since here 2n = 4, 4n2 = 16 and the problem appears
under determined. However this is not the case, since U is not an arbitrary
unitary matrix but connects two pairs of time reversal adapted states. Using
Eq. (A.2a) in Eq. (F.1) gives:

U∗
k,l =

〈
TΦk

∣∣∣ T Φ̃l

〉
=
〈
ΦTk

∣∣∣ Φ̃Tl

〉
= UTk,T l (F.2a)

U∗
k,T l =

〈
TΦk

∣∣∣ T Φ̃Tl

〉
= −

〈
ΦTk

∣∣∣ Φ̃l

〉
= −UTk,l (F.2b)

so that

U =
(

u(ij,ij) u(ij,T iTj)

−u(ij,T iTj)∗
u(ij,ij)∗

)
where u(kl,mn) =

(
uk,m uk,n

ul,m ul,n

)
. (F.3)

We will refer to matrix with the form of Eq. (F.3) as T -adapted.
To incorporate time reversal symmetry, note that if H, a T -adapted

matrix, is also hermitian, then h(ij,ij)(h(ij,T iTj)) is hermitian (anti-
symmetric). h(ij,ij) [h(ij,T iTj)] has n2[n(n−1)] free parameters. UU† is both
T -adapted and hermitian. Since UU† = 1, Pn, the number of undetermined



May 26, 2004 15:26 Conical Intersections: Electronic Structure, Dynamics and Spectroscopy chap02

Conical Intersections: Their Description and Consequences 117

parameters in a general T -adapted U is

Pn = 4n2 − n2 − n(n − 1) = n(2n + 1). (F.4)

For n = 2, P2 = 10 precisely the number required to orthogonalize the
vectors v(k)(Xx,i,j), k = 1 − 5.

F.1.2. η = 3

When Cs symmetry is present there is no mixing of the Φ, and TΦ sub-
spaces. In that case u(ij,T iTj) ≡ 0 in Eq. (F.3), so that only u(ij,ij), which
has 4 parameters, is required. In this case three vectors define the g–h space
so that their orthogonality represents 3 constraints. Therefore, there exists
one additional free parameter which we take to be the requirement that
det U = 1. Then U has the form

U =
(
u 0
0 u∗

)
(F.5a)

where

u =
(

ei(α+γ)/2 cos β/2 −ei(−α+γ)/2 sin β/2
e−i(−α+γ)/2 sin β/2 e−i(α+γ)/2 cos β/2

)
. (F.5b)

The 3 unique parameters can be determined in either the Φ or TΦ subspace.

F.1.3. η = 2

In this case the Φ and TΦ spaces are identical, He is real-valued and U is
orthogonal rather than unitary, that is, the TΦ space can be ignored. Thus
u has the form

u =
(

cos β − sin β

sin β cos β

)
(F.6)

and there is a single orthogonality equation v(1) · v(2) = 0.

F.2. Solutions

To determine U, the rotated ci

c̃i =
NQ∑
k=1

ckUk,i (F.7)

are inserted into the definitions of the v(i). These rotated v(i) are then
required to be pairwise orthogonal.
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For η = 2

ṽ(1) =
(
−v(1) cos 2β + v(2) sin 2β

)
(F.8a)

and

ṽ(2) = v(1) sin 2β + v(2) cos 2β (F.8b)

so that

ṽ(1) · ṽ(2) = 0 = (v(2) · v(2) − v(1) · v(1))
sin 4β

2
−(v(2) · v(1)) cos 4β (F.8c)

which gives, noting that v(1) = gi,j and v(2) = hi,j ,

tan 4β =
2gi,j · hi,j

hi,j · hi,j − gi,j · gi,j
. (F.9)

For η = 3

ṽ(1) =
(
−v(1) cos β + v(2) sin β cos γ + v(3) sin β sin γ

)
(F.10a)

ṽ(2) = v(1) sin β cos α + v(2)(cos β cos γ cos α − sin γ sin α)

+v(3)(cos β sin γ cos α + cos γ sin α) (F.10b)

ṽ(3) = v(1) sin β sin α − v(2)(cos β cos γ sin α − sin γ cos α)

−v(3)(cos β cos γ sin α − cos γ cos α). (F.10c)

Then the requirements

ν1 = ṽ(1) · ṽ(2) = 0 ν2 = ṽ(1) · ṽ(3) = 0 ν3 = ṽ(2) · ṽ(3) = 0 (F.11a,b,c)

yield a set of three non-linear equations. Note that v(1) = gi,j ,v(2) = hr,i,j

and v(3) = hi,i,j , then for

β = π/2, γ = 0, α = 0 hr,i,j → g̃i,j gi,j → h̃r,i,j hi,i,j → h̃i,i,j

(F.12a)
for

β = π/2, γ = 0, α = π/2 hr,i,j → g̃i,j hi,i,j → h̃r,i,j gi,j → h̃i,i,j

(F.12b)
so that gi,j , hr,i,j and hi,i,j are interchangeable.
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The solution to Eqs. (F.11a)–(F.11c) can be obtained numerically from
the following Newton–Raphson procedure

νi(xn + δx) = 0 = νi(xn) + ∇νi(xn) · δx i = 1 − 3 (F.13a)

so that

xn+1 = xn − F(xn)−1υ(xn) (F.13b)

where Fji ≡ (∂/∂xj)νi is computed by divided difference and (x = α, β, γ).
For the η = 5 case the determination of U using a homomorphism from

the space of T -adapted U onto the space of rotations of 5-vectors with
determinant 1 has been discussed by Han and Yarkony.105

Appendix G. The Phase of the Electronic Wave Function

Since each of Eq. (E.2) begins with (H(0) − V
(0)
i )Φ(n)

i , these equations do
not determine 〈Φ(0)

i |Φ(n)
i 〉xe . Expansion of the normalization condition to

first order gives, using the explicit form for Ψ(1)
i from Sec. 2

〈∑
α∈Q

ξ(1),i
α Φ̃(0)

α +
∑
α∈P

Ξ(1),i
α Φ(0)

α

∣∣∣∣∣ Φ̃(0)
i

〉
xe

+

〈
Φ̃(0)

i

∣∣∣∣∣
∑
α∈Q

ξ(1),i
α Φ̃(0)

α +
∑
α∈P

Ξ(1),i
α Φ(0)

α

〉
xe

= ξ
(1),i
i + ξ

(1),i∗

i = 2Re ξ
(1),i
i = 0. (G.1)

Thus the normalization determines only the Re ξ
(1),i
i ≡ Re〈Φ(0)

i |Φ(1)
i 〉. The

Imξ
(1),i
i does not effect the normalization or the energy and in a local sense

is arbitrary.
For real-valued wave functions, Im ξ

(1),i
i = 0. For the complex-valued

wave functions considered here it is possible to choose the phase, to first
order in ρ, such that Im ξ

(1),i
i = 0, although this not a trivial matter as it

is in the real-valued case. Here it is shown how this can be accomplished.
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Expanding the phase, Ωκ = Ω(0)
κ (θ, φ) + ρΩ(1)

κ (θ, φ,w), in powers of ρ gives

exp(iΩi) = eiΩ(0)
i (θ,φ)(1 + iρΩ(1)

i (θ, φ,w) + · · · . (G.2)

Then since

Φe
i (x

e; ρ, θ, φ) = Φ̃(0)
i (θ, φ) +

∑
k=i,j

(ρξ
(1),i
k + ρ2ξ

(2),i
k + · · · )Φ̃(0)

k (θ, φ)

+
∑

α�=i,j

(ρΞ(1),i
α + ρ2Ξ(2),i

α + · · · )Φ(0)
α (G.3a)

we have through first order

eiΩiΦe
i = eiΩ(0)

i (θ,φ){[1 + ρξ
(1,Ω),i
i ]Φ̃(0)

i + ρξ
(1),i
j Φ̃(0)

j

+
∑

α�=i,j

(ρΞ(1),i
α )Φ(0)

α } (G.3b)

where ξ
(1,Ω),i
i = iIm ξ

(1),i
i + iΩ

(1)

i . Taking

ξ
(1,Ω),i
i = iIm ξ

(1),i
i + iΩ

(1)

i = 0 (G.4)

satisfies the condition, Im ξ
(1),i
i = 0.

Appendix H: Evaluation of As
k,l s = x, y, z, v, w

Before assembling the chain rule for evaluation of As
k,l, it is useful to begin

by summarizing the relationships among the myriad of variables:

ρ(2), φ(2) : v, w ρ(1), θ(1), φ(1) : x, y, z λ(1), q(1) : θ(1), φ(1)

λ(2), ρ(3) : ρ(2), ρ(1), θ(1), φ(1), φ(2) ξ(1) : φ(1) ξ(2) : φ(2) Θ(i) = λ(i)/2

γ(i) = ξ(i) (H.1)
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where the colon is read (here and only here) as “depends on”. Using these
dependencies, the chain rule becomes

∂

∂s
=
(

∂θ(1)

∂s

∂λ(1)

∂θ(1) +
∂φ(1)

∂s

∂λ(1)

∂φ(1)

)
∂Θ(1)

∂λ(1)

∂

∂Θ(1)

+
∂φ(1)

∂s

∂ξ(1)

∂φ(1)

∂γ(1)

∂ξ(1)

∂

∂γ(1)

+
(

∂θ(1)

∂s

∂λ(2)

∂θ(1) +
∂φ(2)

∂s

∂λ(2)

∂φ(2) +
∂φ(1)

∂s

∂λ(2)

∂φ(1)

+
∂ρ(1)

∂s

∂λ(2)

∂ρ(1) +
∂ρ(2)

∂s

∂λ(2)

∂ρ(2)

)
∂Θ(2)

∂λ(2)

∂

∂Θ(2)

+
∂φ(2)

∂s

∂ξ(2)

∂φ(2)

∂γ(2)

∂ξ(2)

∂

∂γ(2) (H.2)

and As
k,lis given by:

As
k,l =

(
∂θ(1)

∂s

∂λ(1)

∂θ(1) +
∂φ(1)

∂s

∂λ(1)

∂φ(1)

)
∂Θ(1)

∂λ(1) AΘ(1)

k,l

+
∂φ(1)

∂s

∂ξ(1)

∂φ(1)

∂γ(1)

∂ξ(1) Aγ(1)

k,l

+
(

∂θ(1)

∂s

∂λ(2)

∂θ(1) +
∂φ(2)

∂s

∂λ(2)

∂φ(2) +
∂φ(1)

∂s

∂λ(2)

∂φ(1)

+
∂ρ(1)

∂s

∂λ(2)

∂ρ(1) +
∂ρ(2)

∂s

∂λ(2)

∂ρ(2)

)
∂Θ(2)

∂λ(2) AΘ(2)

k,l

+
∂φ(2)

∂s

∂ξ(2)

∂φ(2)

∂γ(2)

∂ξ(2) Aγ(2)

k,l . (H.3)

Using the above dependencies, Eq. (D.2) becomes for s = x, y, z

As
k,l =

(
∂θ(1)

∂s

∂λ(1)

∂θ(1) +
∂φ(1)

∂s

∂λ(1)

∂φ(1)

)
AΘ(1)

k,l

2
+

∂φ(1)

∂s

∂ξ(1)

∂φ(1) Aγ(2)

k,l

+
(

∂θ(1)

∂s

∂λ(2)

∂θ(1) +
∂φ(1)

∂s

∂λ(2)

∂φ(1) +
∂ρ(1)

∂s

∂λ(2)

∂ρ(1)

)
AΘ(2)

k,l

2
(H.4a)

and for s = v, w

As
k,l =

(
∂φ(2)

∂s

∂λ(2)

∂φ(2) +
∂ρ(2)

∂s

∂λ(2)

∂ρ(2)

)
AΘ(2)

k,l

2
+

∂φ(2)

∂s

∂ξ(2)

∂φ(2) Aγ(2)

k,l . (H.4b)
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To proceed further specific relations among the variables are required.
From Eqs. (B.10), we deduce

tan ξ(1) = (hi/hr) tanφ(1)

h(1)(φ(1))2 = (hi sin φ(1))2 + (hr cos φ(1))2
(H.5a)

tan ξ(2) = ti/tr tanφ(2)

q(2)(φ(2))2 = (ti sin φ(2))2 + (tr cos φ(2))2
(H.5b)

tanλ(1) = (h(1)(φ(1))/g) tan θ(1)

q(1)(θ(1), φ(1))2 = (g cos θ(1))2 + (h(1)(φ(1)) sin θ(1))2
(H.5c)

ρ(3) =
√

[(ρ(1)q(1) + (ρ(2)q(2))2] and

tan λ(2) = ρ(2)q(2)/[ρ(1)q(1)] ≡ ρ(2)
q /ρ(1)

q

(H.5d)

It is convenient to begin by evaluating the s independent contributions:

∂λ(1)

∂θ(1) ,
∂λ(1)

∂φ(1) ,
∂ξ(1)

∂φ(1) ,
∂λ(2)

∂θ(1) ,
∂λ(2)

∂φ(2) ,
∂λ(2)

∂φ(1) ,
∂λ(2)

∂ρ(1) ,
∂λ(2)

∂ρ(2) ,
∂ξ(2)

∂φ(2)

which follow from straightforward, albeit tedious, differentiation of Eqs.
(H5.a)–(H5.d)

∂λ(1)

∂θ(1) =
[h(1)g]
q(1)2

∂λ(1)

∂φ(1) =
[hi2 − hr2 ]

2h(1) sin 2φ(1) g sin 2θ(1)

2q(1)2

∂ξ(1)

∂φ(1) =
[hihr]
h(1)2

∂λ(2)

∂θ(1) =
−ρ(1)ρ

(2)
q

ρ
(2)2
q + ρ

(1)2
q

[h(1)2 − g2]
2q(1) sin 2θ(1)

∂λ(2)

∂φ(2) =
ρ

′(1)
q

ρ
(2)2
q + ρ

(1)2
q

q(1) [ti
2 − tr

2
]

2q(2) sin 2φ(2) (H.6)

∂λ(2)

∂φ(1) =
−ρ(2)ρ(1)

ρ
(2)2
q + ρ

(1)2
q

q(2)

q(1)

[hi2 − hr2 ]
2

sin 2φ(1) sin2 θ(1)

∂λ(2)

∂ρ(1) =
−ρ(2)

ρ
(2)2
q + ρ

(1)2
q

q(2)q(1) ∂λ(2)

∂ρ(2)

=
ρ(1)

ρ
(2)2
q + ρ

(1)2
q

q(2)q(1) ∂ξ(2)

∂φ(2) =
titr

q(2)2 .
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Using Eq. (D.5) in Eq. (D.3a) gives for s = x, y, z

As
k·l =

(
∂θ(1)

∂s

[h(1)g]
q(1)2 +

∂φ(1)

∂s

[hi2 − hr2 ]
2h(1)

× sin 2φ(1) g sin 2θ(1)

2q(1)2

)
AΘ(1)

k.l

2
+

∂φ(1)

∂s

[hihr]
h(1)2 Aγ(1)

k.l

+
ρ(1)ρ

(2)
q

ρ
(2)2
q + ρ

(1)2
q

(
∂θ(1)

∂s

[g2 − h(1)2 ]
2q(1) sin 2θ(1)

−∂φ(1)

∂s

[hi2 − hr2 ]
2q(1) sin 2φ(1) sin2 θ(1)

−∂ρ(1)

∂s

q(1)

ρ(1)

)
AΘ(2)

k·l
2

(H.7)

while using Eq. (H.5) in (H.3b) gives for s = v, w

As
k,l =

ρ
(1)
q

ρ
(2)2
q + ρ

(1)2
q

(
∂φ(2)

∂s
ρ(2) [ti

2 − tr
2
]

2q(2) sin 2φ(2) +
∂ρ(2)

∂s
q(2)

)

×AΘ(2)

k,l

2
+

∂φ(2)

∂s

[titr]
q(2)2 Aγ(2)

k,l . (H.8)
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1. Introduction

1.1. Background

The introduction of analytic energy gradients for self-consistent field wave
functions approximately 25 years ago revolutionized quantum chemistry.1,2

With the slope of the potential energy surface known, the computational
effort required to locate minima, transition states and reaction paths on
those surfaces was reduced enormously. So compelling was this advance
that energy gradients are considered virtually a necessity if a computa-
tional approach is to be viable. Although gradient techniques were quickly
extended to correlated wave functions,2 the focus remained almost exclu-
sively the gradient of the energy, that is, the power of gradient technology
was restricted to adiabatic processes.
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An early step in bringing analytic gradient techniques to nonadiabatic
quantum chemistry came in 1984 with the introduction of an algorithm for
evaluating the first derivative coupling for electronic states Φi(x; X) and
Φj(x; X)

Ai,j(X) = 〈Φi(x;X)|∇XΦj(x;X)〉x. (1)

Initially only state-averaged multiconfigurational self-consistent field (SA-
MCSCF) wave functions3 could be treated but subsequently the algo-
rithm was extended to treat general multireference configuration interaction
(MRCI) wave functions.4 Here x(X) denotes the space fixed frame coor-
dinates of the N el electrons (Nnuc nuclei) and ΦI is one of Na electronic
eigenstates. Aα

i,j a vector (α = 1 − 3Nnuc) of matrices (i, j = 1 − Na) will
be denoted by bold/italic type face.

Subsequently, gradient methods were used to evaluate the adiabatic
correction or Born–Oppeneimer diagonal correction, ACi,i, for SCF wave
functions,5 where

ACi,i(X) =
Nnuc∑
α=1

1
2Mα

〈∇αΦi(x;X)|∇αΦi(x;X)〉x

=
Nnuc∑
α=1

−1
2Mα

〈Φi(x;X)|∇2
αΦi(x;X)〉x (2a)

and the general second derivative term, Bi,j , for MRCI wave functions,6,7

where

Bi,j(X) = 〈∇XΦi(x;X) · |∇XΦj(x;X)〉x. (2b)

Prior to that time, A and Bi,j had been evaluated by divided difference
techniques.8−13

These algorithmic advances were significant because of the importance
of these quantities in the description of nonadiabatic processes. The first
derivative couplings, A(X), couple adiabatic states, permitting nuclear
motion to occur on more than one potential energy surface. The second
derivative couplings, B(X), (i) provide mass dependent modifications to
Born–Oppenheimer potential energy surfaces, (ii) couple potential energy
surfaces, and (iii) are related to the existence of rigorous diabatic bases.14

As shown in Chapter 2, B(X) is sufficient to incorporate second deriva-
tive terms into the nuclear Schrödinger equation. However some formula-
tions of the nuclear dynamics, utilize Ki,j = 〈Φi(x;X)|∇2Φj(x;X)〉x. In
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Sec. 7.2, it is shown how Ki,j can be evaluated using only analytic gradi-
ent techniques, provided A(X) is known with sufficient accuracy to enable
divided differences.

These new algorithms made it possible to calculate the derivative cou-
plings for general polyatomic molecules with much improved efficiency and
accuracy. As discussed in Chapter 2 of this volume, the ACi,i(X) produces
a mass dependent modification to a Born–Oppenheimer potential energy
surface that can be inferred from measurements of ro-vibronic energy lev-
els of the isotopomers. Indeed, using the Bi,i(X) determined at the MRCI
level, we7 were able to resolve a discrepancy in the adiabatic correction for
LiH(X1Σ+) obtained from an analysis of experimental data,15 and from
a theoretical prediction,16 based on highly specialized wave functions, see
Sec. 8.

Despite the potential power and early successes of these techniques,
the impact of analytic gradient techniques on the study of nonadiabatic
chemistry was limited. However, that was to change. A harbinger of the
revolution that was soon to come was the work of Koga and Morokuma17

who, building on the work of Fletcher,18 developed an algorithm for locat-
ing intersections of potential energy surfaces of states of different sym-
metry. However, it was the development of efficient, analytic gradient
based, algorithms specifically designed to find conical intersections of Born–
Oppenheimer19,20 potential energy surfaces that lead to a dramatic increase
in interest in nonadiabatic processes in the 1990s and spawned no less than
a revolution in our perception of the significance of conical intersections.
As a result of research in that period, conical intersections, once little more
than a theoretical curiosity came to be recognized as essential to nonadia-
batic processes.

This revolution has focused on conical intersections of two states of
the same symmetry. Virtually ignored have been the intersections of three
states of the same symmetry. This neglect can be attributed to the com-
parative paucity of these points. According to the noncrossing rule in a
five-dimensional space, the set of two-state conical intersections will occupy
a three-dimensional subspace while the set of all three-state intersections
is a single point! Despite this low dimensional locus, recent work suggests
that neglect of this class of intersections may not be justified. In particular,
three-state intersections have been located for excited states in ethyl66 and
allyl70 and for the three lowest states in pyrazolyl.71 In this chapter the
algorithm used to locate these intersections is briefly described.
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1.2. Scope

In this chapter, the use of analytic gradient techniques to compute the
quantities essential to the description of nonadiabatic processes is described.
These quantities include the first and second derivative coupling matrix ele-
ments, and the energy and coupling matrix gradients needed for the search
algorithms used to locate conical intersections. Section 3 discusses the algo-
rithms used to locate conical intersections and how they exploit analytic
gradient techniques. The structure of these algorithms is not dependent on
the wave functions used to describe the states in question. However, the
accuracy of the derived quantities is. The nature of the electronic eigen-
states is the subject of Sec. 2.

Sections 4–7 describe how the requisite derivative quantities are
computed. We require the derivative of a generic matrix element,
M(v1,v2) ≡ v1†Mv2 with respect to changes in nuclear coordinates. The
complicating factor is that M(v1,v2) will not be expressed directly as a
function of these coordinates. Rather M(v1,v2) will depend on the molec-
ular orbitals and other wave function parameters, including the location
of the atom centered atomic orbital basis functions. Further, the molecular
orbitals must satisfy certain restrictions including the requirement that they
remain orthogonal with changes in geometry. Thus the determination of the
gradient of M(v1,v2), ∇M(v1,v2), will require the unraveling of a com-
plicated chain rule with the orbital orthogonality explicitly included. The
explicit form of this chain rule depends on the nature of the electronic eigen-
states. Section 4 describes the use of generalized density matrices formed
from these eigenstates to provide a unified description of the distinct M

required in this chapter. This formulation leads to a general expression
for ∇M which is a central result of this chapter. In Sec. 5, the equations
describing the derivative of the molecular orbitals, the coupled perturbed
state-averaged MCSCF equations, are derived. These equations represent
a generalization of the pioneering work of Gerrat and Mills21,22 who con-
sidered orbitals determined from the Hartree–Fock equations. Section 6
provides the general expression for ∇M . Section 7 uses that expression to
determine the first derivative quantities required to formulate the nuclear
Schrödinger equation in the Born–Huang approximation as described in
Chapter 2 of this volume. The second derivative nonadiabatic coupling
matrix element is also determined. In Sec. 8, three numerical examples are
provided, (i) the location of an energy minimized conical intersection of the
nonrelativistic Hamiltonian, (ii) the location of an energy minimzed conical
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intersection for an Hamiltonain with Cs symmetry and the spin-orbit inter-
action included, and finally an evaluation of the adiabatic correction for the
X1Σ+ state of LiH which has been measured experimentally.23

2. Wave Functions

2.1. Hamiltonians

The electronic wave functions, Φk, satisfy the electronic Schrödinger
equation

[He − Vk(X)]Φk(x;X) = 0. (3)

He has the form:

He =
Nel∑
i=1

µ(1)(xi;X) +
Nel∑

i,j=1

µ(2)(xi,xj) + µ(N−N)(X) (4)

where µ(N−N) is the nuclear repulsion energy, and µ(1) and µ(2) are one
and two electron operators. Two forms for He will be considered: (i) the
nonrelativistic or Coulomb Hamiltonian, He = H0 where µ(1) → µ0,(1)

and µ(2) → µ0,(2) with µ0,(1) the one electron kinetic energy and nuclear
attraction operator and µ0,(2) the two electron, electron–electron repulsion
operator; and (ii) the relativistic Hamiltonian, He = H0 + Hso, where H0

(Hso) is the Coulomb (spin-orbit24) Hamiltonian. In the relativistic case,
µ(1) will include, in addition to µ0,(1), the Coulumb contribution, the spin-
orbit contribution, while to µ0,(2) will be added the spin-same-orbit and
spin-other orbit contributions. µ(1) and µ(2) will also be used for a general
hermitian operator.

2.2. Nonrelativistic Wave Functions

The appropriate choice of the wave function is essential if chemically mean-
ingful results are to be achieved. When only near equilibrium properties on
the lowest potential energy surface are required, the single reference based
coupled cluster wave function25 describes that region of the potential energy
surfaces to near spectroscopic accuracy. However, nonadiabatic processes
require wave functions that are necessarily multireference in character. For
this reason, MRCI wave functions have been the wave function of choice
in this field. These wave functions are developed from molecular orbitals
determined from a self-consistent field (SCF), a multiconfigurational SCF
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(MCSCF) or a state-averaged-MCSCF (SA-MCSCF) procedure and are
denoted M/MRCI where M = SCF, MCSCF or SA-MCSCF. In this chap-
ter the most general option, the SA-MCSCF/MRCI wave functions, will be
used.

2.2.1. Multireference Configuration Interaction Wave Functions

In the MRCI approach, the electronic wave functions are expanded in a
basis of configuration state functions (CSFs26):

Φi(x;X) =
NCSF∑
a=1

ci
a(X)Θa(x;X). (5a)

The CSFs, Θ, are eigenfunctions of S2, Ms and carry, A, an irreducible
representation of G, the spatial point group in question27

Θb(x;X) ≡ PSb0 ,MS
b0

,Ab0

Nel∏
i=1

ϕbi(xi;X)σbi . (5b)

They are constructed from linear combinations (accomplished using the
projector P ) of Slater determinants, antisymmetric products of molecular
spin orbitals, ϕi(x1;X)σ, where the spin function σ may be α or β. Below,
for simplicity, the vector nature of b will be suppressed.

The ci(X) satisfy the configuration interaction problem

[He − Vk(X)I]ck(X) = 0 (6)

where

He
a,b(X) = 〈Θa(x;X)|HeΘb(x;X)〉x

=
∑
m,n

µ(1)
m,n(X)k̃ab

m,n +
∑

m,n,k,l

µ
(2)
m,n,k,l(X)K̃ab

m,n,k,l + µ(N−N)(X)

(7a)

µ(1)
m,n(X) = 〈ϕm(x1;X)|µ(1)(x1;X)|ϕn(x1;X)〉x1 (7b)

µ
(2)
m,n,k,l(X) = 〈ϕm(x1;X)ϕn(x1;X)|µ(2)(x1,x2)|ϕk(x2;X)ϕl(x2;X)〉x.

(7c)

µ
(1)
m,n and µ

(2)
m,n,k,l are respectively the one-electron integrals and two-

electron integrals in the molecular orbital (MO) basis, and K̃a,b
m,n and

k̃a,b
m,n,k,l are geometry independent structure factors.
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2.3. Relativistic Wave Functions

We are concerned with molecules with N el odd, referred to as odd elec-
tron molecules. The approach used in this chapter assumes that zero pair,
or large component only, wave functions are used.28 Relativistic CI wave
functions are solutions of Eq. (6), constructed directly in a time-reversal
adapted CSF (TRACSF) basis. For TRACSFs M s is no longer a good
quantum number. Instead, for each Θb in the basis, TΘb is also in the
basis, where T is the time reversal operator.29 Since T commutes with He,
the eigenstates come in degenerate pairs, Φk and TΦk ≡ ΦTk. For a more
complete discussion of time reversal symmetry and TRACSFs see Refs. 30
and 31 and Chapter 2 of this volume. The applications in this work use the
truncated adiabatic states approach to approximate the relativistic wave
function. In this approach, the relativistic wave functions Φk, k = 1 − Na

are expanded in a basis of M0 � NCSF eigenstates of H0, the nonrelativis-
tic Hamiltonian, which have been time reversal adapted. Analytic gradient
methods for the relativistic CI or the truncated adiabatic states approach
are relatively straighforward to implement, once the methods for nonrela-
tivistic wave functions are in hand. Therefore, in this work, analytic gra-
dient techniques are described for nonrelativistic wave functions only. For
a more indepth discussion of the truncated adiabatic states approach and
the implementation of analytic gradient methods, see Ref. 32.

3. Locating Conical Intersections of Born–Oppenheimer
Potential Energy Surfaces

From Eqs. (46a) and (46b) in Chapter 2 of this volume the most general
Hamiltonian (to first order) in the vicinity of a two state conical intersection
is given by

He(Xx,i,j + δX) =

si,jI +


gi,j hi,j 0 hi,T j

hi,j∗ −gi,j −hi,T j 0
0 −hi,T j∗

gi,j hi,j∗

hi,T j∗
0 hi,j −gi,j


 · δX

≡
[
si,jI +

(
H A
A† H∗

)]
· δX (8a)
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where H and A are 2 × 2 matrices. He, or its submatrices, see below, are
the basis of the algorithms for locating a conical intersection. In describing
these algorithms, it is convenient to denote

v(1) = gi,j ,v(2) = hr,i,j ,v(3) = hi,i,j ,v(4) = hr,i,T j ,v(5) = hi,i,T j . (9a)

The space spanned by these vectors is known as the branching, or g−h,
space. Equation (8a) is applicable to a molecule with an odd number of
electrons and the spin-orbit interaction included in the Hamiltonian. When
Cs (or higher) symmetry can be imposed on the molecule, A= 0, so that
v(4) = v(5) = 0 for all X. Finally, when He = H0, that is for the non-
relativistic Coulomb Hamiltonian, Eq. (8a) reduces to

H0(Xx,i,j + δX) =
[
si,jI +

(
gi,j hi,j

hi,j −gij

)]
· δX (8a′)

The computationally intensive part of algorithms based on these
Hamiltonians is the evaluation of the v(k). It is precisely these quantities
that are amenable to evaluation using analytic gradient techniques. The
requisite gradients for the nonrelativistic Hamiltonian will be derived in
Secs. 4–7. The gradients for relativistic Hamiltonians depend on the details
of how the relativistic effects are included. A detailed discussion of this point
can be found in Ref. 32. Here we assume the v(i) are readily available.

Given the availability of the v(i), the algorithms for the location of two-
state conical intersections are formally equivalent, distinguished only by the
value η, the number of linearly-independent v(k).

Further we have shown that since for a conical intersection of three
states i, j, k, Eq. (8a) generalizes to66

H0(Xx,i,j,k + δX) =

si,j,kI +

gi hi,j hi,k

hi,j gj hj,k

hi,k hj,k gk

 · δX

where 3si,j,k = hi,i +hj,j +hk,k and gk = hk,k − si,j,k. The same algorithm
can be used to locate intersections of three potential energy surfaces with
η = 5, and the v(k) redefined as:

v(1) = gi − gj , v(2) = hi,j , v(3) = hi,k, v(4) = hj,k, v(5) = gj − gk.

(9b)
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Below we will describe two algorithms for locating conical intersections.
The first searches in a particular branching space, while the later searches
in larger spaces.

3.1. An Algorithm Based on the Energy Difference
Gradient

In this section we will describe an algorithm for locating an intersection
of two states with energetics governed by the Coulomb Hamiltonian. Near
such a conical intersection the Hamiltonian in Eq. (8a′) is relevant.

3.1.1. The Energy Difference Gradient

Let Xx,i,j denote a point of conical intersection of states i and j, and
define X = Xx,i,j + δX. Then, as shown in Chapter 2 of this volume, the
eigenvalues (each doubly degenerate for η = 3, 5) of He are:

V±(X) = (si,j(Xx,i,j) · δX)

±
√

([gi,j(Xx,i,j) · δX]2 + |hi,j(Xx,i,j) · δX|2 + |hi,T j(Xx,i,j) · δX|2)
(10a)

with Vi = V− and Vj = V+. This can be rewritten as

V±(X) = ρ

[
(sij(Xx,i,j) · δX̂)

±
√√√√ η∑

k=1

(v(k)(Xx,i,j) · δX̂)(v(k)(Xx,i,j)∗ · δX̂

 (10b)

where ρ = |δX|, δX̂ = δX/ρ. The energy difference gradient is given by

2gj,i(X) = ∇(Vj(X) − Vi(X))

= 2∇
√√√√ η∑

k=1

(v(k)(Xx,i,j) · δX)(v(k)(Xx,i,j)∗ · δX) (11a)

=
2

∆Vj,i
Re

η∑
k=1

(v(k)(Xx,i,j) · δX)v(k)(Xx,i,j)∗ (11b)
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where ∆Vj,i = Vj −Vi. Note from Eqs. (9) and (10b) that gj,i(X) depends
only on δX̂ rather than δX so that to first order ∆Vj,i can be written

∆Vj,i(X) = gj,i(Xx,i,j) · δX ≈ gj,i(X) · δX (12a)

3.1.2. The Algorithm

From Eq. (12a) several interesting conclusions follow. Define Xx,i,j = X +
δX and assume that δX is sufficiently small that Eqs. (8)–(10) are valid.
Then requiring ∆Vj,i to vanish at Xx,i,j , that is

∆Vj,i(X+δX) = ∆Vj,i(X)+∇[∆Vj,i(X)]·δX = ∆Vj,i(X)+gj,i(X)·δX = 0
(12b)

gives

δX = − ∆Vj,igj,i(X)
gj,i(X) · gj,i(X)

, (12c)

which is just stepping backward by gj,i(Xx,i,j) · δX. Thus it should be
possible to locate conical intersections by following the energy difference
gradient computed using nondegenerate perturbation theory. Indeed, an
algorithm, based on that idea has been used to locate conical intersection
seams in triatomic molecules.33 In that algorithm (∆Vi,j)2 is minimized

∇(∆Vi,j)2 = 2(∆Vij)∇(∆Vij) ≡ 2G∆ = 0. (13)

This is solved using a Newton–Raphson approach obtained by assuming
that at Q + δQ, Eq. (13) is satisfied, that is

G∆(Q + δQ) = G∆(Q) + ∇G∆(Q) · δQ = 0 (14a)

where

∇G∆ = ∇(∆Vj,i)∇(∆Vj,i) + (∆Vj,i)∇∇(∆Vj,i). (14b)

Note that internal coordinates Qk, k = 1 − N int, rather than space fixed
coordinates X are used. From Eq. (14b) near a conical intersection, since
∆V → 0, ∇G∆ ∼= ∇(∆Vj,i)∇(∆Vj,i) ≡ gj,igj,i so that Eq. (14a) becomes

gj,i(Q)[gj,i(Q) · δQ] = −G∆(Q) = −∆Vj,igj,i(Q) (15a)

which has as solutions

δQ = −(∆Vi,j) gj,i(Q)/[gj,i(Q) · gj,i(Q)] (15b)

which is a scaled displacement along the energy difference gradient.
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This approach was used to locate points on the 1, 21A′ seam of conical
intersection in He+H2.33 In that implementation,which used He = H0, the
non-crossing rule was exploited. For η = 2 and N int = 3, the non-crossing
rule gives a seam of conical intersection of dimension 1. Therefore Eq. (14)
was solved with one internal coordinate Qi fixed and the two remaining
coordinates used to find the (locally) unique point at which ∆V = 0. In
this way the seam of conical intersection was determined as a function of Qi.

3.2. A Lagrange Multiplier Based Approach

Here we are principally concerned with two-state conical intersections of
H0. However the algorithm discussed in this section is quite general, being
applicable to the N el odd with the spin-orbit interaction included case
(η = 5, or 3) and three-state conical intersections of H0 (also an η = 5
problem). This generality is illustrated in the discussion that follows.

The previous approach determines a single point on the seam of conical
intersection without regard to its energy. It is therefore necessary to specify,
or constrain, N int − 2 internal coordinates for each point of conical inter-
section, tacitly specifying the unique g–h space in which to search. This
approach is therefore of limited utility for a general polyatomic molecule,
owing to the large number of internal coordinates. For a more complete
discussion of this idea, see Refs. 67–69. This problem can be overcome with
the help of energy minimization. Rather than constraining N int − 2 inter-
nal coordinates, an energy minimized point of conical intersection of states
i and j is sought subject to N con � N int additional constraints on the
internal coordinates, given by

Ki(X) = 0, i = 1 − N con. (16)

A point on the surface of conical intersection can be located as follows.
Assume X is sufficiently close to a point of conical intersection that Eq. (8)
is valid. In the adiabatic representation

U−1He(Xx,ijk + δX)U = [sijkδXI + Eijk] (17a)

where ijk = i, j for a two-state conical intersection.

Eijk =


−εi,j 0 0 0

0 εi,j 0 0
0 0 −εi,j 0
0 0 0 εi,j

 (17b)
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with εi,j = Vi − Vj for the η = 5 two-state conical intersection, and

Eijk =
(−εi,j 0

0 εi,j

)
(17c)

for the non-relativistic two-state conical intersection.
The Hamiltonian in Eq. (8a) will be equal to that in Eqs. (17a)

and (17b), provided δX is chosen such that

−gi,j · δX = εi,j hi,j · δX = 0 hi,T j · δX = 0. (18a)

or in the non-relativistic case

−gi,j · δX = εi,j hi,j · δX hi,j real-valued (18b)

A modified form of Eq. (18a) forms the basis of our algorithm in the case
of a three-state conical intersection where

Eijk =

 εi,j,k
i 0 0
0 εi,j,k

j 0
0 0 εi,j,k

k

 (17d)

with εi,j,k
l = Vl − (Vi + Vj + Vk)/3 and Eq. (18a) replaced by

−v(1)·δX = ∆Vi,j −v(5)·δX = ∆Vj,k v(k)·δX = 0 k = 2, 3, 4 (18c)

with ∆Vm,n = εi,j,k
m − εi,j,k

n .
Therefore assuming that δX is sufficiently small that v(i)(Xx,i,j) ≈

v(i)(X), Eq. (18a) or (18b) can be used to move from X to Xx,i,j while
Eq. (18c) takes X to Xx,i,j,k. It is to this point that we now turn.

Minimization of Vi subject to the geometric constraints, Eq. (16), and
requirement that the point lies on the seam of conical intersection, Eq. (18),
can be formulated using Lagrange mulipliers.34 The desired point of conical
intersection is an extremum of the following Lagrangian20,35

L(Q, ξ,λ) = Vi(Q) +
Ncon∑
i=1

ξiK
i(Q) +λ1He(ci+cj ,ci − cj) + λ2 ReHe(ci,cj)

+ λ3 ImHe(ci,cj) + λ4 ReHe(ci,cTj) + λ5 ImHe(ci,cTj)
(19)

where He(v1,v2) = v1†Hev2. Note that He(ci(Q) + cj(Q),
ci(Q) − cj(Q)) = Vi(Q) − Vj(Q) ≡ ∆Vi,j(Q) and that we have switched
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from 3Nnuc space fixed coordinates X to 3Nnuc − 6 internal coordinates,
Q. Q, ξ and λ are independent variables and, as discussed above, only the
first η of the λi are included in L. Minimization of L yields a minimum in
the energy of state i, subject to the N con geometric constraints and the
requirement that ∆Vi,j = He(ci + cj , ci − cj) = 0. The remaining con-
straints, corresponding to λk, k = 2− η, may appear superfluous. However,
this is not the case. These constraints yield the remaining η−1 vectors that
are needed to define a branching space. This restriction was introduced tac-
itly in the algorithm in Sec. 3.1.2 by fixing one internal coordinate.

The extremum of L(Q, ξ, λ) is found from the requirement that its first
derivative with respect to all the independent variables, Q, ξ, λ, vanish,
that is,

∇QL(Q, ξ,λ) = gi(Q) +
η∑

k=1

v(k)(Q)λk +
Ncon∑
k=1

kk(Q)ξk ≡ LQ(Q, ξ,λ) = 0

(20a)

∂

∂λk
L(Q, ξ, λ) = ∆Vi,jδk,1 = 0 (20b)

∇ξL(Q.ξ,λ) = K(Q) = 0 (20c)

Equations (20) are solved using a Newton–Raphson procedure. These equa-
tions have the form ∇F (X) = 0. A Newton–Raphson procedure to solve
the equation, ∇F (X) = 0 is obtained by expanding:

∇F (X + δX) = ∇F (X) + δX · ∇(∇F (X)) (21a)

and assuming that ∇F (X + δX) = 0 which gives the system of linear
equations

HδX = −∇F(X) (21b)

where the hessian matrix H is given by ∇∇F. Using Eqs. (21), Eqs. (20)
yield the following set of Newton–Raphson equations:LQ,Q v(Q)† k(Q)†

v(Q) 0 0
k(Q) 0 0

 δQ
δλ

δξ

 = −
 LQ

∆Vi,je1

K(Q)

 (22)

where e1
k = δ1,k, k = 1 − η, LQ

l = (∂/∂Ql)L and LQ,Q
k,l = (∂2/∂Qk∂Ql)L.

In our original formulation LQ,Q is evaluated as a divided difference of LQ,
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the gradient of L. Equation (23) below illustrates the use of a centered
difference to evaluate LQ,Q

∂2

∂Qk∂Ql
L(Q) ≈ 1

2ε
[LQ

l (Q(k, ε)) − LQ
l (Q(k,−ε)] (23)

In Eq. (23), Q(k, ε) = Q + (0, 0, . . . , ε, . . . 0) where ε appears in the kth
position in an otherwise zero vector, and the ξ,λ dependence of L and LQ

has been suppressed.
Equations (22) are solved iteratively. Therefore, the efficiency of the

algorithm depends on the ability to rapidly determine the right hand side
of Eq. (22). This is accomplished using the analytic gradient techniques
discussed in this chapter. The performance of this algorithm for both non-
relativistic and relativistic wave functions is discussed in Sec. 8.

The evaluation of LQQ using Eq. (23) becomes increasingly costly as
the size of the molecule increases. It is desirable to avoid explicit evalua-
tion of LQQ, by using updating techniques to infer information about the
Hessian from the gradients along the search path. To accomplish this, the
functions in question must be smoothly varying along the search path. This
however turns out not to be the case when searching for a conical inter-
section using Eq. (22) where key search parameters, the energy gradients,
energy difference gradients and coupling matrix elements, vary erratically
along the search path. Our numerical studies have shown that as a result of
this irregular behavior while it is relatively straightforward to locate points
of conical intersection, energy optimization is more costly to achieve. At
first glance, this situation might seem unavoidable since it is attributable
to the singular character of the conical intersection which is the object of
the search. However that is not the case. We have shown that these erratic
functions can be replaced by extrapolatable functions, functions that are
well-behaved along the search path, and have developed a simple, yet highly
effective, modification of the algorithm based on Eq. (22). This modified
algorithm based on these extrapolatable functions and Hessian updating72

significantly improves convergence to an energy-minimized point of conical
intersection.

The key to this approach is the use of extrapolatable functions which
are derived from two essential observations. Each point on the seam of
conical intersection is characterized by a unique g–h or branching space.
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For two-state intersections69 this space, comprised of the coupling and tun-
ing coordinates,73 is spanned by a unique (up to transpositions and sign
changes) set of mutually orthogonal vectors. These vectors turn out to
be slowly varying functions of the search path and are used in solution
of Eq. (18a) or (18b). The second observation concerns the formulation
of the energy minimization which seeks the minimum of Vi. The result-
ing gradient contribution to LQ, ∆Vi, behaves erratically along the search
path. However we have suggested and confirmed numerically68 that the
gradient of the trace, VT = (Vi + Vj)/2 for two-state intersections or
VT = (Vi + Vj + Vk)/3 for three-state intersections is a slowly varying
function of the search path.

4. Matrix Elements and Generalized Density Matrices

LQ and the other gradients required in this chapter can ultimately be
related to the derivative of the following matrix element in the CSF basis

Ma,b(s, S; m(1), m(2)) =
∑
m,n

m(1)
m,n(X)sab

m,n +
∑

m,n,k,l

m
(2)
m,n,k,l(X)Sab

m,n,k,l

(24a)

where s and S are independent of geometry. Ma,b(s, S; m(1), m(2)) is a gen-
eralization of Eq. (7a). Its transformation to a geometry dependent basis
vi(X), i = 1 − NCSF [linear combinations of the ck in Eq. (5a), not to be
confused with the v(i)(X) in Eq. (9a)] gives

M(vi,vj ; s, S; m(1), m(2)) =
∑
a,b

vi
a Ma,b vj

b (24b)

M(vi,vj) =
∑
m,n

m(1)
m,n(X)γsv

i,vj

m,n (X) +
∑

m,n,k,l

m
(2)
m,n,k,l(X)ΓSvi,vj

m,n,k,l(X)

(24c)
where

γsv
i,vj

m,n =
∑
a,b

vi
a(X)sab

m,nvj
b(X) and Γsv

i,vj

m,n,k,l =
∑
a,b

vi
a(X)Sab

m,n,k,lv
j
b(X)

(24d)
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are generalized density matrices.36,37 The preponderance of the derivatives
we require can be written as the gradient of M(vi,vj) — the arguments
s, S, m(1), m(2) will be suppressed when they are the k̃, K̃, µ(1), µ(2) from
Eq. (7a) — with respect to X, where the geometry dependence of the
density matrix, from the vj , can be ignored, that is,

∇M(vi,vj) =
∑
a,b

vi
a[∇Ma,b]v

j
b

=
∑
m,n

(∇m(1)
m,n)γsv

i,vj

m,n +
∑

m,n,k,l

(∇m
(2)
m,n,k,l)Γ

Svi,vj

m,n,k,l. (25)

Before proceeding with the derivation of the working expressions for
∇M(vi,vj), it is useful to point out how and where the results will be
used. Note that

M(ci, ci; k̃, K̃; µ0,(1), µ0,(2)) = Vi and

∇M(ci, ci; k̃, K̃; µ0,(1), µ0,(2)) = ∇Vi ≡ gi. (26)

Table 1, summarizes the principal applications based on H0. Note that
M(ci + cj , ci + cj) − [M(ci,ci,) + M(cj,cj,)] = M(ci, cj), and that74

M(ci + cj , ci − cj) = [M(ci, ci,) − M(cj , cj,)]. These identities relate tran-
sition density matrices to diagonal density matrices, are useful for program
documentation and can be used to avoid the explicit construction of tran-
sition density matrices which are somewhat more costly to compute than
diagonal density matrices.

Table 1. Uses of generalized gradients. ∇M(i, j) ≡ ∇M(vi, vj ; µ0,(1), µ0,(2);
k̃a,b

m,n, K̃a,b
m,n,k,l).

vi vj ∇M(i, j) Use

(i) ci + cj ci − cj gi,j = gi − gj Conical intersection search,
Avoided intersection search20

(ii) ci cj ∆Vi,j
CIai,j = hi,j Evaluate derivative coupling,

Conical intersection search
(iii) ci + cj ci + cj gi + gj + 2hi,j Conical intersection search
(iv) ck ck gk Energy extremum search
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In Eq. (25), m
(1)
k,l and m

(2)
k,l,m,n are in the molecular orbital basis. There-

fore their gradients require the derivatives of the molecular orbitals. It is to
this topic that we now turn.

5. Molecular Orbitals and Their Derivatives

The molecular orbitals, ϕ, here and below assumed to be real-valued, are
linear combinations of atom-centered atomic orbitals, α(x1;X),

ϕi(x1;X) =
∑

p

τ p,i(X)αp(x1;X) (27)

chosen to satisfy the SA-MCSCF equations. The gradient of a molecular
orbital is obtained by differentiating the defining equations which in our
case are the SA-MCSCF equations.

5.1. State-Averaged Multiconfigurational Self-Consistent
Field Method

In a SA-MCSCF procedure the weighted average of the Nwt nonrelativistic
energies with weights ωk(> 0), k = 1 − Nwt, is minimized. Each wave
function has the form shown in Eq. (5a)

ΦMC
i (x;X) =

NMC−CSF∑
a=1

Ci
a(X)Θa(x;X). (28)

Since Nwt < NMC−CSF, it is convenient to define as “occupied states”
those states included in the state averaging, and the remaining states as
“unoccupied states”. The average energy can be written

ESAMC(ϕ,C)

=
∑

a,b=1,NMC−CSF

i=1,Nwt

ωiC
i
a(X)H0

a,bC
i
b(X) ≡

∑
i=1,Nwt

ωiE
0
i (X) (29a)

=
∑
a,b,i

ωi

∑
m,n

Ci
aµ0,(1)

m,n k̃ab
m,nCi

b +
∑

k,l,m,n

Ci
aµ

0,(2)
k,l,m,nK̃ab

k,l,m,nCi
b

+ µ(N−N)

(29b)
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=
∑
a,b,i,

∑
m,n

ωiµ
0,(1)
m,n Ci

ak̃ab
m,nCi

b +
∑

k,l,m,n

∑
a,b,i

ωiµ
0,(2)
k,l,m,nCi

aK̃ab
k,l,m,nCi

b + µ(N−N)

=
∑
m,n

µ0,(1)
m,n (X)γSAMC

m,n (X) +
∑

k,l,m,m

µ
0,(2)
k,l,m,n(X)ΓSAMC

k,l,m,n(X) + µ(N−N)(X)

where

γSAMC =
∑

i

ωiγ
i,i and ΓSAMC =

∑
i

ωiΓ
i,i (30a)

γi,i
m,n =

∑
a,b

Ci
aK̃ab

m,nCi
b and Γi,i

k,l,m,n =
∑
a,b

Ci
aK̃ab

k,l,m,nCi
b (30b)

µ0,(1)
m,n (X) = 〈ϕm(x1;X)|µ0,(1)(x1;X)|ϕn(x1;X)〉x1 (30c)

µ
0,(2)
m,n,k,l(X) = 〈ϕm(x1;X)ϕn(x1;X)|µ0,(2)(x1,x2)|ϕk(x2;X)ϕl(x2;X)〉x.

(30d)

In Eq. (29a), only the dependence of ESAMC on the variational parameters
has been indicated. ESAMC also depends, through the atomic orbital basis,
on the location of the atoms and it assumes that the ϕ are orthonormal.

The SA-MCSCF equations define an optimal set of orbitals, ϕ(opt), and
expansion coefficients, C(opt) as unitary transformations of an arbitrary
initial set, that is,

ϕ(opt) = ϕe−∆̃ ϕ
(opt)
j =

∑
k

ϕk

(
δk,j − ∆̃k,j + 1/2

∑
k′

∆̃k,k′∆̃k′,j + · · ·
)

(31a)
and

C(opt) = Ce−ζ̃ Cj,(opt) =
∑

k

Ck

(
δk,j − ζ̃k,j + 1/2

∑
k′

ζ̃k,k′ ζ̃k′,j + · · ·
)

(31b)

where the antisymmetric matrix, ∆̃i,j(ζ̃i,j) has unique elements ∆ij(ζij)
and ij denotes the compound index (i − 1)i/2 + j.

The conditions defining the MCSCF parameters, the MCSCF vari-
ational conditions,38−40 are obtained by requiring the derivatives of
ESAMC(ϕ(opt),C(opt)) with respect to the unique parameters, the ∆ij and
ζkj , to vanish. From Eqs. (31), the derivatives can be expressed in terms
of orbital and state excitations. In particular, from Eq. (31a), orbital gra-
dients correspond to the first order terms in ∆̃k,j , and are expressed as a
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sum of terms in which the orbital replacements ϕj → ϕk, and, since ∆̃k,j is
antisymmetric, ϕk → −ϕj are made in Eq. (29b). The result of this orbital
excitation and de-excitation is that each E0

i is replaced by a difference of
Lagrangians (Li,i), that is,

∂E0
i

∂∆mn
= Li,i

m,n − Li,i
n,m (32a)

where

Li,i
m,n =

∑
j

2µ
0,(1)
m,j γi,i

n,j +
∑
j,k,l

4µ
0,(2)
m,j,k,lΓ

i,i
n,j,k,l (32b)

and

∂

∂∆mn
ESAMC =

Nwt∑
k=1

ωk(Lk,k
m,n − Lk,k

n,m) =
Nwt∑
k=1

ωkG(o)k,k

m,n ≡ G(o)
mn. (32c)

Similarly from Eq. (31b), the first order terms in ζ̃kj give rise to a sum of
terms in which a single state Cj is replaced by Ck and Ck by −Cj . Thus
each Ci†H0Ci is replaced with Cj†H0Ci + Ci†H0Cj . Equivalently this
state excitation replaces density matrices with transition density matrices
in Eqs. (29) giving as gradients:

∂

∂ζij
ESAMC ≡ G

(ζ)
ij = −2(ωi − ωj)Cj†H0Ci for i, j ≤ Nwt (33a)

∂

∂ζij
ESAMC = −2ωiCj†H0Ci for i ≤ Nwt j > Nwt. (33b)

More details concerning the origin of these expressions can be found in
Ref. 41. In the SA-MCSCF procedure there are two classes of ζ̃i,j , those
for which both i and j are occupied states, (33a) and those with only one
index in the occupied space, (33b).

Equation (33b) requires that the eigenvectors be known for both the
occupied and unoccupied states. This severely limits the size of NMC−CSF.
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This limitation can be overcome39 by noting that

Cj†H0Ci = 0 for j 
= i (34a)

is equivalent to

Cj†[H0 − V MC
i ]Ci = 0 for all j (34b)

which is equivalent to

[H0 − V MC
i ]Ci = 0 (34c)

since the Cj are complete. Thus the requirement that the gradient in
Eq. (33b) vanish can be written as

∂

∂Ci
ESAMC ≡ G

(C)
i = (H0 − V MC

i )Ci = 0. (35)

Thus the mixings between the “occupied” states are represented in the
eigenvector basis [Eq. (33a)] and the mixings of the “occupied” states with
the “unoccupied” states are handled in the CSF basis, see Eq. (35). In this
representation the SA-MCSCF variational conditions become

G(o)(X) = G(ζ)(X) = G(C)(X) = 0. (36)

Although these equations can be solved by simple iteration, a second order
or Newton–Raphson procedure is used to enable orbital derivatives to be
determined, see below.

As discussed near Eq. (21), a Newton–Raphson procedure to solve the
equation G(X) = 0 is obtained by expanding:

G(X + δX) = G(X) + δX · ∇(G(X)) (37a)

and assuming that G(X + δX) = 0, which gives the system of linear
equations

HδX = −G(X) (37b)

where the hessian matrix H is given by ∇G. Here X = (∆, ζ,C) and the
Newton–Raphson equations for the variational parameters are

∂2ESAMC

∂∆2

∂2ESAMC

∂ζ∂C
∂2ESAMC

∂∆∂C
∂2ESAMC

∂ζ∂∆
∂2ESAMC

∂ζ2

∂2ESAMC

∂ζ∂C
∂2ESAMC

∂C∂∆
∂2ESAMC

∂C∂ζ

∂2ESAMC

∂C2


 δ∆

δζ

δC

 = −
G(o)

G(ζ)

G(C)

 . (38)
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The left hand side is the SA-MCSCF hessian:

Hv1,v2 =
∂G(v1)

∂v2 =
∂G(v2)

∂v1 =
∂2ESAMC

∂v1∂v2 (39)

where we have used Hv1,v2 ≡ ∂2ESAMC/∂v1∂v2 to represent the block of
second derivatives, ∂2ESAMC/∂v1

m∂v2
n. Explicit formulae for the Hv1,v2 can

be found in Refs. 38 and 41. Since H depends on ∆, ζ and C, Eq. (38) must
be solved iteratively until the SA-MCSCF variational conditions, Eq. (36),
are satisfied.

The second order SA-MCSCF procedure provides for rapid convergence
of the SA-MCSCF equation. While this is advantageous it not essential.
However, in order to determine derivative s of the molecular orbitals or
their equivalents, these second order SA-MCSCF equations are essential.
Below the determination of orbital derivatives is discussed.

5.2. Coupled Perturbed State-Averaged MCSCF
Equations42 Orbital Derivatives

5.2.1. Variational and Orthogonality Contributions

The derivatives of the molecular orbitals are obtained from the coupled-
perturbed SA-MCSCF equations. These equations come from the require-
ment that the SA-MCSCF conditions, Eqs. (36), should be satisfied at
X + δX, given that they are satisfied at X, that is,

0 = G(i)(X + δX) = G(i)(X) + ∇G(i)(X) · δX = ∇G(i)(X) · δX

i = o, ζ, C. (40)

This is simply the requirement that the gradient of Eq. (36) must vanish,
∇G(i)(X) = 0. These gradients, changes with respect to the nuclear coor-
dinates, are expressed using the chain rule. A change in geometry produces
changes in the CSF expansion coefficients, Cj , in the molecular orbitals ϕ.

The molecular orbitals change due to changes in the expansion coeffi-
cients τ and in the atomic orbitals, α

∇ϕj =
∑

p

(∇τp,j)αp +
∑

p

τp,j∇αp ≡
∑

k

Uk,jϕk +
∑

p

τp,j∇αp (41a)

where

Uj,i =
∑

p

∇τp,i〈ϕj(x1;X)|αp(x1;X)〉x1 (41b)
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so that U expresses the change in the transformation τ in the molecular
orbital basis. Therefore

∂

∂Xβ
ϕj =

∑
m

∂Um·j
∂Xβ

(
ϕm

∂

∂ϕj

)
+
∑

p

∂αp

∂Xβ

∂

∂αp

≡
∑
m

∂Um·j
∂Xβ

∂

∂Um·j
+
∑

p

∂αp

∂Xβ

∂

∂αp
. (41c)

Since the only geometry depend parameter in αp is its location at Xp,
∂/∂αp = ∂/∂Xp, which is to be distinquished from ∂/∂Xβ on the left hand
side of Eq. (41c), for which only the remaining Xγ are held constant. To
complete the gradient, the changes in the Ci must be included. As above,
these can be written

∂

∂Xβ
=
∑
kl

∂ζkl

∂Xβ

∂

∂ζkl
(41d)

where ∂/∂ζkl ≡ ∂/∂ζk,l − ∂/∂ζk,l and ∂/∂ζk,l act, in the “state space”, the
same way ∂/∂Uk,l acts in the orbital space. In the mixed representation,
described after Eq. (35), Eq. (41d) becomes

=
∑

kl∈occ

∂ζkl

∂Xβ

∂

∂ζkl
+

∑
i∈unocc

∂Ci

∂Xβ

∂

∂Ci
. (41e)

Here and throughout the remainder of this chapter the compound summa-
tion index kl denotes a sum which extends over the unique nonredundant
elements of an antisymmetric matrix. This is to be distinquished from the
summation over k, l which denotes a (double) sum over all the elements in
a matrix. Combining Eq. (41c) with Eq. (41e) the full gradient becomes:

∂

∂Xβ
=
∑
m,n

∂Um,n

∂Zβ

∂

∂Um,n
+
∑

p

∂αp

∂Xβ

∂

∂αp
+
∑
kl

∂ζkl

∂Xβ

∂

∂ζkl
+
∑

i

∂Ci

∂Xβ

∂

∂Ci
.

(42)

The gradient in Eq. (42) must be taken with some care since Eq. (36)
requires orthonormal molecular orbitals, that is,

〈ϕi(x1,X + δX)|ϕj(x1,X + δX)〉x1 = δi,j (43a)
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or equivalently 0 = ∇X〈ϕi(x1,X)|ϕj(x1,X)〉X1 · δX. Using Eq. (27), this
requirement becomes

∇X

(∑
p,q

τpi(X)〈αp(x1;X)|αq(x1;X)〉x1τqj(X)

)

=

〈(∑
k

Uk,iϕk(x1;X) +
∑

p

τp,i∇Xαp(x1;X)

)∣∣∣∣ϕj(x1;X)

〉
X1

+

〈
ϕi(x1;X)

∣∣∣∣
(∑

k

Uk,jϕk(x1;X) +
∑

p

τp,j∇Xαp(x1;X)

)〉
X1

(43b)

= Uj,i + Ui,j +

〈∑
p

τp,i∇Xαp(x1;X)
∣∣∣∣ϕj(x1;X)

〉
X1

+

〈
ϕi(x1;X)

∣∣∣∣∑
p

τp,j∇Xαp(x1;X)

〉
X1

= Uj,i + Ui,j +
∑

p

τp,i∇X 〈αp(x1;X)|αq(x1;X)〉X1

∑
q

τq,j

= Ui,j(X) + Si,j(X) + Uj,i(X) = 0 (43c)

where S and S are given by:

Si,j(X) =
∑
p,q

τp,i(X)(∇X〈αp(x1;X)|αq(x1;X)〉x1)τq,j(X)

≡
∑
p,q

τp,i(X)∇XSp,q(X)τq,j(X). (43d)

From Eq. (43c), the requirement of orthogonality affects only the symmetric
part of U. It is incorporated by expressing U in terms of two matrices ∆̃i,j

and Ti,j such that

Ui,j(X) = ∆̃i,j(X) + Ti,j(X) (44a)

where ∆̃i,j(X) is an antisymmetric matrix, whose elements will be deter-
mined by solving the coupled-perturbed SA-MCSCF (CP-SA-MCSCF)
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equations and Ti,j(X) has the following structure

Ti,j = −Si,j for i < j

= − 1
2Si,i for i = j

= 0 for i > j. (44b)

Equation (44a) embodies the fact that as the positions of the nuclei are
changed, the orbitals evolve in response to the variational conditions and
also in response to the molecular orbital orthonormality constraints. The
latter contribution arises because the overlap matrix in the atomic orbital
basis, Sp,q(X), is a function of the nuclear coordinates, X.

We are now in a position to derive the CP-SA-MCSCF equations. Using
Eqs. (42) and (44), the chain rule for ∇X becomes

∂

∂Xβ
=
∑
mn

∂∆mn

∂Xβ

∂

∂∆mn
+
∑
mn

∂Tmn

∂Xβ

∂

∂Tmn
+
∑

p

∂αp

∂Xβ

∂

∂αp

+
∑
kl

∂ζkl

∂Xβ

∂

∂ζkl
+
∑

i

∂Ci

∂Xβ

∂

∂Ci
(45a)

∂

∂Xβ
=
∑
mn

∆β
mn

∂

∂∆mn
+

[∑
mn

T β
mn

∂

∂Tmn
+
∑

p

∂αp

∂Xβ

∂

∂αp

]

+
∑
kl

ζβ
kl

∂

∂ζkl
+
∑

i

Ciβ ∂

∂Ci
. (45b)

Note that the terms in the square brackets involve known quantities and
therefore will contribute to the inhomogeneous part of the CP-SAMCSCF
equations obtained by using Eq. (45b) to differentiate Eqs. (36) and recall-
ing the definitions in Eqs. (32c), (33a) and (35) gives

∂2ESAMC

∂∆2

∂2ESAMC

∂ζ∂C
∂2ESAMC

∂∆∂C

∂2ESAMC

∂ζ∂∆
∂2ESAMC

∂ζ2

∂2ESAMC

∂ζ∂C

∂2ESAMC

∂C∂∆
∂2ESAMC

∂C∂ζ

∂2ESAMC

∂C2


∆α

ζα

Cα

 = −

 G(o)α

+ G(o)T
α

G(ζ)α

+ G(ζ)T
α

G(C)α

+ G(C)T
α

 .

(46)
Below we will denote the right hand side by Gα + GTα

and the hessian
matrix by H. In Eq. (46), the superscript z = β or Tβ means that in
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constructing the G(z), defined in Eqs. (32c), (33a) and (35), the µ(0),i are
replaced by, for β

µ0,(1)β

m,n (X) =
∑
p,q

tp,i

[
∂

∂Xβ
〈αp(x1;X)|µ0,(1)(x1;X)|αq(x1;X)〉x1

]
tq,j

(47a)

µ
0,(2)β

m,n,k,l(X) =
∑

p,qr,s

tr,ntp,m

×
[

∂

∂Xβ
〈αp(x1;X)αr(x1;X)|µ0,(2)(x1;X)|αq(x2;X)αs(x2;X)〉x

]
tq,kts,l

(47b)

and for Tβ

µ0,(1)T
β

m,n (X) =
∑

p

[T β
p,mµ(0),1

p,n + µ(0),1
m,p T β

p,n] (48a)

µ
0,(2)T

β

m,n,k,l (X) =
∑

p

[T β
p,mµ

(0),2
p,n,k,l + µ

(0),2
m,p,k,lT

β
p,n + T β

p,kµ
(0),2
m,n,p,l + µ

(0),2
m,n,k,pT

β
p,l].

(48b)

The principal computational effort in the evaluation of Eq. (46) is the
construction of the gradients, Gβ , in the molecular orbital basis. This
requires a transformation of the derivative integrals from the atomic orbital
basis to the molecular orbital basis for each nuclear degree of freedom Xβ .
However, as first noted by Rice and Amos,43 this costly step can also be
avoided, since it is possible to perform the evaluation directly in the atomic
orbital basis. Further, the contributions which depend on Tβ(X) can be effi-
ciently evaluated using techniques developed to compute the second deriva-
tive of the energy at the MCSCF level, see Appendix A of Ref. 41. For an
alternative presentation of these ideas, see Ref. 74.

5.2.2. Additional Constraints on the Molecular Orbitals

In an MCSCF procedure there are generally three classes of molecular
orbitals: (i) those which are doubly occupied in all CSFs, the core or inac-
tive orbitals, (ii) those which are not occupied in any of the CSFs, the
virtual orbitals, and (iii) those which are partially occupied in at least one
of the CSFs, the active orbitals. The inactive or core orbitals as well as



May 7, 2004 16:14 Conical Intersections: Electronic Structure, Dynamics and Spectroscopy chap03

Determination of Potential Energy Surface Intersections 155

the virtual orbitals are not uniquely defined by the MCSCF variational
conditions, since a rotation among the orbitals within either of these spaces
does not change the MCSCF energy. Similarly, if a complete active space
(CAS)44−46 treatment is used in the MCSCF problem, the MCSCF energy
is also invariant to rotations among the active orbitals. However, in many
calculations core orbitals and core-correlating orbitals are excluded from
the multireference CI calculations. In some cases, limitations on computer
resources necessitate further truncation of the orbitals and, perhaps, some
selection of reference configurations in the CI calculation.

In these instances the multireference CI energy (but not the SA-MCSCF
energy) is dependent on the definition of the individual orbitals. In this situ-
ation the orbitals in these spaces must be uniquely defined. These definitions
result in new antisymmetric contributions to Uα

ij . These new contributions
to Uα(X) are obtained by differentiating the equations used to uniquely
define these orbital spaces. The approach for the determination of these
antisymmetric contributions from a core/virtual orbital space rotation and
from an active space orbital rotation are presented in Appendices B and D
of Ref. 41 respectively.

6. A Generalized Gradient

6.1. Evaluation of gi,j, hi,j and CIai,j

We are now in a position to determine ∇M(vi,vj ; K̃a,b
m,n, K̃a,b

m,n,k,l;
µ0,(1), µ0,(2)). From Eqs. (27) and (7a)

∇M(v1,v2) =
∑
m,n

(∇µ(1)
m,n)γv1,v2

m,n +
∑

m,n,k,l

(∇µ
(2)
m,n,k,l)Γ

v1,v2

m,n,k,l (49a)

where

γv1,v2

m,n =
∑
a,b

v1
aK̃ab

m,nv2
b and Γv1,v2

m,n,k,l =
∑
a,b

v1
aK̃ab

m,n,k,lv
2
b . (49b)

From Eqs. (42) and (44) the derivative of µ(1) and of µ(2) can be expressed as

∇Xαµ
(1)
i,j (X) = µ

(1)α

i,j (X) + µ
(1)Uα

i,j (X)

∇Xα
µ

(2)
i,j,k,l(X) = µ

(2)α

i,j,k,l(X) + µ
(2)Uα

i,j,k,l (X) (50)
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where the superscript α on a quantity in the MO basis indicates that the
quantity in question is constructed from the derivative of the atomic inte-
grals, that is,

µ
(1)α

i,j (X) =
∑
p,q

ci∗
p

(
∂

∂Xα
µ

(1)
p·q

)
cj

q (51a)

and

µ
(2)α

i,j,k,l(X) =
∑
p,q

ci∗
p cj

q

(
∂

∂Xα
µ

(2)
p·q,r,s

)
ck∗

r cl
s (51b)

while

µ
(1),Uα

i,j =
∑
m

[Uα∗
m,iµ

(1)
m,j + µ

(1)
i,mUα

m,j ] (52a)

µ
(2),Uα

i,j,k·l =
∑
m

[Uα∗
m,iµ

(2)
m,j,k,l + µ

(2)
i,m,k,lU

α
m,j + Uα∗

m,kµ
(2)
i,j,m,l + µ

(2)
i,j,k,mlU

α
m,l].

(52b)
Inserting Eqs. (51)–(52) into Eqs. (49) gives

∇XαM(v1,v2) = Gα + GUα

(53a)

where

Gα =
∑
m,n

(µα,(1)
m,n )γv1,v2

m,n +
∑

m,n,k,l

(µα,(2)
m,n,k,l)Γ

v1,v2

m,n,k,l (53b)

GUα

=
∑
m,n

Lv1,v2

m,n Uα
n,m =

∑
m,n

Lv1,v2

m,n (∆̃α
n,m + Tα

n,m). (53c)

In Eq. (53b), the density matrix elements, γv1,v2

m,n and Γv1,v2

m,n,k,l, will be trans-
formed to the atomic orbital (AO) basis in order to avoid transforming the
AO derivative integrals to the MO basis for each degree of freedom. In
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Eq. (53c), the Lagrangian,42 Lva,vb

i,j , has been introduced, where

Lva,vb

m,i =
∑

j

(γva,vb

j,i µ
(1)
m,j + γva,vb

i,j µ
(1)
j,m)

+
∑
j,k,l

(Γva,vb

i,j,k,lµ
(2)
m,j,k,l + Γva,vb

i,j,k,lµ
(2)
j,m,k,l + Γva,vb

i,j,k,lµ
(2)
j,k,m,l

+Γva,vb

i,j,k,lµ
(2)
j,k,l,m). (54)

Equations (53a)–(54) provide the basis for the numerical procedures used
to evaluate the quantities in Table 1. Although these equations are com-
putationally tractable, they can be further modified to reduce the overall
computational effort.

6.2. Computational Efficiencies

In evaluating Eq. (53c), it would appear that the CP-SA-MCSCF equations
must be solved for each internal degree of freedom Xα, in order to obtain
∆α

ij . However, the repeated solution of the CP-SA-MCSCF equations can be
avoided using the method of Handy and Schaefer.43,47−49 The contribution
from ∆α

ij to Eq. (53c) can be rewritten∑
m,n

(Lv1,v2

m,n ∆α
n,m) =

∑
ij

{(Lv1,v2

ij − Lv1,v2

ji )}∆α
ij ≡

∑
ij

Lv1,v2

ij ∆α
ij (55a)

where now the sum extends only over the unique elements of ∆α. Formally
inverting Eq. (46) permits ∆α

ij to be eliminated, giving:∑
ij

Lv1,v2

ij ∆α
ij = −l(o)v1,v2†Ha−1(Gα + GTα

)

= −(H−1l(o)v1,v2)†(Gα + GTα

) (55b)

where

l(o)v1,v2 = (L(v1,v2)†
0 0). (55c)

To evaluate Eq. (55a), it is sufficient to solve one equation of the form of
Eq. (46), that being

HZva,vb = −l(o)va,vb (56a)

so that Eq. (55a) reduces to∑
ij

Lv1,v2

ij ∆α
ij = Zv1,v†

2(Gα + GTα

). (56b)
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With these modifications the evaluation of a ∇M(v1,v2) requires a fraction
of the time needed to determined the multireference CI wave function.

7. Computation of the Derivative Couplings

In this section the evaluation of A(X) and B(X) is considered.

7.1. First Derivative Coupling

From Eq. (1) evaluation of A requires, at least formally, differentiation of
the wave function defined in Eq. (5a), giving:

∇XΦi(x;X) =
NCSF∑
p=1

[∇Xci
p(X)Θp(x;X) + ci

p(X)∇XΘp(x;X)]. (57)

Thus the first derivative nonadiabatic coupling matrix element consists of
two terms

Aj,i(X) = ClAj,i(X) + CSFAj,i(X) (58a)

where the CI contribution is given by

CIAj,i(X) =
∑
α

cj
α(X)(∇ci

α(X)) (58b)

and the CSF contribution has the form

CSFAj,i(X) =
NCSF∑

a,b

cj
a(X)〈Θa(x;X)|∇XΘb(x;X)〉xci

b(X). (58c)

7.1.1. CIAi,j

From Eq. (58b), it would appear that ∇ci would be required to evaluate
CIAj,i. However this is in fact not the case. Since only the projection onto
the state Φi is actually required, Eq. (58b) for CIAj,i can be recast in a
form involving the generalized gradient ∇M(v(1),v(2)).

The coupled-perturbed CI(CP-CI) equations50,51 provide a formal
expression for ∇ci. This system of linear equations is obtained by
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differentiating Eq. (6) to give

∇[Heci(X) − Vi(X)ci(X)] = 0 (59a)

so that

[He − Vi(X)]∇ci(X) = −[∇He(X) − ∇Vi(X)]ci(X). (59b)

Taking the dot product of Eq. (59b) with cj(X) gives
CIAj,i(X) ≡ cj(X)†∇ci(X) = [Vi(X) − Vj(X)]−1cj(X)†[∇He(X)]ci(X).

(60)

Note that Eq. (60) is not the Hellmann–Feynman theorem,52,53 to which
it bears a formal resemblance, since in Eq. (60) it is not the Hamiltonian
operator He(x;X) but rather the Hamiltonian matrix He(X) which is being
differentiated. Indeed, from Eq. (49a)

CIAj,i(X) = [Vi(X) − Vj(X)]−1∇M(cj , ci). (61)

7.1.2. CSFAi,j

We now consider the CSF contribution to the first derivative nonadiabatic
coupling matrix element. A CSF, Θb, is an antisymmetric, symmetry-
adapted product of molecular orbitals, defined in Eq. (5b) so that its deriva-
tive has the form

∇XΘb(x;X) ≡
Ne∑
j=1

PSb0 ,M
Sb0 ,Ab0 (∇Xϕbj (xj ;X))σbj

Nel∏
i( �=j)=1

ϕbi(xi;X)σbi .

(62)
Thus the overlap between a CSF and the derivative of a CSF can be rep-
resented as the matrix element of an one-electron operator,

〈Θa(x;X)|∇XΘb(x;X)〉x = 〈Θa(x;X)|DΘb(x;X)〉x (63a)

where

Dα(X) =
∑

i

dα(xi) and dα(x1)ϕ(x1;X) =
∂

∂Xα
ϕ(x1;X). (63b)

The matrix element of a one-electron operator can be obtained as the trace
of the one-electron density with the appropriate integals, thus

CSFAα
j,i(X) =

∑
k,l

γj,i
k,ld

α
k,l (64a)
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where γj,i
k,l is the square one-electron transition density matrix and dα(X)

is an antisymmetric matrix with matrix elements

dα
i,j =

〈
ϕi(x1;X)

∣∣∣∣ ∂

∂Xα
ϕj(x1;X)

〉
x1

. (64b)

The antisymmetry of dα(X) is a consequence of the orthonormality of the
molecular orbitals, Eq. (43a). Here the adjective “square” has been empha-
sized in reference to the one-particle transition density matrix. The one
particle transition density matrix is in general not symmetric, that is, the
full or square matrix must be retained. However, in most electronic struc-
ture applications the associated one electron integrals, for example µ0,(1),
are symmetric, permitting the off-diagonal density matrix element to be
stored in folded or triangular form. Since dα is not symmetric, it is neces-
sary to construct and store the transition density matrix in its unfolded or
square form.

From Eq. (64b) and (41a), dα
i,j is comprised of two terms:

dβ
i,j(X) = σβ

i,j + Uβ
i,j (65a)

σβ
i,j =

∑
p,q

τp,i(X)〈αp(x1;X)|∇Xβ
αq(x1;X)〉x1τq,j(X) (65b)

so that

CSFAβ
j,i(R) =

∑
k,l

γj,i
k,l(σ

β
k,l + Uβ

k,l) (66)

which completes the construction of the first derivative nonadiabatic cou-
pling matrix element. A study of the relative contributions to Ak,l from
CIAk,l and CSFAk,l can be found in Ref. 54.

7.2. Second Derivative Coupling

In this subsection the determination of the second derivative nonadiabatic
coupling matrix elements Bj,i(X) is considered. Real-valued wave functions
are assumed. Although the definition of Bj,i(X) involves ∇XΦi · ∇XΦj ,
since a change of variables in the nuclear coordinates is often required, it is
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convenient to define the generalized the second derivative matrix elements
k j,i and κj,i as follows

∂

∂Xβ
Aα

j,i(X) = kβ,α
j,i (X) + κβ,α

j,i (X) (67a)

where

kβ,α
j,i (X) =

〈
∂

∂Xβ
Φj(x;X)

∣∣∣∣ ∂

∂Xα
Φi(x;X)

〉
x

κβ,α
j,i (X) =

〈
Φj(x;X)

∣∣∣∣ ∂2

∂Xα∂Xβ
Φi(x;X)

〉
x

.

(67b)

For i = j, Aα
i,i(X) = 0 for all X, so that Eq. (67a) equation reduces to

kβ,α
i,i (X) = −κβ,α

i,i (X). (67c)

As discussed in Chapter 2, the kβ,β
i,i (X) give rise to positive definite correc-

tions to an individual Born–Oppenheimer potential energy surface. In this
section we show how analytic gradient techniques can be used to evaluate
k(X).

From Eq. (57), k(X) is a sum of three terms:

kα,β
j,i (X) =

〈
∂

∂Xα
Φj(x;X)

∣∣∣∣ ∂

∂Xβ
Φi(x;X)

〉
x

=

〈∑
a

[
Θa(x;X)

∂

∂Xα
cj
a(X) + cj

a

∂

∂Xα
Θa(x;X)

] ∣∣∣∣
×
∑

b

[
Θb(x;X)

∂

∂Xβ
ci
b(X) + ci

b

∂

∂Xβ
Θb(x;X)

]〉
x

(68a)

= CIk
α,β

j,i (X) + CSFk
α,β

j,i (X) + CSF−CIk
α,β

j,i (X) (68b)

where

CIk
α,β

j,i (X) =
∑

a

(
∂

∂Xα
cj
a(X)

)(
∂

∂Xβ
ci
a(X)

)
(69a)

CSFk
α,β

j,i (X) =
∑
a,b

cj
a(X)ci

b(X)
〈(

∂

∂Xα
Θa(x;X)

) ∣∣∣∣ ( ∂

∂Xβ
Θb(x;X)

)〉
x

(69b)
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and

CI−CSFk
α,β

j,i (X) =
∑

a,b,m,n

[(
∂

∂Xα
cj
a

)
ci
bk̃

a,b
m,ndβ

m,n − cj
a

(
∂

∂Xβ
ci
b

)
k̃a,b

m,ndα
m,n

]
≡
∑
m,n

[γjα,i
m,ndβ

m,n − γj,iβ

m,ndα
m,n]. (69c)

Here jα indicates that ∂
∂Xα

cj is used to build the density matrix. The
minus sign in Eq. (69c) arises from the previously noted antisymmetry
of dα

ij .

7.2.1. Evaluation of CSFk(X)

In evaluating the CSF contribution to k(X), CSFk(X), the fact that two
orbitals have been differentiated must be considered. This gives rise to
a contribution from the square two particle transition density matrix in
addition to a contribution from the square one particle transition density
matrix. In particular,

CSFk
α,β

j,i (X) =
∑
m,n

γj,i
m,neα,β

m,n −
∑

m,n,k,l

Γj,i
m,n,k,lf

α,β
m,n,k,l (70)

where

fα,β
i,j,k,l(X) = dα

i,j(X)dβ
k,l(X) + dβ

i,j(X)dα
k,l(X) (71a)

eα,β
m,n(X) =

〈
∂

∂Xα
φm(x1;X)

∣∣∣∣ ∂

∂Xβ
φn(x1;X)

〉
x1

. (71b)

Using Eq. (41a) and defining τα
p,n = ∂

∂Xα
τp·n, gives

eα,β
m,n(X) =

∑
k

Uα
k,mUβ

k,n

+
∑
p,q

[
τp,m

〈
∂

∂Xα
αp(x1;X)

∣∣∣∣ ∂

∂Xβ
αq(x1;X)

〉
x1

τq,n

+τp,m

〈
∂

∂Xα
αp(x1;X) |αq(x1;X)

〉
x1

τβ
q,n

+τα
p,m

〈
αp(x1;X)

∣∣∣∣ ∂

∂Xβ
αq(x1;X)

〉
x1

τq,n

]
(71c)

where use has been made of the antisymmetry of dα. The fact that fα,β
m,n,k,l

is a product of one-electron integrals greatly facilitates the evaluation of
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CSFk(X). In this case, all the dα needed to construct fα,β
m,n,k,l can be held in

memory so that the square two particle density matrix need not be stored.
Instead, the contributions to Eq. (70) are evaluated directly. Equation (70)
requires the use of the “square” two-particle transition density matrix, since
the symmetry of the fα,β

m,n,k,l with respect to the permutation of indices

fα,β
m,n,k,l = −fα,β

n,m,k,l = −fα,β
m,n,l,k = fα,β

n,m,l,k (72)

is different from that of the two electron integrals µ(0),2.

7.2.2. Evaluation of CIk and CSF−CIk: the Coupled Perturbed-CI
Equations

The evaluation of CIk and CSF−CIk requires the derivatives of the ci,
which are obtained by solving the coupled-perturbed CI (CP-CI) equations.
Differentiating Eq. (6)

∇X[Heci(X) − Vi(X)ci(X)] = 0 (73)

gives a system of linear equations for ∇Xci(X)

(He − Vi(X))∇Xci(X) = −[∇X{He − Vi(X)}]ci(X)

= −[Hα(X) + HUα

(X) + ∇Vi(X)]ci(X)

= −P[Hα(X) + HUα

(X)]ci(X) (74)

where P is the projection operator,

P = I − cici† (75)

and from Eqs. (50)–(52) Heα

(HeUα

) is the Hamiltonian matrix constructed
from the integrals µ0,(η)α(

µ0,(η)Uα )
, η = 1, 2. The use of the projector is

required, since the null space of (He − IVi) is ci and (ci|∇ci) = 0. The
solution of the CP-CI equations requires the prior solution of the CP-SA-
MCSCF equations in order to evaluate Uα. Given the solutions to the
CP-CI equations, ∇Xci, it is straightforward to use Eq. (69a) to construct
CIk(X). Similarly, the evaluation of CSF−CIk(X) becomes analogous to the
evaluation of CSFAj,i with

CSF−CIk
α,β

j,i (X) = CSFA
β

jα,i(X) − CSFA
α

j,iβ (X) (76)

where jα in Eq. (67a) implies that ∂
∂Xα

cj replaces cj in the evaluation of
the transition density matrices in Eq. (66).
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This completes the evaluation of Bi,j using analytic gradient techniques.
Despite the use of analytic gradient techniques, the need to solve the CP-CI
equations, which scale like the CI problem, for each direction, renders the
determination of B computationally intensive. In Sec. 8, body fixed frame
wave functions are used to reduce the number of times the CP-CI equations
must be solved to determine B.

8. Applications

In this section, the efficacy of Eq. (22) for locating a point of conical inter-
section in the nonrelativisitic case, using the S0 and S1 states of HNCO,
and the relativistic case using the 1, 22A′, and 12A′′ states of OH–H2, is
considered. The adiabatic correction for the X1Σ+ state of LiH is presented
an compared with earlier experimental and theoretical results.

8.1. Locating Conical Intersections in the η = 2 Case

The S1–S0 seam of conical intersection in HNCO is analyzed in detail in
Chapter 2 of this volume and in Refs. 55 and 56. Here we illustrate the con-
vergence of our search algorithm, Eq. (22), to a point of conical intersection.
In this example, LQ,Q is evaluated by a forward difference procedure. LQ,Q

can be approximated by a unit matrix if complete energy optimization is
not required. However, if LQ, the norm of the right hand side, is to be made
to vanish rapidly, LQ,Q is required. Table 2 illustrates typical convergence
with LQ,Q evaluated by forward difference. Here it is important to note that
∆Vi,j is readily converged to <0.5 cm−1. Convergence to approximately this

Table 2. For HNCO:Convergence to Qx on planar trans seam with
R(C–N)= 2.65a0 from Qx with R(C–N)= 2.85a0.

R(CN) R(CO) ∠NCO Vx(cm−1) ∆V (cm−1) Norm

2.8500 2.3321 103.00 5907.4 0.1102E+01
2.6573 2.3645 98.800 8222.9 151.91 0.4215E−01
2.6501 2.3609 98.100 8833.9 5.9057 0.7595E−02
2.6501 2.3568 98.200 8811.3 44.898 0.8324E−02
2.6500 2.3594 98.200 8855.3 8.0157 0.5795E−02
2.6500 2.3588 98.000 8835.6 1.9092 0.2435E−02
2.6500 2.3579 98.200 8836.6 0.63871 0.8132E−03

aNorm is norm of right hand side of Eq. (22). Vx = Vi(Qx,i,j).
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precision is important when relativistic effects involving atoms with only
moderate spin-orbit coupling, are considered, see below.

8.2. Locating Conical Intersections in the η = 3 Case

The results of the previous section demonstrate the convergence of our algo-
rithm in the nonrelativistic η = 2 case. The inclusion of the spin-orbit inter-
action introduces new numerical challenges. Here we consider the 1, 22A′

conical intersection seam of H2OH. This seam of conical intersection is
relevant to the quenching of OH(A2Σ+) by H2.57,58 Using the nonrelativis-
tic Hamiltonian, portions of this seam of conical intersection have been
identified for C2v, C∞v as well as Cs geometries. The Cs portion of the
seam is particularly interesting, since, although it is expected to exist by
the non-crossing rule, it would not be expected in the isoelectronic molecule
H2F. Thus the Cs seam represents a substituent effect.59

In this section we focus on the C∞v portion of the seam, where, together
with the 12A′′ state, the 1, 22A′ states form a 2Σ+ − 2Π conical intersec-
tion. The g–h space for the nonrelativistic 1, 22A′ conical intersection seam
and its relativistic counterpart, the 2E–3E seam, defined below, have been
studied in Chapter 2 of this volume. See also Refs. 32, 60–62. The nonrela-
tivistic C∞v

2Σ+ − 2Π symmetry-allowed conical intersection will be mod-
ified as spin-orbit coupling splits the otherwise degenerate 2Π state. Here
we use this seam of conical intersection to demonstrate convergence of our
algorithm in the context of ab initio MRCI wave functions. This example
provides a stringent test of the algorithm, since the spin-orbit interaction
is relatively modest and the energy splitting changes rapidly in the region
of interest.

In the computational procedure the molecule is restricted to Cs symme-
try. Therefore we are considering the η = 3 case. The Hamiltonian used is:

He

=


V12A′ −iHso,y

1A′2A′ −Hso,x
1A′1A′′ − iHso,z

1A′1A′′

iHso,y
1A′2A′ V22A′ −Hso,x

2A′1A′′ − iHso,z
2A′1A′′

−Hso,x
1A′1A′′ + iHso,z

1A′1A′′ −Hso,x
2A′1A′′ + iHso,z

2A′1A′′ V12A′′


(77)

and all Hso,w
i,j are real-valued functions of the nonrelativistic eigenstates.

The eigenstates of He are the nE states, n = 1−3.
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There are five internal degrees of freedom (the out of plane mode is
excluded to preserve Cs symmetry) so that as many as two additional con-
straints may be imposed. In this example energy minimization is used in lieu
of any geometric constraints. The nonrelativistic states are described at
the first order configuration interaction level using a six orbital, eight elec-
tron, active space, with the oxygen 1s orbital kept doubly occupied. The
molecular orbitals were constructed from a SA-MCSCF procedure using an
extended atomic orbital basis on oxygen and hydrogen. More details con-
cerning this description can be found in Refs. 32 and 63, and Chapter 2 of
this volume.

Figure 1 considers convergence of Eq. (22) to a point of conical
intersection, reporting the relativistic energy separation ∆V2E,3E and the
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Fig. 1. ∆V3E,2E = ∆V (rel) and ∆V22A′,12A′ = ∆V (nonrel) at each iteration of the
solution of Eq. (22) for OH + H2 using multireference configuration interaction wave
functions.
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nonrelativistic energy separation, ∆V22A′,12A′ . The search was initiated at
a structure displaced along the nonrelativistic seam. This structure is pic-
tured on the left hand side of Fig. 1. At this point ∆V22A′,12A′ ≈ 11 cm−1

and ∆V2E,3E ≈ 70 cm−1. At the converged structure, achieved after 15
iterations, pictured on the right hand side, ∆V2E,3E < 0.2 cm−1 while
∆V22A′,12A′ ≈ 70 cm−1. The large changes in ∆V2E,3E between iterations
8 and 9, and 12 and 13, reflect, in part, the use of the “conjugate gra-
dient” extrapolation described in Ref. 32. These results strongly support
the utility of this search algorithm. It is worth noting that, once an initial
point on a seam is found, locating additional points is facilitated by the fact
that given a Qx corresponding to a given set of geometrical constraints, K,
Eq. (22) can be used to predict a good starting value for a neighboring Q′x

corresponding to K′. The use of Eq. (22) to predict “neighboring” points
on a seam has been discussed in Ref. 64.

8.3. The Adiabatic Correction: LiH(X1Σ+)

As noted in Chapter 2 of this volume, the Born–Oppenheimer diagonal
correction produces a mass dependent modification of a mass indepen-
dent Born–Oppenheimer potential energy surface. This modication can
be inferred from experimental measurements of rovibrational levels of a
series of isotopomers and can be computed directly, using the methods of
this chapter. The X1Σ+ state of LiH is considered here. It has been the
object of detailed experimental investigations15,23 and theoretical studies,
using both highly specialized wave functions16 and the SA-MCSCF/MRCI7

wave functions described in this chapter. Below these studies are
described.

The Born–Oppenheimer diagonal correction is given in Eq. (2a). In that
equation, the gradients refer to space fixed frame (SFF) coordinates. For
diatomic molecules, considerable savings result from a transformation to
body fixed frame (BFF) coordinates. This transformation is accomplished
in two steps. The SFF coordinates are transformed to center of mass fixed
frame (CMFF) coordinates and then the CMFF coordinates are trans-
formed to BFF coordinates. The details of the transformation are beyond
the scope of this review. Here we sketch the ideas involved. A detailed treat-
ment, based on the pioneering work of Kronig,65 can be found in Ref. 7. In
particular, first the rigorously removable center of mass of the nuclei and
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the electrons, is defined

C =

[∑Nel

i=1 mexi + M1X1 + M2X2

]
MT

. (78a)

In addition, the center of mass of the nuclei

O = (M1X1 + M2X2)/M (78b)

and internal coordinates for the electrons and nuclei are introduced

qk = xk − O; Q = X2 − X1. (78c)

These nonrotating coordinates take us to the CMFF. These coordinates are
transformed to coordinates that rotate with the nuclei, the BFF, bywk,x

wk,y

wk,z

 =

 − sin φ cos φ 0
− cos θ cos φ − cos θ sin φ sin θ

sin θ cos φ sin θ sin φ cos θ

qk,x

qk,y

qk,z

 (78d)

W = |Q| and B = (θ, φ)

where W and B are the spherical polar coordinates of Q, M = M1 + M2,
M1, M2, are the nuclear masses, MT = M+melN

el and µ−1 = M−1
1 +M−1

2 .
Then using Eq. (78) and the chain rule, ACi,i [Eq. (2a)] for i, a 1Σ+ state
becomes7,11,12

AC i,i(X) = MPi,i(X)/(2M) + L2
i,i(X)/(2µW 2) + KW

i,i (Q)/(2M) (79)

where [see Eq. (24b)]

KW
i,i (Q) =

M2

M1
kz1,z1

i,i +
M1

M2
kz2,z2

i,i − 2kz1,z2
i,i (80)

L2
i,i(X) = L2

x,i,i(X) + L2
y,i,i(X) + L2

z,i,i(X) (81a)

L2
x,i,i(X) = M(ci, ci; k̃, K̃; (x1 × ∇x1)

2, (x1 × ∇x1)(x2 × ∇x2)) (81b)

MPi,i(X) = M(ci, ci; k̃, K̃; ∇2
x1

, ∇x1 · ∇x2). (82)

Equation (79) has both computational and conceptual advantages. Con-
ceptually, the decomposition allows us to separate the effects of internal
motion from overall nuclear rotation and translation. Computationally, nine
second derivatives are needed to evaluate Eq. (2a) each of which requires the
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solution of the costly CP-CI equations. Since both L2
w,i,i(X) and MPi,i(X)

have the form of an M(ci, ci) [Eq. (24b)], their evaluation, which does not
require the solution of the CP-CI equations, involves little computational
effort. For this reason use of BFF wave functions drastically reduces the
effort required to evaluate the ACi,i.

It will prove convenient to define the quantities b(Z) for Z = Li and H

ACi,i ≡ bi,i(XLi, Y H) ≡ b(Li)/M(xLi) + b(H)/M(yH). (83)

Table 3 reports and Fig. 2 plots the contributions to the adiabatic (or
Born–Oppenheimer diagonal correction) in Eq. (83). Note that the prin-
cipal geometry dependence arises not from the internal motion contribu-
tion (Kw

i,i), but from the angular momentum contribution, L2
i,i(X). This

is quite the opposite of what happens near an avoided (or conical) inter-
section, where Ki,i is large (singular) and rapidly changing, see Chapter 2
in this volume and Ref. 4. Table 3 also compares the computed b(H) (JY
column) with b(H) inferred from experiment (CHSW column). The agree-
ment is quite good, supporting the validity of the geometry dependence of
the decomposition discussed above.

Thus the main conclusion of this section is that, while Kw
i,i makes the

preeminent contribution to the adiabatic correction near a conical intersec-
tion away from this singular point contributions from noninternal coordi-
nates may dominate the geometry dependence.

Table 3. Analysis of the adiabatic correction for LiH (X1Σ+).

R(LiH) MP L2 K b(H) b(Li)

JYb BCc CHSWd JYb BCc

2.5 124.3 58.59 24.86 6.1 5.8 12.2 7.2 7.3
3.0 123.06 52.84 25.27 0 0 0 0 0
3.5 122.04 49.63 25.17 −3.8 −3.6 −5.99 −3.7 −3.8
4.5 120.91 46.83 24.73 −8.1 −7.2 −10.8 −5.8 −6.5
5.0 120.64 46.21 24.69 −9.0 −5.5 −12.0 −4.9 −3.8
5.5 120.52 45.82 24.95 −9.5 −1.0 −12.6 −2.9 8.2
7.5 121.05 45.38 25.18 −10.6 −13.1 7.0

aMP = MPi,i(X)/(2M); L2 = L2
i,i(X)/(2µW 2); K = KW

i,i (X)/(2M) for 7Li1H from
Ref. 7.
bRef. 7 relative to value at R(Li–H) = 3 a.u. of bH = 72.4 or bLi = 909.7 cm−1 amu.
cRef. 16 relative to value at R(Li–H) = 3 a.u. of bH = 70.5 or bLi = 924.0 cm−1 amu.
dRef. 23 relative to interpolated value at R(Li–H) = 3 a.u. bH = 0.10 cm−1 amu.
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Fig. 2. Contributions to diagonal Born–Oppenheimer correction due to mass
polarization (MP), angular momentum (L2) and internal motion(K) as a function of
R(Li–H).

9. Summary and Future Directions

The methods described in this chapter make the determination of the
first derivative couplings and the location of points of conical intersection
for two states (of the same symmetry) based on state averaged multi-
configurational self-consistent field/multi-reference configuration interac-
tion (SA–MCSCF/MRCI) wave functions quite routine. These capabilities
have led to new ways of thinking about and treating nonadiabatic processes
and the intersecting potential energy surfaces that describe them. The chap-
ters that follow are ripe with examples of the new paradigms in nonadia-
batic chemistry. From the perspective of this chapter, that of computational
electronic structure theory, several new directions have emerged since this
chapter was first prepared. Algorithms for the location of three states of
the same symmetry have been introduced. Initial studies suggest that this
class of conical intersection cannot be ignored. Improved implementations
of the equations for locating energy minimized conical intersections of two
states of the same symmetry based on extrapolatable functions will enable
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much more efficient treatment of larger molecules. Finally advances in the
determination of SA–MCSCF/MRCI must be noted. The examples in this
chapter were limited to (a respectable) 1–5 million CSFs. However recently
the COLUMBUS75 suite of electronic structure codes has established qual-
itatively new standards for the state of the art. Using single processor
techniques derivative couplings can be evaluated, and conical intersections
located, using 100 million CSF MRCI expansions. Parallel processor tech-
niques, which are implemented, will further extend the size of a tractable
expansion. In short, a new generation of electronic structure techniques
is emerging. These techniques can be expected to significantly extend the
range and scope of tractable problems in nonadiabatic chemistry.
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1. Introduction

The concept of diabatic electronic states plays an important role in the
theoretical description of strongly vibronically coupled systems. Contrary
to the usual adiabatic electronic states, they are not eigenstates of the
electronic Hamiltonian which thus acquires off-diagonal matrix elements in

175



April 27, 2004 11:54 Conical Intersections: Electronic Structure, Dynamics and Spectroscopy chap04

176 Conical Intersections: Electronic Structure, Dynamics and Spectroscopy

the diabatic basis. On the other hand, the nuclear kinetic energy may be
made approximately diagonal by a suitable choice of the diabatic states,
and the residual off-diagonal derivative coupling terms be neglected for
many practical purposes. In this chapter we address some key aspects, both
conceptual and computational, of different possible choices of diabatic elec-
tronic wavefunctions.

The very notion “diabatic” was introduced by Lichten1 into the litera-
ture and used there in the context of ion-atom collisions. It was shown that
experimental results on charge exchange in He++He collisions required sev-
eral adiabatic potential energy curves, and transitions between them, for
their interpretation. However, for a large range of collision energies, a sin-
gle “diabatic” potential energy curved proved sufficient, which correlates
with different adiabatic states in the limits of small and large internuclear
distances.1 This behavior was discussed in terms of the well-known Landau–
Zener–Stückelberg theory2,3 of avoided crossings, in which the underlying
zero-order potential energy curves are a prototypical example of diabatic
potential energy curves (although this notion has not been employed in that
early work).

Subsequent work first continued to focus on atom–atom collision pro-
cesses and also addressed the question of a proper general definition of dia-
batic states.4–8 For a good overview, see the review article by O’Malley.9

F. T. Smith was the first to give a general definition, without referring to
individual systems and physical intuition, in terms of a differential equation
for the adiabatic-to-diabatic transformation matrix.6 This was derived by
requiring that the derivative coupling elements should vanish in the new,
diabatic electronic basis (where derivative refers to the internuclear dis-
tance, the only vibrational degree of freedom considered). Later on, Baer
and coworkers considered the case of atom-diatom collisions and general-
ized the aforementioned differential equation to several nuclear degrees of
freedom.10–12 This leads directly to a set of coupled differential equations
for which, however, certain conditions have to be fulfilled in order that solu-
tions exist.10–13 For the common case of two interacting states and three
nuclear degrees of freedom this means that the curl of the derivative matrix
element (being a vector in nuclear coordinate space) should vanish. Mead
and Truhlar13 emphasized that these conditions are generally not fulfilled
and, thus, strictly diabatic electronic states do not exist in general. Excep-
tions are (1) the case of a single nuclear degree of freedom as for atomic
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collision processes mentioned above, and (2) the case where the complete
manifold of interacting states is considered in the diabatization procedure.
This amounts to the choice of crude adiabatic states14,15 which are, how-
ever, irrelevant for practical purposes, see below.

Despite this limitation the search for approximately diabatic, or qua-
sidiabatic, states has received much attention in the literature on molec-
ular systems. When all derivative coupling terms are given, one may, for
example, transform away the whole removable part by solving an appropri-
ate Poisson equation.16,17 Since the ab initio computation of all coupling
elements is an extremely tedious task in all but the smallest polyatomics,
simpler construction schemes have also been followed, based on suitable
properties of the electronic wavefunctions. We mention aspects of con-
figurational change,18–24 the behavior of the matrix elements of suitable
operators,25–28 the block diagonalization method29–33 and others,34–37 to
be described in more detail below. As an even simpler approach, we point
out the possibility of constructing (quasi)diabatic electronic states from the
potential energy surfaces alone.31,38–40,42 While being necessarily approxi-
mate (and possibly less accurate than other, more elaborate schemes) this
proves to be a viable approach for the situation of primary interest in this
book, namely that of intersecting potential energy surfaces. The knowledge
of the topology of the surfaces near the subspace of degeneracy (intersec-
tion) often allows to extract the necessary information for removing the sin-
gular part of the derivative couplings. This elimination, on the other hand,
represents the key advantage of the diabatic compared to the adiabatic elec-
tronic representation: contrary to the latter, the former wavefunctions are
non-singular at conical intersections of potential energy surfaces and thus
more easily to deal with, especially when performing quantum-dynamical
simulations. It is precisely this difference which is at the focus of this latter
approach and which leads to the notion of “regularized diabatic states”.40

It is not the purpose of this article to give a systematic account of all
aspects of the theory and construction schemes for diabatic states. Rather,
after this somewhat historic introduction, we will outline salient features
of the theory in Sec. 2 and refer to other chapters in this book (especially
Chapter 1 by L. S. Cederbaum) and earlier review articles31,41 for more
details. Section 3 gives an overview over existing construction schemes with
an attempt to characterize their respective merits and emphasis. Section 4 is
devoted to a more detailed exposition of the concept of regularized diabatic
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states which may be considered a promising variant for larger systems.
Finally, Sec. 5 concludes with a brief summary.

2. General Theoretical Considerations

In this section we introduce the basic concept of diabatic electronic states
and compare them with the adiabatic and crude adiabatic electronic wave-
functions.

2.1. Adiabatic and Crude Adiabatic States

We start with the set of coupled differential equations for the nuclear wave-
functions in the adiabatic representation (see Chapter 1):

[TN1 + V(Q) − E1] χ(Q) = Λχ(Q). (1)

Here TN denotes the nuclear kinetic energy, V(Q) is the diagonal matrix
containing the adiabatic potential energy surfaces Vi(Q) and 1 generally
stands for the unit matrix in electronic function space. The vector χ(Q)
collects the vibrational wavefunctions χi(Q) of interest, and the elements
Λij of the nonadiabatic coupling matrix Λ can be written as:

Λij = − 〈Φi|TN |Φj〉 + 〈Φi|∇|Φj〉 ∇, (2)

where we have used TN = −∇2/2 and set � = 1 throughout. The adiabatic
electronic wavefunctions Φi are eigenfunctions of the electronic Hamiltonian
He according to:

HeΦi (r,Q) = Vi (Q) Φi (Q,Q) , (3)

where He could include also spin-orbit coupling terms (r = set of electronic
coordinates; Q = set of nuclear displacement coordinates). They enter into
the expansion of the full molecular wavefunction Ψ(r,Q) according to:

Ψ (r,Q) =
∑

i

Φi (r,Q) χi (Q) . (4)

For a more detailed discussion of Eq. (1), we refer to Chapter 1. At this
point we only note a key property of the first derivative matrix element:

Fij = 〈Φi|∇|Φj〉 (5)

appearing in Eq. (2) (note that boldface here refers to the quantities
being vectors in nuclear coordinate space). By differentiating the eigenvalue
equation (3) with respect to the nuclear coordinates, multiplying from the



April 27, 2004 11:54 Conical Intersections: Electronic Structure, Dynamics and Spectroscopy chap04

Methods for the Construction of Diabatic Electronic States 179

left with Φ∗
j (r,Q), j �= i, and integrating over the electronic coordinates

one obtains the following “off-diagonal analogue” of the Hellmann–Feynman
theorem:

Fij =
〈Φi|∇He (r,Q) |Φj〉

Vj (Q) − Vi (Q)
. (6)

Equation (6) directly expresses the importance of near-degeneracies, and
even more of intersections of potential energy surfaces, for the nuclear
motion: whenever the difference Vj − Vi becomes smaller than a vibra-
tional quantum, the right hand side of Eq. (6) is expected to become large
and the non-adiabatic coupling term Λij , Eq. (2), plays a major role in
Eq. (1). At conical intersections, in particular, the right hand side of Eq. (6)
diverges and the Fij(Q) are singular functions of the nuclear coordinates.
Since the degeneracy is lifted in first order in the nuclear displacement ρ

from the conical point, Fij exhibits there a 1/ρ singularity. Correspondingly,
the adiabatic electronic wavefunctions are discontinuous with a branch cut
extending from the conical intersection point to infinity (see, for example,
Ref. 42). It is this behavior which makes the adiabatic basis cumbersome to
deal with numerically, especially when global potential energy surfaces are
needed such as in a quantum-dynamical treatment of the nuclear motion.

To overcome the difficulty associated with this singularity, so-called
“crude-adiabatic” electronic wavefunctions have been introduced into the
literature.14,15 Here, wavefunctions Φi(r,Q0) ≡ Φ0

i for a fixed nuclear con-
figuration Q0 are used in the expression (4) for any Q of interest:

Ψ (r,Q) =
∑

i

Φi (r,Q0) χ0
i (Q) . (7)

The new vibrational wavefunctions χ0
i (Q) are distinguished by the super-

script from the earlier ones in Eq. (4). In a strict sense, even the atomic
centers are to be kept fixed at Q0 when representing the electronic wave-
function at some general Q, for example, in an ab initio electronic struc-
ture calculation. Correspondingly, the expression (7) is found to converge
extremely slowly and the electronic energies obtained from the Φi(r,Q0)
are found to be much inferior compared to the adiabatic ones.43,44 As a
(partial) remedy of the problem, the core orbitals have been allowed to
float with the instantaneous nuclear position which, nevertheless, does not
improve significantly the overall situation.43 We wish to point out, how-
ever, that expansions of the type (7) have been used frequently, especially
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in Jahn–Teller (JT) theory45,46 where Q0 represents a JT undistorted (i.e.
high symmetry) geometry which is used to represent the Hamiltonian at a
neighboring JT distorted geometry. In principle, the neighboring geometry
should be infinitesimally close to the original one.15,47 In this way many JT
model Hamiltonians have been formulated which proved useful in molec-
ular spectroscopy, dynamics and other fields (see also Chapter 10 in this
book). It is evident from the above discussion that the matrix representa-
tion of the electronic Hamiltonian in the crude adiabatic basis contains also
off-diagonal matrix elements (for Q �= Q0):

Wij =
〈
Φ0

i |He|Φ0
j

〉
, (8)

whereas that of the nuclear kinetic energy becomes (even strictly) diagonal.
Both features are close to the diabatic electronic states which are discussed
next, also in relation to crude adiabatic electronic states.

2.2. Diabatic Electronic States

Diabatic electronic states are generally obtained by an orthogonal trans-
formation in a small subset of adiabatic wavefunctions, constructed such
that the off-diagonal nuclear derivative coupling becomes negligibly small
(or, ideally, vanishes) in the new representation.6,9,10 The small subset rep-
resents the strongly coupled electronic states and has to be chosen such
that, for a given relevant coordinate range, all other electronic states are
sufficiently far apart energetically. Confining ourselves for simplicity to a
two-state problem, the adiabatic-to-diabatic transformation (ADT) matrix
S can be written as:

S(Q) =
(

cos α (Q) sin α (Q)
− sin α (Q) cos α (Q)

)
, (9)

with the adiabatic-to-diabatic (ATD) mixing angle α (Q). In the basis of
the new, diabatic wavefunctions,(

Φd
1

Φd
2

)
= ST (Q)

(
Φ1
Φ2

)
, (10)

the transformed first derivative matrix, i.e. the analogue of Eq. (5) in the
adiabatic representation, undergoes a transformation known as local gauge
transformation.31 For real electronic wavefunctions the diagonal elements
in Eq. (5) vanish, while the off-diagonal elements are oppositely equal,
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F12 = −F21, which also holds in the diabatic basis (effects of spin-orbit
coupling are beyond the scope of this article). The transformed off-diagonal
element Fd

12 then simply reads:

Fd
12 = ∇α (Q) + F12. (11)

The requirement

Fd
12 = 0 (12)

thus leads to the following first-order differential equation for the ATD
mixing angle:

∇α (Q) = −F12 = 〈Φ2|∇|Φ1〉 . (13)

For one-dimensional problems Eq. (13) has been used to determine, by
integration, the angle α (Q) once the derivative matrix elements F12 are
given, e.g. by an ab initio calculation (see, for example, Ref. 48). For the
multidimensional case, a stepwise procedure has been proposed where the
integration of Eq. (13) is carried out in turn along each coordinate axis.12

However, in order that the integration does not depend on the sequence
of axes chosen, and thus the result be well-defined, the following condition
has to be satisfied:

∇ × F12 ≡ curl F12 = 0. (14)

Equation (14) is known as the “curl-condition” and derives from the ele-
mentary fact that the vector field F12(Q) should be curl-free if expressible
as the gradient of a scalar field according to Eq. (13), since one has:

∇ × (∇α (Q)) = 0. (15)

Apart from special models, Eq. (14) is satisfied only when the whole space
of interacting electronic states is considered in the ADT matrix S (in
diatomics, with only a single nuclear degree of freedom, there is no curl-
condition).13 This, however, is contradicting the spirit of choosing a small
subset of electronic states in the ADT matrix and would lead one back
to the crude adiabatic basis discussed in the previous section. Therefore
strictly diabatic electronic states, satisfying rigorously Eqs. (12) and (13)
do not exist in the multidimensional case.13

Despite this limitation one may ask the question whether approximately
diabatic states, satisfying Eq. (12) to a sufficient accuracy for practical
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purposes, exist. With this goal in mind various construction schemes have
been proposed in the literature which are surveyed in the next section.
They might also be termed “quasidiabatic” states in order to indicate their
approximate nature. For simplicity of nomenclature we will continue with
the simpler notion “diabatic” in this article, but keep the above limitation
in mind.

Another important aspect of diabatic states consists in the removability
of the singular derivative coupling terms.31,39,49 As mentioned above, these
occur along seams of intersections between two potential energy surfaces,
see Eq. (6). The curl of F12 entering Eq. (14) can be shown to involve only
derivative couplings to other states, outside the manifold of intersecting
states 1 and 2.13,31,39 Therefore, it does not diverge if no intersections with
other states arise and can be neglected if only singular coupling terms are of
interest.31,39,49,50 In this sense the singular derivative coupling terms con-
stitute an important case for an isolated two-state system where rigorously
diabatic states can be constructed (of course, only considering the singu-
lar terms). This property will be exemplified by an ab initio calculation38

presented in the next section; it also underlies the concept of regularized
diabatic states discussed in some detail below.

The (nearly) diagonal representation of the nuclear kinetic energy is
accompanied by off-diagonal matrix elements of the potential energy in the
diabatic representation. Transforming the diagonal potential energy matrix

V =
(

V1 0
0 V2

)
(16)

from the adiabatic basis with the ADT matrix S according to

Wd = ST VS, (17)

one arrives at the potential energy matrix Wd in the diabatic basis:

Wd =
V1 + V2

2
1 +

V1 − V2

2

(
cos 2α sin 2α

sin 2α − cos 2α

)
. (18)

Formally, the off-diagonal appearance of Wd in the diabatic basis is similar
to the crude adiabatic basis [as is the (nearly) diagonal form of TN ]. How-
ever, it should be kept in mind that the form of Eq. (18) refers to a small
electronic subspace only, whereas all other electronic states are treated in
the adiabatic representation. By contrast, the matrix W of Eq. (8) in the
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crude adiabatic basis refers to the whole electronic function space in ques-
tion and not only to small subspaces. This renders the expansion underlying
Eq. (8) only slowly convergent, an undesirable feature which is not shared
by the diabatic representation.

A connection between the crude adiabatic basis and the diabatic basis
can be established, e.g. with the aid of quasi-degenerate perturbation the-
ory.51–53 Let the indices i and j refer to the subset (α) of strongly coupled
states treated in the diabatic basis and the index n to the complementary
set (β) of states coupled only weakly to these states. Then, up to the second
order in the interaction between the different subsets the diabatic potential
matrix Wd can be expressed through the crude adiabatic potential matrix
W as follows:42,51–53

W d
ij = Wij +

1
2

∑
n∈(β)

[
WinWnj

Wjj − Wnn
+

WinWnj

Wii − Wnn

]
. (19)

Suppose that the matrix elements Wij , Win, etc. are expanded in a Taylor
series around the reference configuration Q0 of the crude adiabatic basis
(as is frequently done in standard JT theory45,46 and within the linear
vibronic coupling scheme described in Chapter 7 of this book). Then the
off-diagonal elements Wij (i �= j) and Win are (at most) of first order in
these displacements δQ. Hence, the linear term in Wij cannot be affected
by the coupling Win between blocks (α) and (β) and we have:

W d
ij = Wij + O (

δQT · δQ
)
. (20)

Thus the linear coupling terms are identical in the two electronic representa-
tions when taken in the rigorous sense, i.e. as deriving from an infinitesimal
displacement. Of course, these coupling terms may also be taken as effective
terms accounting for finite displacements; then they would differ in the two
basis sets.

Finally, we point out that the above equations may be extended to
comprise more than two strongly coupled electronic states. Since the overall
conclusions are similar to the above ones we confine ourselves to citing
some relevant literature.10,13,31 Also, extensions have been given for the
case of spin-orbit coupling when the electronic wavefunctions are necessarily
complex and the relevant function space also increases.54
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3. Construction Schemes for Diabatic Electronic States

In this section we survey some common methods used in the literature
for computing (quasi)diabatic states. They are grouped into three classes,
depending on the type of information upon which the construction is based.

3.1. Derivative-Based Methods

In this first type of methods the original proposal by Smith6 and Baer10–12

is followed directly, i.e. the defining differential equation (13) is solved as
accurately as possible (for the two-state case). The formal solution can be
written as:

α(Q) = α(Q0) −
∫

C

F12(Q′)dQ′, (21)

where C is a suitable contour connecting an initial (or reference)
configuration Q0 with the nuclear configuration Q of interest. At some Q0

the mixing angle α0 ≡ α(Q0) has to be properly chosen; this constitutes
one element of flexibility and also arbitrariness, the latter being however
not relevant for practical purposes.

Equation (21) has been used routinely to determine rigorously diabatic
states for diatomics where a single coordinate R exists and the integral
becomes one-dimensional48 (but note the additional appearance of angu-
lar — as opposed to radial — couplings6). For the multidimensional case
the issue of the path-dependence of the integral in Eq. (21) exists, as already
discussed above. The ATD angle α(Q) is well-defined if the integral vanishes
along closed loops: ∮

C

F12(Q′)dQ′ = 0. (22)

More generally, the integral may also equal a multiple of π in view of the
trigonometric functions in Eq. (9), and the diabatic wavefunctions (10)
still be well defined. A value of π is expected when encircling a conical
intersection between potential energy surfaces in order to compensate for
the singularity of the adiabatic wavefunctions (see also Chapters 1 and 7
in this book). In the ideal case, Eq. (22) is generalized as:∮

C

F12(Q′)dQ′ = nπ, (23)
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where n denotes the total number of conical points encircled by the closed
loop. Yarkony49 was probably the first to verify the accuracy to which
Eq. (23) is satisfied by an ab initio electronic structure calculation. The
example treated was the 12A′ − 22A′ seam of conical intersections of
H3 and two (small) circles were chosen, one containing the seam (at its
minimum energy point), the other not. In both cases, Eq. (23) was con-
firmed with n = 1 and 0, respectively, the deviations being of the order
10−4 − 10−6.49 Subsequent work on HeH2,28 CH2,55 and C2H,56 extended
these findings. Quite naturally, Eq. (23) is satisfied to a higher accuracy
for smaller loops/circles than for larger ones. The radii in case of all afore-
mentioned calculations on H3 were chosen as 0.1 and 0.05 a.u. In Fig. 1,
we show results of calculations on CH2, obtained with a large circle of
radius ρ = 0.5 a.u. and taken from Ref. 55. The quantities with superscript
µ relate to an alternative, property-based method which will be discussed
in the next subsection. fθ denotes the component of the derivative cou-
pling vector along the tangent of the circular path. The ATD mixing angle
obtained by integration according to Eq. (21) increases by 1.16π, when
integrating from −90◦ to 270◦.55 This value is clearly incompatible with
Eq. (23). Apparently for loops of that size the nonremovable derivative
couplings play a role and strictly diabatic states do not exist. On the other
hand, the results for small loops are evidenced by the perturbation the-
oretical result Θ(p) included in the figure. This exemplifies Eq. (23) and
the removability of the singular derivative couplings which dominate in the
vicinity of the intersection.

We mention in passing that conditions of the form of Eq. (23) have been
postulated by M. Baer and coworkers as necessary conditions for obtaining
uniquely defined diabatic potentials.57,58 It should be clear from the above
discussion that they hold generally only for the singular derivative couplings
and require careful consideration for any other cases (where they will hold
only approximately).50,59–61

An interesting proposal has been made how to go beyond the sin-
gular coupling terms and remove all of the removable (i.e. also non-
singular) coupling terms.16 This employs the decomposition, according to
the Helmholtz theorem, of F12(Q) into a longitudinal (removable) and a
transverse (nonremovable) part:13

F12(Q) = Flon
12 (Q) + Ftra

12 (Q) (24)
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Fig. 1. Exact (fθ) and approximate (fµ
θ ) tangential derivative coupling element for

a circular path surrounding the lowest energy conical intersection between the 13A′′
and the 23A′′ states of CH2.55 The approximate derivative coupling is obtained by
diagonalizing the dipole operator. The corresponding ATD mixing angle is denoted by
Θµ. The analogous quantity Θ(p) is obtained by perturbation theory. For more details,
see text and Ref. 55.

in an obvious notation. By definition, the curl of Flon
12 (Q) and the divergence

of Ftra
12 (Q) vanish (for three relevant degrees of freedom)

∇ × Flon
12 (Q) = 0, (25)

∇ · Ftra
12 (Q) = 0.

The defining Eq. (13) for the ATD mixing angle involves only the longitu-
dinal part of F12 and one has:

∇ · ∇α (Q) = ∇F12(Q) = ∇Flon
12 (Q). (26)

In other words, solving the Poisson differential equation (26) for the mixing
angle α (Q) does not suffer from the integration problem in Eq. (21) since
the nonremovable part Ftra

12 has been eliminated from the right hand side of
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Eq. (26). All the removable derivative coupling is transformed away, which
is probably the most systematic way to arrive at optimum (quasi)diabatic
states in general. Of course, in a given example the smallness of the resid-
ual coupling in the (quasi)diabatic basis remains to be verified and other
methods could be superior when matrix elements of the derivative couplings
with nuclear wavefunctions are considered.

The above scheme has first been applied by Sadygov and Yarkony16 in
a 2D study on HeH2 and more recently by Abrol and Kuppermann17 in a
3D study of H3. In the latter work the whole domain of nuclear configura-
tions relevant for reactive scattering has been treated and various boundary
conditions have been compared.17 In this way the smallness of the residual
(transverse) couplings in the diabatic basis could be established and a com-
bination of Neumann and Dirichlet boundary conditions be shown to be
optimum for this purpose.

3.2. Property-Based Methods

The methods discussed so far are in principle the most accurate ones for
constructing (quasi)diabatic states. However, they involve also the largest
computational effort requiring the determination of all derivative couplings
over an extended range of nuclear coordinates. Despite considerable advance
in their calculation by ab initio electronic structure methods,62 this is still
a tedious task for all but the smallest (triatomic) systems. We therefore dis-
cuss now alternative methods, being based on the knowledge of properties
of the adiabatic wavefunctions other than the nuclear derivative coupling
matrix elements.

A key observation is that large nonadiabatic couplings are often related
to fast configurational changes of the adiabatic electronic wavefunctions.
This has been utilized already in the early literature, when constructing
diabatic states for treating atomic collision problems.1,9 A typical example
would be the interaction between an ionic and a covalent configuration9,63

in a narrow coordinate range, leading to a weakly avoided crossing. Here
the fast change in character of the adiabatic wavefunctions when going from
one side of the avoided crossing to the other side leads to large nonadiabatic
couplings which dominate those caused by the changing coefficients of the
molecular orbitals or by the floating atomic centers. The latter are often
taken into account by introducing so-called electron-translation factors.8
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A variety of methods have been proposed which all seek for reducing
(or minimizing) the configurational changes of the electronic wavefunctions
and thus determine the transformation from adiabatic to diabatic states.
They can be further subdivided into two groups. In the first group one
attempts to enforce the smoothness of a physical property, especially a
one-electron property. Already in 1952, Mulliken suggested the use of dipole
moments,64 as was pursued later by Werner and Meyer25 and others.65,66

The quadrupole moment26 as well as the transition dipole moment67,68

have also been employed, by requiring that the diagonal elements be equal
in the diabatic basis. More recently, Yarkony argued that (almost) any
real-valued Hermitean operator, satisfying only certain limited restrictions,
can be used to construct diabatic states near a conical intersection.28 That
is, the eigenfunctions of such an operator, diagonalized in the subspace of
intersecting electronic states, remove all of the singular couplings at the
intersection.28 As an example, Fig. 1 includes such results for CH2, with
the operator being chosen as the dipole operator.55 The data labelled with
a superscript µ in the insert represent derivative couplings (and the ensuing
ATD mixing angle) from diagonalizing the dipole operator — the residual
couplings in this (quasi)diabatic basis are neglected. Despite the large radius
ρ = 0.5 a.u. of the circular contour chosen in this case, the agreement with
the full derivative couplings discussed earlier is quite good. It becomes much
better for a smaller radius ρ = 0.1 a.u.55 As a by-product, Fig. 1 provides
also evidence that this transformation gives well-defined diabatic states,
because the ATD angle integrates to π, as required, when going from θ =
−90◦ to 270◦.

In the second group of property-based methods one enforces the smooth-
ness of the electronic wavefunctions themselves. Hendeković and cowork-
ers suggested to maximize the sum of the squares of the natural spin
orbital occupation numbers.18–20 Spiegelmann and Malrieu developed an
effective Hamiltonian formalism34,35 based on quasidegenerate perturba-
tion theory51–53 which has been improved by Cimiralia et al.69 and which
relates to another approach by Gadea and coworkers.36,37,70,71 Ruedenberg
and Atchity suggested and worked out the principle of configurational uni-
formity21,22 which was recently extended by Nakamura and Truhlar.24 In
the Heidelberg group, the concept of block-diagonalization of the electronic
Hamiltonian has been developed29–31 and implemented,31,72 which can be
derived from a least action principle73 and leads to optimum (quasi)diabatic
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states locally.31 Further remarks on this method and these attractive fea-
tures are provided in Chapter 1 by L. S. Cederbaum. The block diagonal-
ization method has been further extended within a CASSCF framework by
Domcke and coworkers.32,33 We also mention related work by Özkan and
Goodman74 and by Simah et al.75

A general issue of these latter approaches is the choice of reference states
or configurations which are considered sufficiently diabatic so that their
Q-dependence can be neglected. In the introductory remarks of this sub-
section these were alluded to be electronic configurations based on floating
(“adiabatic”) molecular orbitals so that the nonadiabatic couplings would
arise only from configuration interaction (CI). Besides these CI couplings
there are, however, generally also molecular orbital (MO) based deriva-
tive couplings which arise from the changing MO coefficients for different
nuclear geometries (see, for example, Ref. 76). To minimize the latter, and
thus facilitate the application of many of the above schemes, it may be
useful to consider natural orbitals deriving from average density matrices,
averaged over the set of strongly coupled states. These have been demon-
strated to be (quasi)diabatic in many cases77 and will thus give only CI-
type couplings when used as the orbital basis (as is frequently done in
CASSCF/CI-type calculations). An alternative is given by applying the
block-diagonalization method31 to the CAS orbitals and exploiting33 the
invariance of the CASSCF energies under orbital rotations. This has been
shown to lead to (quasi)diabatic orbitals,33 reducing the coupling to a CI-
type problem, and global 3D ab inito diabatic potential energy surfaces for
excited electronic states of ozone have been constructed in this way.78

3.3. Energy-Based Methods

The property-based methods described above already represent a consid-
erable simplification in constructing diabatic states. In any wavefunction-
based method the eigenvectors of the CI-type secular problem are usually
computed together with the eigenvalues and, hence, the properties of inter-
est are obtained without much additional computational effort. Without
computing the residual derivative couplings in this new basis the quality of
the diabatic states is, of course, not strictly under control and depends to a
large extent on the physical intuition for a specific system. We now turn to
an even simpler method which is inherently more approximative and relies
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only on the knowledge of the adiabatic potential energy surfaces alone. This
may be of particular value for not-wavefunction-based electronic structure
methods which do not deliver the appropriate eigenvectors when solving
the electronic structure problem.

Generally, for a two state problem, there are three elements of the dia-
batic potential matrix and only two adiabatic potential energy surfaces;
hence a computation of the former from the latter quantities will be under-
determined. The situation changes, however, (a) when modelling the dia-
batic potential matrix elements in a suitable way and (b) when only the
singular derivative couplings are of interest, as is relevant especially for
conical intersections.

The modelling of potential energy curves has already been introduced
in the early literature for atomic collision processes, within the context
of the Landau–Zener approach.2 Assuming the difference of the diagonal
matrix elements (i.e. in the diabatic basis) to be a linear function of the
interatomic distance and the off-diagonal element to be constant, the perti-
nent system parameters are readily extracted from the adiabatic potential
energy surfaces. This procedure may be generalized also to a more com-
plicated functional form of the diabatic potential matrix elements and to
several degrees of freedom: for a given parametrization with a finite num-
ber of parameters one can always provide enough ab initio data points to
enable the determination of the parameters from the latter. This holds, for
example, also for the linear coupling scheme discussed in Chapter 7 of this
book.

We now address the removability of the singular derivative couplings
from the potential energy surfaces alone. This important aspect has been
pointed out in the literature38–40,42 and is reiterated here for the sake of
clarity. We start from a diabatic basis in which the singular terms have been
eliminated (see Sec. 2.2 above) and confine ourselves to two relevant degrees
of freedom, x and y. The potential matrix W(2) is expanded in a Taylor
series around the conical point, defined by x = y = 0 and is written as:

W(2) =
(

k1x + g1x
2 λy + ly2

λy + ly2 k2x + g2x
2

)
, (27)

where a single second-order term has been included in every matrix ele-
ment for the ease of notation. The conclusions below will, however, be seen
to be unaffected by this simplification. The linear terms are assumed to
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involve only either x or y, which is guaranteed if there is one element of
symmetry.42,79 Starting from Eq. (27), the first-order derivative coupling
element between its eigenvectors (i.e. the adiabatic wavefunctions) equals
the derivative of the rotation angle α of the eigenvector matrix analogous
to Eq. (9). By elementary manipulations this is found to be:

∂α

∂x
=

−L
∂D

∂x
2 (D2 + L2)

∂α

∂y
=

D
∂L

∂y

2 (D2 + L2)
(28)

D =
k1 − k2

2
x +

g1 − g2

2
x2

L = λy + ly2

δk =
k1 − k2

2
,

with the following leading terms around the point of intersection x = y = 0:

∂α

∂x
=

1
2

[−λy + O(y2)
]
[δk + O(x)]

δk2x2 + λ2y2 + O(x3, y3)

= −1
2

λ δk y

δV 2 + O(1)

(29)∂α

∂x
=

1
2

[λ + O(y)]
[
δk x + O(x2)

]
δk2x2 + λ2y2 + O(x3, y3)

=
1
2

λ δk x

δV 2 + O(1).

Note that the denominator in Eqs. (29) is just the squared half-difference
δV 2 of the adiabatic potential energy surfaces. Apparently, the leading,
singular terms are determined by the leading terms of W(2), Eq. (27).
The latter can be uniquely extracted from the adiabatic potential energy
surfaces by inspecting cuts along the coordinates x and y:

V1,2(x, y = 0) = k1,2 x + O(x2),

(30)
V1,2(x = 0, y) = ±λ y + O(y2).

Note that the uniqueness applies only to the linear terms when other second-
order terms are also present in Eq. (27). We stress that the form of the
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linear coupling terms in Eq. (27) holds rigorously when a symmetry ele-
ment is present by which the two electronic states (as well as x and y)
differ.42,79 This constitutes, therefore, a sufficient condition for the above
scheme. Finally, we note that a similar reasoning has also been presented
for the case of three degrees of freedom (see Appendix of Ref. 39).

As an illustrative example, Fig. 2 shows a representative result for the
S1 − S2 conical intersection in pyrazine, taken from Ref. 38. Panel (a)
displays CASSCF ab initio potential energy surfaces in a two-dimensional
coordinate space of a symmetry-preserving coordinate and a symmetry-
breaking coordinate (see Ref. 38 for details). The conical intersection is
seen to occur as a point of degeneracy at Q10a = 0, Q6a = −0.54 (in
dimensionless normal coordinates). Determining the first order constants
as indicated above and using the resulting first-order ATD angle α to con-
struct diabatic states (see also next section) leads to the diabatic potential
matrix elements displayed in panels (b) and (c). As expected, the degen-
eracy of the diabatic potentials occurs in an (n − 1)-dimensional subspace,
i.e. along a line in Fig. 2(b). All diabatic matrix elements are smooth func-
tions of the coordinates. This holds also for the transition dipole moment
presented in Fig. 3. Whereas in the adiabatic representation [Fig. 3(a)],
there is the characteristic singularity at the conical intersection, this has
been fully removed in the diabatic basis [Fig. 3(b)] where only a smooth
dependence on the nuclear coordinates remains. Similar results have been
achieved for related matrix elements.38 This clearly illustrates the possibil-
ity of removing the singular derivative couplings at a conical intersection
from energy data alone.

4. The Concept of Regularized Diabatic States

At the end of the last section it has already been pointed out that the singu-
lar derivative coupling terms can be determined from the adiabatic poten-
tial energy surfaces alone when a symmetry element is present. According
to earlier reasoning it can also be eliminated by transforming to a suit-
able diabatic basis. In the following we describe a specific variant for this
construction, focusing exclusively on the singular couplings and leading to
so-called regularized diabatic states.38–40

The basic idea has already been indicated in the discussion following
Eq. (27). We recall that the singular terms associated with this potential
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Fig. 2. Perspective drawing of the S1 −S2 conical intersection in pyrazine in the space
of a symmetry-preserving (Q6a) and a symmetry-lowering (Q10a) normal coordinate.38

Adiabatic surfaces are shown in (a), the diabatic diagonal elements H11 and H22 are
shown in (b). The diabatic coupling element H12 is shown in (c).
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Fig. 3. x-component of the adiabatic (a) and diabatic (b) transition dipole moment
for the S0 − S1 transition of pyrazine in the Q6a − Q10a space, taken from Ref. 38.

matrix are determined by its linear part:

W(1) =
(

k1x λy

λy k2x

)
, (31)
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leading to an ADT matrix S(1):

S(1) =
(

cos α(1) sin α(1)

− sin α(1) cos α(1)

)
, (32)

with

α(1) =
1
2

arctan
λ y

δk x
. (33)

For the corresponding two-state two-mode problem the singular terms are
thus eliminated by applying the ADT matrix S(1) to the adiabatic wave-
functions with the full adiabatic potentials V1 ≡ V1(x, y) and V2 ≡ V2(x, y).
This leads directly to the diabatic potential matrix [see also Eq. (18)] within
the concept of regularized diabatic states:

Wreg =
V1 + V2

2
1 +

V1 − V2

2

(
cos 2α(1) sin 2α(1)

sin 2α(1) − cos 2α(1)

)

=
V1 + V2

2
1 +

V1 − V2

2
√

δk2x2 + λ2y2

(
δk x λ y

λ y −δk x

)
. (34)

Equation (34) has been utilized by Ref. 38 to obtain the potential matrix
elements of Fig. 2 (and, analogously, the transition dipole moments of
Fig. 3). The approach has been further elaborated by Refs. 39, 40 to treat
also the nuclear dynamics with this scheme and to compare the result with
known reference solutions, taken to be exact for this purpose. Two different
cases have been considered. First, a well-known JT model Hamiltonian has
been adopted in Ref. 39, representing the quadratic E ⊗ e JT problem:45,46

HJT = H01 +
(

0 kρe−iϕ + g
2ρ2e2iϕ

h.c. 0

)
. (35)

This serves as exact reference and is compared with a treatment where the
ADT matrix of the linear problem (g = 0) is applied to the full adiabatic
surfaces of HJT , Eq. (35). The latter leads to the approximate Hamiltonian
in the regularized diabatic basis:39

Hreg = H01 +

√
1 +

g

k
ρ cos 3ϕ +

( g

2k
ρ
)2

(
0 kρe−iϕ

kρeiϕ 0

)
. (36)

The full and approximate JT Hamiltonians, Eqs. (35) and (36) are charac-
terized by identical potential energy surfaces and singular derivative cou-
plings; the non-singular coupling terms differ. They have been compared
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in Ref. 39 with respect to the vibronic structure of A → E absorption
spectra45,46 where the JT dynamics is probed in a direct way. Out of results
for many different parameter values, we show in Fig. 4 a comparison for
k =

√
5 and g = 0.4. The quadratic coupling which is treated approximately

by Hreg is rather strong, leading to a strong dependence of the adiabatic
potential energy surface on the azimuthal angle φ (they are φ-independent
for g = 0);45,46 nevertheless the exact and approximate spectra of Fig. 4
agree very well. This holds also for other parameter values reported in Ref.
39. The reason for this good agreement can be traced to the matrix ele-
ments of the derivative coupling operators with the nuclear wavefunctions.39

Note that these matrix elements do not diverge because the singularity
of the electronic matrix elements is cancelled by appropriate zeros of the
nuclear wavefunctions at the conical intersection.80 Nevertheless the per-
tinent matrix elements have been found to be strongly suppressed in the

Fig. 4. Comparison of exact and approximate Jahn–Teller spectra for k =
√

5 and
g = 0.4, taken from Ref. 39. The approximate spectrum is obtained by utilizing Eq. (35).
The inset shows the corresponding spectrum for purely linear coupling, i.e. g = 0.
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regularized diabatic basis.39 This shows that the removal of the singular
derivative couplings is also useful when considering matrix elements with
the nuclear wavefunctions.

The concept of regularized diabatic states has been further devel-
oped and tested numerically for systems with three degrees of freedom in
Ref. 40 (where also the nomenclature has been introduced). Two electronic
states of different spatial symmetry with two symmetry-preserving and one
symmetry-lowering coordinates have been considered, as occurs routinely in
bent XY2 molecules. For A1/B2 (or also A2/B1) electronic symmetries there
may be symmetry-allowed intersections in the C2v point group, whereas the
states will interact for unequal bond lengths [i.e. in the Cs molecular point
group, with electronic symmetries A′/A′ (or A′′/A′′)]. Let the symmetry-
lowering normal coordinate be denoted by Qu and the “projection” of half
the adiabatic energy gap ∆ = (V2−V1)/2 onto the high-symmetry subspace
by ∆0, i.e. ∆0(Q1, Q2, Qu) = ∆(Q1, Q2, 0). Then considerations analogous
to the above for the 2D case lead to the following expression for the Hamil-
tonian within the basis of regularized diabatic states40

Hreg =
(

TN +
V1 + V2

2

)
1 +

∆√
∆2

0 + λ2Q2
u

(
∆0 λQu

λQu −∆0

)
. (37)

The vibronic coupling constant λ is a measure of the strength of the inter-
state coupling. It can be determined either “locally” i.e. along the seam
of intersections, defined by ∆0 = 0, by an equation similar to Eq. (30), or
more “globally” for the entire high-symmetry subspace Qu = 0 through the
relation:40

λ =
[
1
8

∂2

∂Q2
u

(V2 − V1)
2
] 1

2

Qu=0
. (38)

The two variants differ in the treatment of the non-singular derivative cou-
plings but both remove the singular part fully.40

The scheme has been successfully applied to the photodissociation on
coupled surfaces of O3 and H2S.40 In both cases theoretical reference treat-
ments are available in a diabatic electronic representation. The resulting
adiabatic surfaces have been re-diabatized using Eqs. (37) and (38), and
the resulting photodissociation spectra been compared to the earlier data
(taken as the exact reference). For all technical details we refer to the orig-
inal work.40 In Fig. 5, we show a contour line drawing of the diabatic
potential matrix elements of O3 as a function of the bond lengths r1 and r2
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for a fixed bond angle ϕ = 120◦. Only one of the two diagonal matrix ele-
ments is shown because the results for the other element are very similar.40

The agreement of the present diabatization with the exact reference, taken
from Ref. 78, is seen to be very good indeed. It may therefore not be too
surprising that also the photodissociation spectrum, presented in Fig. 6,
closely parallels the earlier result from Ref. 81. Figure 6 also compares spec-
tra obtained from the two different variants of determining λ (globally and

Fig. 5. Contour line drawing of a diagonal (a) and the off-diagonal (b) diabatic poten-
tial matrix element for the 11A′′ and 21A′′ states of ozone, taken from Ref. 40. The
bond lengths r1 and r2 are varied, while the bond angle is fixed at 120◦. Dashed lines
represent the reference data of Woywood et al.,78 full lines result from the concept of
regularized diabatic states.
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locally). Both are very similar, indeed, which is an indication that the dif-
ferent treatment of the non-singular coupling terms does not severely affect
the quantum dynamical result. Finally, Fig. 7 displays the time-dependent
populations of the adiabatic electronic states and confirms that the present
scheme reproduces the earlier reference data81 very well also in this respect.

The photodissociation on coupled potential surfaces of H2S has also
been treated in Ref. 40 and a similarly good agreement (with the reference
data of Simah et al.75) has been obtained. As applications of the concept of
regularized diabatic states we mention work on Rydberg emission spectra
of H3

82,83 and on photodetachment spectra of NO−
2 .84 While the diabati-

zation scheme alone cannot be tested here (due to other possible sources
of error) the good agreement with experiment achieved is nevertheless con-
sidered encouraging.83,84 Finally we emphasize that the working Eqs. (37)

(a)

(b)

Fig. 6. Comparison of reference data (dashed lines, from Ref. 81) with results from the
concept of regularized diabatic states (full lines, from Ref. 40) for the Chappuis band of
ozone. In panel (a), the vibronic coupling constant λ has been determined in an extended
portion of the C2v subspace; in panel (b), it has been computed along the seam only.
For more details see text.
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(a)

(b)

Fig. 7. Comparison of time-dependent electronic populations of upper (P+) and lower
(P−) adiabatic states for the Chappuis band of ozone. (a) Reference data from Ref. 81.
(b) Results from the concept of regularized diabatic states, from Ref. 40.

and (38) can, of course, be applied also to larger molecules, provided a sym-
metry element is present. In suitable cases, a modelling as described here
with two symmetric (tuning) and one asymmetric (coupling) modes may be
appropriate.42 Moreover, Eqs. (37) and (38) are immediately generalized to
more than two symmetric and more than one asymmetric coordinate.40

Let us reiterate that the computational effort associated with the
construction of regularized diabatic states is very modest and does not
exceed that for an uncoupled-surface nuclear dynamics calculation (apart,
of course, from obtaining reliable potential energy surfaces themselves by
properly treating static electron correlation effects). Therefore it is hoped
that this concept will prove useful for ab initio quantum dynamical treat-
ments of larger molecular systems.

5. Concluding Remarks

Diabatic electronic states represent a useful concept in theoretical studies
of strongly vibronically coupled systems. They are slowly varying functions
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of the nuclear coordinates and are continuous at conical intersections of
potential energy surfaces. This renders them particularly useful, e.g. in
quantum dynamical treatments of the nuclear motion, when global poten-
tial energy surfaces are required. Much less basis functions/grid points are
needed than in the adiabatic description because no cusps, singular deriva-
tive couplings etc. are to be dealt with. Thus the numerical effort for the
quantum treatment of the nuclear dynamics becomes comparable to that
of an uncoupled-surface problem.

In this chapter we have reviewed some salient features of the general
theory of diabatic electronic states and have surveyed some common meth-
ods used in the literature for their construction, derivative-based, property-
based and energy-based. The non-existence of strictly diabatic states has
been emphasized, as well as the removability of the singular derivative
terms; the latter can be considered as the hallmark of conical intersec-
tions. Thus, the specific features of conical intersections can be described
in the diabatic representation. Of particular use may be that, at least in
the presence of a symmetry element, the singular coupling terms can be
extracted from the potential energy surfaces alone, and so can be the corre-
sponding diabatic electronic states. This idea underlies the linear vibronic
coupling scheme introduced rather early into the literature, and also the
more recent concept of regularized diabatic states. More elaborate schemes
require the knowledge of the adiabatic electronic wave functions, possibly
including the derivative coupling elements. Given all the latter, the remov-
able derivative couplings can be eliminated by solving an appropriate Pois-
son equation. While this is probably the most accurate scheme in general,
it is also most tedious computationally, especially for larger systems. It is
of great practical value that even the (computationally simple) elimination
of the singular terms alone may strongly reduce the residual coupling terms
in the (quasi)diabatic electronic basis. Therefore one may hope that this
idea will prove useful for a large class of molecular systems.
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18. J. Hendeković, Chem. Phys. Lett. 90, 193 (1982).
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1. Introduction

The divide-and-conquer idea of separating the rapidly moving electrons
from the much slower moving nuclei when treating a physical problem dates
back in quantum mechanics to Born and Oppenheimer1 (BO), and possi-
bly even predates the publication of their key paper.2 As a result from this
separation, one hopes to get an electronic problem in which the nuclear posi-
tions can be treated as parameters and whose solutions can be used to solve
the nuclear dynamics problem. The electrons provide therefore a potential
(potential energy surface or, more strictly, hypersurface) which should be
invariant under all uniform translations and rigid rotations of the nuclei
that form the molecule. Besides enhancing the efficiency of the numerical
process in the solution of Schrödinger’s equation for the many-body prob-
lem, the BO approximation leads therefore to an useful physical insight.

However, nonadiabatic phenomena, in which such an approximation
breaks down, are ubiquitous and occur in many important fields ranging
from reaction dynamics to molecular spectroscopy and a vast number of
other fields. They play a role whenever two or more electronic potential
energy surfaces become degenerate or nearly-degenerate at some (finite or
infinite) number of points of the molecular configurational space. It should
be noted that, for triatomic or larger polyatomic systems, two adiabatic
potential energy surfaces can intersect, even if the corresponding states have
the same symmetry and spin multiplicity.3–6 This stems from the fact that
only two independent relations between three electronic Hamiltonian matrix
elements are sufficient for the existence of a doubly-degenerate electronic
energy eigenvalue. Thus, if the intersecting potential energy surfaces of
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a N -atom molecule belong to different symmetry blocks of the electronic
Hamiltonian, their loci of intersection have dimension (3N−7), since one of
the above degeneracy requirements is automatically fullfilled by symmetry;
examples of these are the so-called Renner-Teller intersections in triatomic
systems. However, if the two states are of the same symmetry, their intersec-
tion can occur only along a (3N −8) [(3N −7) in complex space7] hyperline
as the energy is plotted against the (3N − 6) nuclear coordinates. As a
result, electronic degeneracies between states of the same symmetry are
common in nature: double-degeneracies for triatomics, triple-degeneracies
also for tetratomics, and so on.

In the case of double degeneracies (the only case discussed here), such
intersections are of the conical type, having the topology of a double cone.
Thus, two directions can be distinguished, say x and y (these define a
plane, often called g–h plane8) such that if one were to plot the energy
in the subspace of these two geometric variables (bond lengths, angles,
etc), the potential energy would have the form of a double cone in the
vicinity of the degeneracy; in the remaining (3N −8) directions, the ener-
gies of ground and excited states are equal. The splitting of the potential
energy surfaces in the plane of x and y is therefore a linear function away
from the intersection point, but close to it. Conventionally, such degen-
eracies can be classified as normal, when they are required by the molec-
ular symmetry-point group, or accidental, when they are not. Examples
of the former are the E-type intersections occurring in X3-type Jahn–
Teller systems9 (see Sec. 4.1). In turn, accidental degeneracies include
both symmetry-allowed ones (if permitted by the different symmetry of
the involved states) and degeneracies involving states of the same symme-
try, which can only occur3–6 in triatomic and larger systems. As for the
minima and saddle points on potential energy surfaces (e.g. Ref. 10), sig-
nificant progress has been made with the direct location of such points on
surfaces of intersection.8,11

In this Chapter, we focus on the modelling and interpolation of elec-
tronic manifolds, while pinpointing some topological implications of conical
intersections in studies of nuclear dynamics such as the so-called geometric
phase (GP) effect. Although written in the form of a review, it includes
some results not reported elsewhere. Unavoidably, the material presented
is biased toward our own work, although a fair coverage of other viewpoints
is also presented.



April 27, 2004 12:2 Conical Intersections: Electronic Structure, Dynamics and Spectroscopy chap05

208 Conical Intersections: Electronic Structure, Dynamics and Spectroscopy

2. The Many-Body Problem

Schrödinger’s equation describing the complete many-body problem
assumes the form

HT Ω(R′, r′) = EΩ(R′, r′) (1)

where HT is the total Hamiltonian operator, Ω(R′, r′) the total molecu-
lar wave function, E the total energy, and R′ (r′) is the set of nuclear
(electronic) coordinates in a coordinate frame fixed in the laboratory (SF
frame); for simplicity, the spin coordinates of nuclei and electrons are not
indicated.12 Note that the total wave function cannot, in principle, be sep-
arated due to interactions between the nuclear and electronic degrees of
freedom, although it may be separated in practice, partially or completely,
depending on such interactions. In particular, the uniformity and isotropy of
space may justify the separation of the translational and rotational degrees
of freedom of an isolated molecule, as they can be regarded to be described
by cyclic coordinates.a For N nuclei, this leads to (3N−3) translation-free
coordinates R′, of which three coordinates (orientational or external, R̂)
can be specified by a particular way of fixing a coordinate frame (BF frame)
in the non-rigid assembly of particles. The remaining (3N−6) internal coor-
dinates R specify the geometry of the system, and it is solely in terms of
these that any potential energy surface must be expressed, since it has to
be invariant under all orthogonal transformations (rotation-reflections) of
the particle variables in the SF frame. For example, in the case of a tri-
atomic molecule, there are six translation-free coordinates: three describe
the rotational motion, and the other three the internal vibrational motion.
Examples of the latter (often also referred to as shape coordinates) are
the Jacobi coordinates [�r, �R, θ ≡ cos−1(�r · �R/rR)], the valence coordinates
(R1, R2,∠ABC), and the three bond distances (R1, R2, R3). In addition,
linear symmetrized combinations of bond distances,Q1

Q2

Q3

 =

1/
√

3 1/
√

3 1/
√

3
0 1/

√
2 −1/

√
2

2/
√

6 −1/
√

6 −1/
√

6

R1

R2

R3

 (2)

aEven if these separations are mathematically well understood, they may pose difficulties
when perceived from the point of view of separating the electronic and nuclear motions
in the total Hamiltonian (Ref. 2, and references therein).
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or of their squares, Q
β

γ

 =

1 1 1
0

√
3 −√

3
2 −1 −1

R2
1

R2
2

R2
3

 (3)

are frequently employed (the β and γ coordinates so defined should not be
confused with the Euler angles below). Other internal coordinates quite
often used in solving the quantum three-body nuclear problem are the
hyperspherical coordinates13–18 (ρ, θ, ϕ). Assuming these, and the Euler
angles19 (α, β, γ) for the orientational coordinates, one has R′ = (R, R̂)
where R=(ρ, θ, ϕ) and R̂=(α, β, γ).

2.1. Approximations and Concept of Potential
Energy Surface

In the so-called adiabatic approximation to Eq. (1), the total Hamiltonian
is written as

HT = − �
2

2µ
∇2

R′ + He(r;R) (4)

where He(r;R) is the electronic Hamiltonian operator. The electronic wave
functions and eigenvalues are defined by

He(r,R)ΨI(r;R) = VI(R)ΨI(r;R). (5)

∇R′ is the gradient with respect to all nuclear degrees of freedom which
locate the nuclei in a center-of-mass frame, and the semicolon indicates the
parametric dependence of the electronic wave functions on R. Since the
latter form a complete orthonormal set, the total wave function may be
written as the Born–Huang1,20 expansion

Ω(R′, r) =
∑

I

χI(R′)ΨI(r;R) (6)

where {χI(R′)} are the nuclear wave functions, and the summation includes
in principle an integration over the continuum.2

Substitution of Eq. (6) in Eq. (1) leads to an infinite set of coupled
equations which may be written in matrix form as{

− �
2

2µ

[
I∇2

R′ + 2F(R′) · ∇∇∇R′ + G(R′)
]
+ V(R) − EI

}
χ(R′) = 0 (7)

where I is the appropriate identity matrix, χ(R′) is a column vector whose
components are the nuclear wave functions χI(R′), and the elements of the
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vector matrix F(R′) and the scalar matrices G(R′) and V(R) are given by

FIJ(R′) = 〈ΨI(r;R)|∇R′ΨJ(r;R)〉 (8)

GIJ(R′) = 〈ΨI(r;R)|∇2
R′ΨJ(r;R)〉 (9)

VIJ(R) = 〈ΨI(r;R)|He|ΨJ(r;R)〉. (10)

As usual, the bracket notation 〈|〉 implies integration over the electronic
coordinates only, while FIJ(R′) and GIJ(R′) are the first- and second-order
nonadiabatic matrix coupling elements, respectively. By using a derivation
similar to that employed for the Hellmann-Feynman theorem, it may be
shown that

FIJ(R′) =
〈ΨI(r;R)|∇R′He|ΨJ(r;R)〉

VI(R) − VJ(R)
(I �= J) (11)

which illustrates the hyperbolic divergence behavior of the derivative
coupling terms near the crossing seam (where VI = VJ), known to be
responsible for numerical computational difficulties in the adiabatic approx-
imation. Note that the potential matrix is diagonal, in this approximation,
VIJ = VIδIJ , while

C = − �
2

2µ
[2F(R′) · ∇∇∇R′ + G(R′)] (12)

is a nondiagonal matrix. Since the off-diagonal operators CIJ induce tran-
sitions between the electronic states ΨI and ΨJ , they are called operators
of nonadiabaticity. In turn, VI = VII(R) is called an adiabatic potential or
sheet of the electronically adiabatic manifold. If just the Ith term is consid-
ered in Eq. (6) to represent Ω(R′, r), the motion of the nuclei can only lead
to deformations of the electronic distribution and, of course, no transitions
between electronic states will be allowed. The distribution of the nuclei is
then described by the wave function χI(R′) in the potential VII + CII , an
approximation known as the proper adiabatic approximation.21

Consider now an electronic basis defined with the nuclear internal coor-
dinates clamped at R = R0, such that ΨI(r;R) in Eq. (6) gets replaced
by the eigenfunctions ΨI(r)≡ΨI(r;R0) of He(r,R0). Substitution of such
an ansatz into Eq. (1) leads to a system of coupled differential equations
similar to Eq. (7), although with some notable differences. First, the poten-
tial matrix is nondiagonal in the new basis, except at R = R0. Second, all
matrix elements of the nuclear kinetic energy operator vanish identically,
since the basis functions do not depend on R. Of course, if a complete
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basis set is assumed, the eigenvalues of the potential matrix will coincide
with the adiabatic potentials VI(R) in Eq. (5). This is called the crude
Born–Oppenheimer approximation,21 being linked to the proper adiabatic
approximation by the unitary transformation of the electronic basis. Thus,
they are equivalent from this point of view, although the equivalence is
valid only for exact solutions. In fact, the crude BO approximation involves
necessarily some power expansion of the potential energy with respect to
the nuclear displacements from R0, and hence it is expected to have con-
vergence properties different from those in the proper adiabatic approxi-
mation. Indeed, the crude BO approximation can break down simply due
to the signficant anharmonicity of the potential energy surface. However,
it is formally most convenient, since the electronic states {ΨI(r)} form the
basis of irreducible representations of the symmetry group appropriate to
the nuclear configuration R0 (Ref. 12, and references therein).

2.2. Geometric Phase, Adiabatic Potentials and Derivative
Couplings

As first pointed out by Longuet-Higgins,5,6,9 the adiabatic approximation
breaks down at conical intersections, since a real electronic wave function
changes sign whenever traversing a nuclear path which encircles the point
of degeneracy.b Such a geometric phase (GP) effect was placed in a wider
quantum mechanical context by Berry,24 and hence it also became known
as the Berry phase effect. In fact, given the analogy with the effect of a
true magnetic field confined to a narrow solenoid,25 Mead26 suggested the
further designation “molecular Aharonov–Bohm effect”. Such a sign change
in the electronic wave function has important implications. In fact, since
the total electronuclear wave function must be continuous and single-valued,
the nuclear wave function must then also change sign to compensate the
sign-change of the electronic wave function. As a result, both ΨI (r;R) and
χI (R′) are not single-valued when taken as real. However (see Appendix A),
the wave functions in the Born–Huang20 expansion can be single-valued if

bReciprocally, the Longuet-Higgins5,6,9 theorem states that if an adiabatic electronic
wave function changes sign upon circulation around a closed loop in nuclear configuration
space, somewhere on or inside that loop there must exist a conical intersection. Such a
theorem has been used to localize at the ab initio level a conical intersection in LiNaK,22

and more recently in other systems such as O3.23
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allowed to be complex. For example, we may write

Ω (R′, r) =
∑

I

χI (R′) eiAI(R)ΨI (r;R) =
∑

I

χ̃I (R′) Ψ̃I (r;R) (13)

where AI (R) is the geometric phase chosen to make the complex electronic
wave function Ψ̃I (r;R) [and hence Ω (R′, r)] be single-valued. Of course,
Eq. (13) may alternatively be written as

Ω (R′, r) =
∑

I

χ̃I (R′) ΨI (r;R) (14)

where the complex nuclear wave functions {χ̃I (R′)} are now chosen to make
Ω (R′, r) be single-valued. If the ansatz in Eq. (14) is used, one obtains
a set of coupled equations similar to that in Eq. (7), but with the real-
valued nuclear wave functions χI (R′) replaced by the complex ones χ̃I (R′).
Furthermore, if only the diagonal matrix elements are retained (proper
adiabatic approximation), one gets{

− �
2

2µ

[∇2
R′ + GII (R′)

]
+ VI (R) − E

}
χ̃I (R′) = 0. (15)

Alternatively, using real wave functions as in Eq. (13), one has{
− �

2

2µ
[∇R′ + i∇R′AI (R)]2 + V I (R) − E

}
χI (R′) = 0 (16)

where

V I (R) = VI (R) − �
2

2µ
G̃II (R′) (17)

with G̃II (R′) assuming the form of Eq. (9), but with the electronic
wave functions tilded. Note that F̃II(R′) = i∇R′AI(R) + FII (R) =
i∇R′AI (R) since, for real-valued electronic wave functions,27 FII (R) =
〈ΨI (r;R) |∇R′ΨI (r;R)〉 = 0. In such a single-surface approach, Eqs. (15)
and (16) represent the so-called generalized adiabatic approximation
(also called generalized BO approximation28,29). As noted by Mead and
Truhlar.26,30,31 the ansatz in Eq. (13) leads to the appearance of a vector
potential in the nuclear Schrödinger equation. Note that the R-dependence
of AI (R) must reflect the presence of any conical intersection in accordance
with the geometric phase6,24 condition, and hence such a phase can gener-
ally be constructed only after the conical intersections have been located.
Although a general approach for determining AI (R) has been suggested by
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Kendrick and Mead,28 it remains a nontrivial task. An alternative approach
consists of using the ansatz in Eq. (14), where the complex phase fac-
tor is absorbed in the real nuclear wave functions.32–34 Although such an
approach is especially convenient for X3-type systems when adopting hyper-
spherical coordinates (since the complex phase factor concerns in principle
only the ϕ hyperangle,17,35), it can be generalized29,36,37 to the asymmetric
case (see Sec. 4.1.1).

In the absence of a conical intersection, both Eq. (15) and Eq. (16) lead
to the standard adiabatic nuclear Schrödinger equation[

− �

2µ
∇2

R′ + V i (R) − E

]
χI (R′) = 0 (18)

which, for I = 0, describes the motion of the nuclei on the electronic ground
state. Note that in the absence of a conical intersection, G̃II (R) = GII (R),
since one may choose AI (R) = 0.

Consider now the case of a 2 × 2 potential matrix W, invariant and
restricted to E space:

W = WA1

(
1 0
0 1

)
+ Wx

(−1 0
0 1

)
+ Wy

(
0 1
1 0

)
(19)

where WA1 , Wx, Wy are functions of the nuclear coordinates transforming
underc C3v, as indicated in an obvious correspondence by their subscripts
(x = r cos ϕ, y = r sin ϕ). Thus, the energies reducing to the degenerate
pair at the conical configuration are the eigenvalues of W given by

W± = WA1 ± WR (20)

where WR =
(
W 2

x + W 2
y

)1/2. To all orders, the general form for the involved
functions has been shown38 to be

WA1 = f1
[
z; r2, r3 cos(3ϕ)

]
(21)

Wx = r cos ϕf3
[
z; r2, r3 cos(3ϕ)

]
+ r2 cos(2ϕ)f4

[
z; r2, r3 cos(3ϕ)

]
(22)

Wy = r sin ϕf3
[
z; r2, r3 cos(3ϕ)

]− r2 sin(2ϕ)f4
[
z; r2, r3 cos(3ϕ)

]
(23)

where fi (i=1−4) are functions formally representable as a double power
series in their arguments other than z, with the coefficients being constant

cWe may consider only this subgroup of D3h, since no out-of-plane bending is possible
for a triatomic system. The component WA2 must vanish, since W must be Hermitian,
and in our case can be real.
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or functions of z. From Eqs. (20) to (23), it follows:

WA1 = WA1

(
z; r2, r3 cos 3ϕ

)
(24)

WR = r
(
f2 + r2g2 + 2rfg cos 3ϕ

)1/2
(25)

→ rw
(
z; r2, r cos 3ϕ

)
(r → 0) (26)

where f =f(z; r2, r3 cos 3ϕ), g=g(z; r2, r3 cos 3ϕ), and w are formally ana-
lytic functions of their arguments. These equations define the correct behav-
ior of the potential energy in the vicinity of the conical intersection, and
hence may be valuable in delineating fitting forms.38,39

Let now γ̃ be an angle, itself a function of the nuclear coordinates, such
that

Wx = WR cos γ̃, Wy = WR sin γ̃. (27)

In terms of the degenerate pair of wave functions (Ψx, Ψy), we may write the
two adiabatic ones (Ψ+, Ψ−) corresponding to the eigenvalues of Eq. (20)
as

Ψ+ = Ψx sin(γ̃/2) + Ψy cos(γ̃/2), (28)

Ψ− = Ψx cos(γ̃/2) − Ψy sin(γ̃/2) (29)

which cannot be single-valued due to the appearance of γ̃/2 (note that both
Ψ+ and Ψ− change sign when γ̃ increases by 2π). To make them single-
valued, it has been suggested to use26,30 the geometric phases A+(R) =
A−(R) = 3ϕ/2, although other possibilities have been advocated29,40 (see
also Ref. 41). Since 〈Ψ+|Ψ−〉 = δ±, one gets

F̃ = F = 〈Ψ̃−|∇R′Ψ̃+〉 = −〈Ψ̃+|∇R′Ψ̃−〉. (30)

Using now Eqs. (28) to (30), one obtains

F = Flon + Ftra (31)

where the curl-free longitudinal and divergence-free transverse (solenoidal)
parts of the derivative coupling are given by38

Flon =
1
2
∇R′ γ̃ (32)

Ftra = 〈Ψx|∇R′Ψy〉 (33)

a result which is a consequence of the general Helmoltz decomposition
theorem.



April 27, 2004 12:2 Conical Intersections: Electronic Structure, Dynamics and Spectroscopy chap05

Modeling and Interpolation of Global Multi-Sheeted Potential Energy Surfaces 215

The longitudinal part of F shows a singularity at the conical intersection,
but this singularity can be removed by a coordinate-dependent unitary
transformation.42 Moreover, from Eqs. (22), (23) and (27), one may write38

tan γ̃ =
f sin ϕ − rg sin(2ϕ)
f cos ϕ + rg cos(2ϕ)

(34)

and defining ε such that γ̃ = ϕ + ε, one has

tan ε = − rg sin(3ϕ)
f + rg cos(3ϕ)

. (35)

Thus,

Flon =
1
2
∇R′

{
ϕ − tan−1

[
rg sin(3ϕ)

f + rg cos(3ϕ)

]}
(36)

which defines the correct analytic properties of the nonadiabatic cou-
pling near the seam of a potential energy surface exhibiting a C3v conical
intersection.38,39,43,44

Equation (32) can be solved by integration along paths in the nuclear
configuration space.45,46 The result will depend on the initial and final
points of integration but not on the path chosen. Due to the GP
theorem,5,6,9 if the integration is carried out along a closed loop C, γ̃/2
should change by24,46,47

ξγ̃ =
∮

C
Flon (R) dR = pπ (37)

where p = 0, if C does not enclose any conical intersection, and p = 1, if it
does enclose one such an intersection.

The transverse part remains finite at the seam, and cannot generally
be transformed away. However, it vanishes identically for a strictly dia-
batic two-state electronic basis,d and hence one may think of defining an

dIt is well established that for orthonormalized wave functions such a perfect diabatiza-
tion cannot generally exist for a polyatomic system.42,45 However, a method has been
suggested for constructing a strictly diabatic basis set for the two-state case by assuming
non-normalized basis functions.48
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(adiabatic-to-diabatic) angle45,49,50 α(R) such that

F = ∇R′α(R) (38)

which would be the anglee capable of transforming the adiabatic basis to a
diabatic one, in which all the derivative couplings vanish identically. Simi-
larly to the above, we may define a topological phase51 as the phase accu-
mulated by carrying out an equivalent integration of Eq. (38) along a closed
path,

ξα =
∮

C
F (R) dR . (39)

Since F does not generally satisfy Eq. (32), the result of such an inte-
gration will be path-dependent.42 However, since the transverse part is
finite (and possibly negligible, especially upon application of an optimal
adiabatization44 procedure), one may expect to have ξγ̃ = ξα. Note that
the mixing angle γ(R) = γ̃/2 that diagonalizes the potential matrix is (up
to a constant) identical to α(R)40 and the geometric phase AI(R).29

3. Strategies for Multi-Sheeted Potential Energy Surfaces

Multi-sheeted potential energy surfaces are required whenever more than
one possible set of electronic states are allowed per channel to break or
form a polyatomic molecule. This is a situation very frequently encoun-
tered in studying chemical reactions, since the reactants and/or products
are often radicals with open shells and nearly degenerate orbitals. Clearly,
two distinct approaches to multi-sheeted potential energy surfaces can be
envisaged. The first consists of fitting the various adiabatic potential energy
surfaces which stem from the diagonalization of the electronic Hamiltonian
matrix, either separately or using a multi-sheeted potential model. In the
other, one fits instead the various diagonal and coupling terms of the poten-
tial matrix, each one per se; the adiabatic potentials can then be obtained
by diagonalizing the fitted diabatic potential matrix. Both such approaches
have merits and drawbacks. The first strategy may be more advantageous if
the aim is to solve adiabatically the nuclear equations of motion, either as
a single-sheet or a coupled multi-sheet problem. Of course, in this case one

eTo avoid confusion with the Euler angle α, we indicate explicitly its dependence on R.
A similar procedure is adopted for γ(R).



April 27, 2004 12:2 Conical Intersections: Electronic Structure, Dynamics and Spectroscopy chap05

Modeling and Interpolation of Global Multi-Sheeted Potential Energy Surfaces 217

requires the knowledge of the derivative coupling terms, which suffer from
the numerical difficulties already mentioned in Sec. 2.1. Moreover, one must
ensure that the crossing seam is accurately reproduced and the adiabatic
potential energy surfaces show the correct analytic properties close to the
crossing seam. This cannot be ignored if the proper topological properties
are to be warranted. For the 2×2 case, fits to the separate adiabatic poten-
tial energy surfaces can in principle be done either using interpolation meth-
ods or a carefully chosen global fitting form. In this case, the use of polyno-
mial forms employing non-analytic coordinates52 such as q =

(
Q2

2 + Q2
3
)1/2

for a X3-type molecule may in special cases offer a method of choice. The
other strategy is recommended for a diabatic treatment of the dynamics, but
then a method is required to obtain the input data necessary to calibrate
the elements of the diabatic potential matrix, as they cannot be obtained
by solving the electronic Schrödinger equation. If ab initio energies are to be
used, the question is how to find a similarity transformation that leads from
the adiabatic to the diabatic potential matrices. In fact, strictly diabatic
basis sets that fully remove the nonadiabatic coupling terms do not gener-
ally exist42 and, for the two-state problem, the standard technique45,50,53–55

based on the integration of Eq. (38) can be hopelessly cumbersome, because
the result is path-dependent.42 Although the use of some electronic prop-
erties (e.g. dipole matrix elements) has been suggested8,40,46,47,56–66 to find
such an adiabatic-to-diabatic transformation angle, the fact that such ele-
ments are made small does not lead to a rigorous treatment. Whatever
approach is chosen, there are general requirements that are common to
both modelling strategies and the single-surface problem, and it is on them
that we now digress.

3.1. General Rules

A common starting point is to presume that the electronic Schrödinger
equation has been solved at sufficiently many nuclear configurations to
determine the potential energy surface (or sheets of the relevant adiabatic
manifold). Although ab initio electronic structure calculations are becoming
increasingly accurate, this poses a formidable undertaking: ab initio energies
are calculated by pointwise solution of the electronic Schrödinger equation,
while the dynamics studies require a quick and efficient method to evaluate
the potential energy surface for any geometry of the nuclei. Semiempirical
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methods can then be of major importance for dynamics studies. However,
for systems containing a small number of light atoms, state-of-the-art ab ini-
tio calculations can reach sufficient accuracy to be of practical interest for
direct use in molecular dynamics. In this case, interpolation schemes may
be valuable to generate such data, even if some semiempirical correction
is necessary to account for the unavoidable errors due to truncation of the
configuration interaction expansion and incompletness of the one-electron
basis sets.67–69 Of course, direct dynamics approaches or mixed ones (direct
dynamics/local interpolation methods) are unaffordable if the computa-
tional effort per point is too demanding to calculate more than a thousand
points or so.

For the single-surface problem, Wright and Gray,70 following a sug-
gestion by Kuntz,71 enumerated ten criteria that a potential form should
satisfy to be successful:

(1) It should accurately characterize the asymptotic reactant and product
molecules (or more generally any fragment of the full system).

(2) It should have the correct symmetry properties of the system.
(3) It should represent the true potential energy surface accurately in

interaction regions for which experimental or nonempirical theo-
retical data are available (including, in principle, the very short-
range and long-range regions associated with the various asymptotic
channels72,73).

(4) It should behave in a physically reasonable manner in those parts of
the interaction region for which no experimental or theoretical data
are available.

(5) It should smoothly connect the asymptotic and interaction region in
a physically reasonable way.

(6) The interpolating function and its derivatives should have as simple
an algebraic form as possible consistent with the desired quality of
the fit.

(7) It should require as small a number of data points as possible to
achieve an accurate fit.

(8) It should converge to the true surface as more data become available.
(9) It should indicate where it is most meaningful to compute the data

points.
(10) It should have a minimal amount of ad hoc or ‘patched up character’.
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Connor74 noted that criteria (1)–(5) are essential (the remaining five are
less essential, although highly desirable), and Schatz75 remarked that such
criteria may lead to conflicting strategies, since simplicity and accuracy are
goals that are rarely met together. In an attempt to maximize accuracy and
simplicity, we have advocated72,73 the use of physically motivated forms.

Although offering the least-biased approach to potential energy surfaces,
ab initio calculations seldom meet the standards of spectroscopic (≤ 1 cm−1)
or even chemical (≤1 kcal mol−1) accuracy. On the other hand, vibrational-
rotational spectra and kinetics data cannot generally be inverted directly to
yield the potential energy surface. The only practical way available to test
and improve such surfaces is therefore by comparing the calculated and
experimental results, and minimize the difference between the two. Two
approaches are then possible. One involves an iterative process, in which
the least-squares parameters in a given potential model are, in its most
sophisticated form, determined from a multiproperty fit to ab initio data,
vibrational-rotational levels, and eventually other types of information. In
this case, an ab initio based potential model can offer an excellent starting
point for the fitting procedure, as it has recently been demonstrated76 for
SO2. The other approach consists of merging a local potential with spec-
troscopic quality with a global, but less accurate, one (see Sec. 3.2.4). Both
these strategies are illustrated schematically in Fig. 1, assuming, just for
the sake of illustration, that the global function is of the double many-body
expansion (DMBE) type to be discussed in Sec. 3.2.2.

Difficulties arise also in choosing a set of internal coordinates for a sys-
tem with five atoms or more, since there are N(N−1) internal coordinates
but only (3N−6) are independent: a set of (3N−6) coordinates may then be
locally complete near one configuration, but incomplete near another (for
an illustration, see Ref. 77), implying that different Decius’s coordinates
sets should be used at those configurations. Although this may suggest
that the potential energy function cannot be an analytic function of the
coordinates,2 it does not by itself show that for such systems it is impos-
sible to find a set of internal coordinates in which the potential energy is
an analytic function. In fact, a recent study on HO4 suggests78 that the
natural coordinates in which to work may be the internuclear distances,
even if they form a redundant set. Indeed, such a set has the advantage of
making it easier to impose symmetry invariance under permutations.
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Fig. 1. Strategies for the construction of potential energy surfaces with ‘near’ spec-
troscopic accuracy. The solid lines indicate the direct fit of spectroscopic data using a
DMBE form, while the dashed lines show the process followed to obtain an ES form.

Several approaches have been proposed to develop potential energy sur-
faces for dynamics calculations, as reviewed in a variety of places.72,75,79–86

These methods may be categorized as global methods and local methods. In
the former, the potential energy surface is determined at each point by all
the data (ab initio points and/or other information) that are used as input
for the calibration procedure. Among the global methods, we consider the
following sub-categories:

• Functional forms obtained from quantum chemistry, such as those based
on semiempirical valence-bond or related theories,87–93 and many-body
expansion type developments.72,73,79,85

• Fitting forms obtained from other motivations such as standard
cubic-spline94 methods, Morse-spline95 and rotated Morse-spline70 inter-
polation methods, reproducing kernel Hilbert space96,97 interpolation
methods, distributed approximating functionals,98 and hybrid methods
combining spline fits with simple empirical functions.99

• Energy-switching100 methods based on merging forms which are reliable
for different energy regimes.

In turn, the local methods determine the potential energy surface at each
point based only on ab initio data that is available for geometries close to
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that point. They include:

(1) Shepard interpolation methods;101,102

(2) Moving least-squares methods;103,104

(3) Interpolation on the fly104 using the ab initio force field data obtained
when doing direct reaction dynamics.105

Naturally, we can discuss only a subset of such methods by focusing on
possible applications to multi-sheeted potential energy surfaces.

3.2. Global Methods

Among the global methods, two approaches are highlighted: the semi-
empirical diatomics-in-molecules91–93 (DIM) and the double many-body
expansion72,73,85 (DMBE) methods. Regarding the interpolation tech-
niques, we focus on the global reproducing kernel Hilbert space97 method,
and the local Shepard interpolation101,102 and moving least-squares103,104

approaches. Inevitably, the analysis may favor approaches developed in the
author’s group; the reader is addressed to the original literature for more
details.

3.2.1. Diatomics-in-Molecules

In the DIM method, originally proposed by Ellison91 and subsquently devel-
oped by Tully 92 and Kuntz, 93 the lth electronic state is first written as the
expansion Ψl =

∑
m CmlΦm which runs over some finite set of polyatomic

basis functions Φm. This leads to the eigenvalue matrix equation

HC = SCE (40)

where Hmm′ = 〈Φm|He|Φm′〉 and Smm′ = 〈Φm|Φm′〉 are the Hamiltonian
and overlap matrix elements, respectively, and E is a diagonal matrix.

Then, the electronic Hamiltonian He is partitioned as

He =
∑
K

∑
L>K

HKL
e − (N − 2)

∑
K

HK
e (41)

where HK
e is an atomic Hamiltonian operator that depends on the electrons

and coordinates of atom K, HKL
e is a diatomic Hamiltonian depending on

the electrons and coordinates of atoms K and L and their interactions, and
the factor (N−2) corrects for the multiple counting of the atomic fragments.
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In turn, the polyatomic basis functions are written as

Φm = Aφ0
m = AAiBjCk . . . (42)

where A is the n-electron antisymmetrizer, and Ai, Bj , . . . are atomic func-
tions which are already antisymmetric with respect to interchange of any
two electrons in the atom, and i, j, k, . . . label the set of atomic quantum
numbers. Such wave functions are eigenfunctions of the spin (Ŝ2 and Ŝz)
and angular momentum (L̂2 and L̂z) operators, and correspond to definite
values of the atomic energy. Moreover, they refer to a common space-fixed
system of axis, with their transformation properties being given by

R̂(α, β, γ)|LM〉 =
∑
M ′

R
(L)
MM ′(α, β, γ)|LM ′〉 (43)

where R
(L)
MM ′(α, β, γ) is the rotational matrix,19 and |LM〉 a wave function

with orbital angular momentum L and projection M . For triatomics, the
wave functions are often defined such that they have the proper symmetry
within the point group Cs. For example, for L = 1, they are written as

(Px, Py, Pz) =
1√
2

(P1, P0, P−1)

−1 −1 0
0 0

√
2

1 −1 0

 . (44)

Similarly, it is convenient to construct linear combinations of the orbitals
{Φm} that are eigenfunctions of the total spin for the molecular system.

From Eqs. (41) and (42), and the fact that A commutes with He, one
obtains92

HKL
mm′ = 〈φ0

m|HKL
e |φ0

m′〉 (45)

HK
mm′ = 〈φ0

m|HK
e |φ0

m′〉. (46)

The atomic fragment matrix is easily evaluated, since HK
e is the Hamil-

tonian for atom K and φ0
m is a direct product of atomic eigenvectors. For

atom A, one gets

HA
mm′ = 〈φ0

m|HA
e |Ai′Bj′Ck′ . . .〉 = EA

i′ 〈φ0
m|φ0

m′〉 (47)

where m ≡ (i, j, k, . . .), m′ ≡ (i′, j′, k′, . . .), and EA
i′ are the exact atomic

eigenvalues for atom A which can be obtained from atomic tables.
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Similarly, by denoting the exact diatomic eigenvectors for the KL frag-
ment by

{
ψKL

η

}
, and inserting

∑
η |ψKL

η 〉〈ψKL
η | after the operator HKL in

Eq. (45), one obtains:

HKL
mm′ =

∑
η

〈φ0
m|ψKL

η 〉EKL
η 〈ψKL

η |φ0
m′〉 (48)

where EKL
η is the exact diatomic energy eigenvalue for diatom KL, which

is a function of the distance between K and L, and η specifies the set of
diatomic quantum numbers. The exact diatomic eigenvectors so obtained
are then expanded in terms of a complete set of atomic eigenvectors. For
the case of diatomic AB, one has

ψAB
η =

∑
ij

〈ψAB
η |AABAiBj〉AABAiBj =

∑
ij

UAB
ij,ηAABAiBj (49)

where AAB is the (nA + nB)-electron antisymmetrizer. Substitution of ψAB
η

in Eq. (48), leads now to

HAB
mm′ =

∑
η,rs,r′s′

SAB
ij,rsU

AB
rs,ηEAB

η UAB†
η,r′s′SAB†

r′s′,i′j′ (50)

where SAB
ij,rs = 〈BjAi|AAB |ArBs〉. Being a semiempirical method, it is com-

mon to set all overlap matrices to unit matrices. Equations (47) and (50)
then become

HA
mm′ ∼ EA

i′ δii′δjj′δkk′ (51)

HAB
mm′ ∼

∑
η

UAB
ij,ηEAB

η UAB†
η,i′j′δkk′ (52)

where UAB is a real orthogonal matrix and the Hamiltonian matrices are
symmetric. The former can be decomposed as

UAB = RABTAB (53)

where RAB is a direct product of the rotation matrices (these rotate the Ai

and Bj eigenvectors so that their z-axis are aligned with the internuclear
axis of diatom AB), and TAB is a spin-recoupling matrix which transforms
the original coupling of spin states to one in which A couples with B.
For a triatomic system, these are the well known 6-j coefficients. Often,
further partitions of UAB are convenient to impose other transformation
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properties.106 Thus, relative to the separated atoms, the diabatic potential
energy surface of a triatomic system becomes

W = EAB + RBCTBCEBCTBC†
RBC†

+ RACTACEACTAC†
RAC† − HA − HB − HC (54)

where it is assumed that the basis set corresponds to the spin coupling of
the diatomic AB at first, and the axis of quantization is directed along this
fragment.

3.2.2. Double Many-Body Expansion

The DIM approach has the appealing feature of having quantum mechanical
origin, leading in principle to the exact solution of the electronic problem
if complete basis sets are used. However, it has gained its greatest popu-
larity as a semiempirical method, since it preserves in principle the correct
structure of the potential matrix. Thus, one usually carries the approxima-
tions to the extreme by employing minimal basis sets and ignoring overlap
between the basis functions. Eq. (48) is then no longer accurate, since the
accuracy with which the matrix elements can be expressed by one-center
and two-center integrals increases with basis set size.107 A major goal would
then be to correct the DIM formulation for the neglect of many-center terms
and orbital overlap.

Within this spirit, we have recently shown85 that, to second-order of
approximation, Eq. (45) may be written as

HKL
mm′ =

∑
η

〈φ0
m|ψKL

η 〉 (EKL
η + FKL

mm′
) 〈ψKL

η |φ0
m′〉 (55)

where

FKL
mm′ =

〈ψKL
η |φ′

m′〉 + 〈φ′
m|ψKL

η 〉
〈ψKL

η |φ0
m′〉 (56)

and FKL
mm′ is some unknown function, which may be treated as a geometry-

dependent arbitrary form for each mm′ matrix element of diatomic KL.
Such functions may then carry adjustable parameters, which can be cali-
brated from a fit to accurate ab initio energies or empirical data. By expand-
ing the exact diatomic eigenvectors in terms of a complete set of atomic
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eigenvectors, one gets for the KL pair85

HKL = RKLTKLEKL
(
1 + FKL

)
TKL†

RKL†
. (57)

For a triatomic system, the diabatic potential matrix assumes then the form

W = EAB
(
1 + FAB

)
+ RBCTBCEBC

(
1 + FBC

)
TBC†

RBC†

+ RACTACEAC
(
1 + FAC

)
TAC†

RAC† − HA − HB − HC (58)

where 1 is a matrix of unit elements. Explicitly, one has for the ij matrix
element:

Wij = EAB
ij

(
1 + FAB

ij

)
+
∑

k

∑
l

∑
m

∑
n

[
RBC

ik TBC
kl EBC

lm

(
1 + FBC

lm

)
TBC†

mn RBC†
nj

+RAC
ik TAC

kl EAC
lm

(
1 + FAC

lm

)
TAC†

mn RAC†
nj

]
− HA

ij − HB
ij − HC

ij . (59)

Clearly, the DIM expression is recovered when FKL
mm′ = 0 for all mm′

and KL.
Consider now the simplest case of interacting 1S atoms, where the

potential energy surface has dimension 1×1. Thus, it assumes the pairwise
additive form

V (XN ) =
∑

X2⊂XN

V (2)(X2)
[
1 + F (N)(XN )

]
(60)

with the energies of the isolated atoms being taken as the reference energy.
Note that Xn specifies any set of n(n − 1)/2 interatomic distances refer-
ring to n atoms [this is a subset of XN ≡ (

X1, X2, . . . , XN(N−1)/2
)
], and

the “dressing functions” account for many-body interactions higher than
two-body. By partitioning now the energy into an extended Hartree–Fock
(EHF) part and a dynamical correlation (dc) part, and further developing
V

(2)
EHF (X2)F (N)(XN ) and V

(2)
dc (X2)F (N)(XN ) as a cluster expansion, one

obtains without any loss of generality

V (XN ) =
N∑

n=2

∑
Xn⊂XN

[
V

(n)
EHF (Xn) + V

(n)
dc (Xn)

]
(61)

which is the familiar DMBE form for single-valued potential energy sur-
faces. Of course, a fundamental requirement of DMBE (as well as other
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formulations) is to have accurate representations of the potential energy
curves for the relevant electronic states of the diatomic fragments, an issue
discussed further in Appendix B. For specific forms of many-body energy
terms, the reader is referred to Ref. 72.

The use of Eq. (61) to represent the potential energy surface of inter-
acting atoms of arbitrary spin and angular momentum rests therefore on
the neglect of the spin-recoupling and orientational effects. For open-shell
atoms, chemical bonding may occur to form stable diatomic fragments,
and hence there will be a deep minimum if the cluster expansion is trun-
cated at the two-body level. To cancel such a minimum in part or com-
pletely, one then has to add repulsive higher-order energy terms. Other
features of the potential energy surface such as crossings and avoided cross-
ings will, of course, also be absent at the two-body level. Not surprisingly,
therefore, Eq. (61) may in some cases be a poor starting point for an
accurate fit of the complete adiabatic potential energy surface. For such
cases, a more appropriate treatment consists of diagonalizing the poten-
tial matrix that results from Eqs. (41) and (57). Alternatively, we may
use the matrix formulation proposed by Murrell et al.79 for multivalued
functions:

W (R) =


W11 (R) W12 (R) · · · W1n (R)
W12 (R) W22 (R) · · · W2n (R)

...
...

. . .
...

W1n (R) W2n (R) · · · Wnn (R)

 (62)

where the matrix elements are developed as many-body expansions or
double many-body expansions involving the appropriate electronic states
of the fragments. Although a correspondence between Eqs. (62) and
(58) may be established only for a matrix representation of a given
dimensionality, both formalisms are interelated and may in principle
be calibrated from a fit to available data. Of course, difficulties in
describing surface intersections in a correct quantum mechanical man-
ner may turn out to be more critical when using Eq. (62), although
such a problem may in principle be minimized if a good cover-
age of the molecular configuration space is provided by the ab initio
data.
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3.2.3. Reproducing Kernel Hilbert Space

The RKHS method proposed by Ho and Rabitz96,108,109 provides a gen-
eral approach to interpolation from a grid (not necessarily rectangular)
of ab initio points. However, conversely to the traditional spline forms, it
allows to develop interpolation functions which satisfy important boundary
conditions and other constraints. For example, it may lead to smooth sur-
faces capable of extrapolation to the appropriate dissociation limits. More-
over, for diatomic curves, it may be chosen to satisfy the proper asymptotic
dependendence on bond distance as R → ∞. However, like the traditional
spline methods, RKHS quickly runs into difficulties for problems with high
dimensionality (tetratomic or larger systems). In the following, we survey
the basic RKHS formalism by focusing on the simplest one-dimensional
case. In fact, for systems with three or more dimensions, the usual strat-
egy is to use a many-body expansion79 of the potential energy surface and
define the various multidimensional kernels from direct products of kernels
developed separately for each degree of freedom.

As in all interpolation methods, one uses the potential at a given set
of points {V (Ri)} to determine the global V (R). To do this while keeping
V (R) smooth, one imposes that V (R) satisfies the reproducing property

V (R) =
∫

q(R,R′)V (R′)dR′ (63)

with the kernel q(R,R′) being determined by the order of smoothness
required and the boundary conditions associated with the chosen coordi-
nates. For a set of ab initio points, V (R) is chosen such that Eq. (63) is
exactly satisfied at each such point:

V (Rj) =
∫

q(Rj , R
′)V (R′)dR′ j = 1, . . . , N. (64)

The solution assumes the form

V (R) =
N∑

i=1

αiq(Ri, R) (65)

where αi are linear parameters obtained96 by solving (directly or by singular
value decomposition) the system of linear equations

N∑
i=1

q(Rj , Ri)αi = V (Rj) j = 1, . . . , N. (66)
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As an example of a reproducing kernel, Ho and Rabitz 96 suggested

qn,m(x, x′) = n2x
−(m+1)
> B(m + 1, n) 2F1

(
−n + 1, m + 1; n + m + 1;

x>

x<

)
(67)

where x> and x< are the larger and smaller of x and x′, B(a, b) is the beta
function, 2F1(a, b; c; z) is the Gauss hypergeometric function, and n and m

in qn,m are superscripts definining the order of smoothness of the function
and its asymptotic behavior (x−m). For n > 1 (negative a), Eq. (67) reduces
to the polynomial form

qn,m(x, x′) =
1

xm+1
>

n−1∑
k=0

βn,m
k

xk
>

xk
<

(68)

where the coefficients βn,m
k are implicitly given.96 At large distances

R > RN , one has

V (R) = −
n−1∑
k=0

Cn,m
m+k+1

Rm+k+1 (69)

where

Cn,m
m+k+1 = βn,m

k

N∑
i=1

αiR
k
i (70)

provides the expression for the long range coefficients. The choice n = 2
and m = 5 yields an asymptotic behavior of R−6, which corresponds to the
power of the leading term in the dispersion series expansion. Interpolating
instead with respect to y = R2 and using (n = 2, m = 1), yields the form110

V (R) = −C2,1
2

R4 − C2,1
3

R6 (71)

which shows only even powers in the inverse-R expansion development.
However, the behavior of the potential at short distances is less satisfactory.
For R < R1, one obtains

V (R) =
n−1∑
k=0

dn,m
k Rk (72)
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where

dn,m
k = βn,m

k

N∑
i=1

αi

Rm+k+1
i

(73)

which shows that the RKHS method extrapolates at short distance as a
polynomial function of degree n − 1. Since, as usual, n is chosen to be a
small integer, the extrapolation to the repulsive wing of the potential curve
(surface) can be rather poor.110,111 This implies that the grid of ab initio
energies must extend to rather short distances which may not be easy to
do, as the calculated points often tend to be unreliable there.

3.2.4. Energy-Switching

Ideally, a global potential energy surface should be capable of achieving
spectroscopic accuracy at regions where such an information is available.
Aiming at this goal, we have proposed100 a simple approach which is based
on the switching between two forms: one (V1), global, which provides a
realistic (though not necessarily accurate) description of the surface at all
regions of configuration space; the other (V2), local, which is capable of
achieving spectroscopic accuracy near the minima to which the available
spectroscopic information pertains (see Fig. 1). Because the switching uses
the energy as the single coordinate, the method has been named as energy-
switching100 (ES). Thus,

VES = f(∆E)V1(R) + [1 − f(∆E)]V2(R) (74)

with a convenient switching form being

f =
1
2

{1 + tanh[γE(∆E)∆E]} (75)

where ∆E = E−E0 is the energy difference relative to the reference energy
E0, and γE is some function of ∆E which is chosen to warrant the correct
asymptotic limits in f .100,112

The ES method has been extensively tested on the water molecule,
for which single-valued,100 double-valued,112 and triple-valued113 potential
energy surfaces of DMBE-type quality have been completed which repro-
duce the vibrational spectroscopy of H2O within a few cm−1. The method
has also been successfully employed to obtain “spectroscopically accurate”
two-valued functions for H+

3
114,115 and NO2,116 and single-valued functions
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for HeHCN117 and ArHCN.118 Moreover, it has been used to generate an
improved DMBE potential energy surface119 for HO3 by combining a local
four-body potential fitted to accurate ab initio energies with one previously
reported for the original DMBE function.120 We emphasize that van der
Waals molecules may provide a class of systems for which the ES method
turns out to be particularly useful, given the orders of magnitude difference
involved in the relevant dynamical processes.

Clearly, the ES method can only be used for adiabatic potential energy
surfaces, since the spectroscopic data refers to the eigenvalues of the
true Hamiltonian. One then requires some diabatization scheme to go
from the diagonal adiabatic potential matrix VES to the complete dia-
batic one WES . In principle, this may be done through numerical back-
transformation

WES = UVESU† (76)

where U is the orthogonal matrix which diagonalizes the original diabatic
potential matrix, i.e., V = UWU†. Of course, the reliability of such a
procedure stems from the premise that and ES (VES) and global (V)
adiabatic potential energy surfaces should in principle have very similar
topographies.112

3.3. Local Methods

3.3.1. Shepard Interpolation

In the Shepard interpolation method, the potential is written in the form

V (R) =
N∑

i=1

ωi(R)Ti(R) (77)

where R is the vector of internal coordinates, and ωi(R) is the weight
associated to the Taylor series expansion Ti(R). The idea underlying such
an approach is that we have ab initio data of sufficient density such that
any geometry of interest is within the domain of convergence of Taylor
series expansions about at least one point in the ab initio data set. Since
the weights depend on the geometry, they may be viewed as switches which
“turn on” whenever the ab initio points are suitably close to the geometry
being considered. The total potential will then be just the weighted average
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of Taylor expansion estimates from the nearby points. For this, the weight
functions must satisfy

ωi(z) → 1 (|z − z(i)| → 0) (78)

ωi(z) → 0 (|z − z(i)| → ∞) (79)

which may be achieved with

ωi(z) =

{
3N−6∑
α=1

[zα − zα(i)]2 + a2

}−p

(80)

once every function is properly normalized by dividing by their sum. The
parameter p determines how quickly the weight function dropps off, while
a is chosen such as to avoid that the weight function becomes singular at
the position of each data point; for a discussion on the optimal choices of
these coefficients, see Ref. 121.

A critical issue in this method is the appropriate choice of the coordi-
nates to carry out the expansions. Collins and coworkers122 suggested the
use of z = R−1, which has the advantage that a single point in Eq. (77)
describes accurately the asymptotic behavior of the isolated diatomic
potential.121 In addition, Taylor series expansions in such coordinates have
a much larger domain of convergence for diatomic potentials that the cor-
responding expansions in the coordinates themselves. Another important
issue is the order of the Taylor series expansions. A high-order expansion
would be expected to have an extended domain of convergence, which would
imply a smaller number of points to achieve an acceptable surface. How-
ever, few ab initio codes provide derivatives higher than quadratic, and
those which do may not be the recommended methods to describe chemical
reactions. The best methods usually provide only energies and gradients,
which is an handicap to the Shepard interpolation schemes that have been
shown by Collins122 to require gradient and hessian information in order to
obtain reliable surfaces.

3.3.2. Moving Least-Squares

In this method, the potential is expanded using a set of basis functions
{bk(R)} as

V (R) = aT (R)b(R) =
K∑

k=1

ak(R)bk(R). (81)
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Thus, it has a form similar to that used in conventional least-squares
approaches, but with the weights being themselves a function of R. Also as
in conventional least-squares, the parameters ak(R) are obtained by making
stationary the functional

E(V ) =
N∑

j=1

ωj(R) [V (Rj) − vj ]
2 (82)

where (Rj , vj) is a point to be interpolated. This leads to the following
generalized normal equations

BW (R)BT a(R) = BW (R)f (83)

where W (R) is a diagonal matrix from all the weights

W = diag [ω1(R), ω2(R), . . . , ωN (R)] (84)

and B is composed by the values of the basis functions {bk(R)} at Rj ,

B =


b1(R1) b1(R2) · · · b1(RN )
b2(R1) b2(R2) · · · b2(RN )

. . · · · .

bK(R1) bK(R2) · · · bK(RN )

 . (85)

Clearly, for data points close to R, the weights should be larger than for
points far away. This can be accomplished by using the function in Eq. (80).
Because the weights depend on position, the coefficients must be deter-
mined by solving Eq. (83) for each value of R where the potential is to be
determined. For dynamics calculations, one often requires to know also the
gradient of the potential, which requires the solution of another system of
linear equations at each value of R, namely

us(R) = aT
s (R)b(R) + aT (R)bs(R) (86)

where the subscript s denotes the derivative with respect to the sth coor-
dinate. In turn, as is obtained by solving the following system of linear
equations

BW (R)BT as(R) = BWs(R)
[
f − BT a(R)

]
(87)

which has dimensions equal to the number of basis functions. Because the
solution of Eq. (87) can be time consuming, it has been suggested104 to use
this procedure to calculate the gradient and hessian at each ab initio point,
with the results being subsequently used to define a Shepard interpolation
(interpolant moving least squares).
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4. Case Studies

4.1. Three-Atom Three-Electron Systems

Restricting the analysis to a minimal polyatomic basis set, the doublet
states for a three-atom three-electron (s3) system assume the form

Ψ1 =
1√
2

(|ab̄c| − |ābc|) (88)

Ψ2 =
1√
6

(
2|abc̄| − |ab̄c| − |ābc|) (89)

where the bar over an orbital in the Slater determinant denotes a beta
spin for the electron of the corresponding atom (A, B, and C). The DMBE
potential matrix potential assumes then the form85

W = WEHF + Wdc (90)

where

WΓ =

[
1V

(2)
AB

(
1 + 1FΓ,AB

)
0

0 3V
(2)
AB

(
1 + 3FΓ,AB

)
]

+ TBC

[
1V

(2)
BC

(
1 + 1FΓ,BC

)
0

0 3V
(2)
BC

(
1 + 3FΓ,BC

)
]
T−1

BC

+ TAC

[
1V

(2)
AC

(
1 + 1FΓ,AC

)
0

0 3V
(2)
AC

(
1 + 3FΓ,AC

)]T−1
AC (91)

and 1V
(2)
AB and 3V

(2)
AB are the Γ (= EHF, dc) components of the potential

energy curves for the ground-singlet and lowest-triplet states of the diatomic
AB (similarly for BC and AC). In turn, the spin recoupling matrices (deter-
mined in Appendix C) are

TBC =
1
2

(−1 −√
3√

3 −1

)
TAC =

1
2

(
1

√
3√

3 −1

)
. (92)

Thus, we may also write

WΓ = W(2)
Γ + W(3)

Γ (93)
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where the two-body matrices are defined by

W
(2)
Γ,11 = 1V

(2)
Γ,ab +

1
4

[
1V

(2)
Γ,ac + 33V

(2)
Γ,ac + 1V

(2)
Γ,bc + 33V

(2)
Γ,bc

]
(94)

W
(2)
Γ,22 = 3V

(2)
Γ,ab +

1
4

[
31V

(2)
Γ,ac + 3V

(2)
Γ,ac + 31V

(2)
Γ,bc + 3V

(2)
Γ,bc

]
(95)

W
(2)
Γ,12 = W

(2)
Γ,21 =

√
3

4

[
1V

(2)
Γ,ac − 3V

(2)
Γ,ac − 1V

(2)
Γ,bc + 3V

(2)
Γ,bc

]
(96)

and corresponding definitions hold for the three-body ones. For example,
1V

(3)
Γ,ab = 1FΓ,ab

1V
(2)
Γ,ab, with corresponding definitions holding for the bc and

ac pairs.
By defining now dressed Coulomb and exchange integrals as

Qi =
1
2

∑
Γ

[
1V

(2)
Γ,i

(
1 + 1FΓ,i

)
+ 3V

(2)
Γ,i

(
1 + 3FΓ,i

)]
(97)

Ji =
1
2

∑
Γ

[
1V

(2)
Γ,i

(
1 + 1FΓ,i

)− 3V
(2)
Γ,i

(
1 + 3FΓ,i

)]
(98)

where i = 1 − 3 is now used to label the diatomic pair (AB, BC, AC), one
gets

Qi =
∑
Γ

[
Q

(2)
Γ,i + Q

(3)
Γ,i

]
(99)

Ji =
∑
Γ

[
J

(2)
Γ,i + J

(3)
Γ,i

]
(100)

where Q
(2)
Γ,i = [1V (2)

Γ,i + 3V
(2)
Γ,i]/2, J

(3)
Γ,i = [1V (2)

Γ,i
1FΓ,i − 3V

(2)
Γ,i

3FΓ,i]/2, and

corresponding expressions apply to Q
(3)
Γ,i and J

(2)
Γ,i . Eq. (94) to Eq. (96) may

then be written as

W
(n)
Γ,11 =

3∑
i=1

1V
(n)
Γ,i − 3

2

[
J

(n)
Γ,j + J

(n)
Γ,k

]
(101)

W
(n)
Γ,22 =

3∑
i=1

3V
(n)
Γ,i +

3
2

[
J

(n)
Γ,j + J

(n)
Γ,k

]
(102)

W
(n)
Γ,12 =

√
3

2

[
J

(n)
Γ,j − J

(n)
Γ,k

]
(103)
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which shows that W
(n)
Γ,11 correlates on dissociation with the singlet curves,

while W
(n)
Γ,11 leads to the triplet ones at the same limit. Moreover, by diag-

onalizing Eq. (90), one obtains85

V± =
3∑

i=1

3∑
n=2

∑
Γ

Q
(n)
Γ,i ± 1

2


3∑

i,j=1

[
3∑

n=2

∑
Γ

(
J

(n)
Γ,i − J

(n)
Γ,j

)]2


1/2

(104)

which, using 1FΓ,i = 3FΓ,i = 0, leads to the well known LEPS87–90 result.
In turn, if one ignores J

(2)
dc,i and J

(3)
dc,i and assume J

(3)
EHF,i = 0 for all values

of i, the formalism123 used in fitting the accurate DMBE potential energy
surface39 is recovered. By ignoring instead the partition into EHF and dc
contributions and choosing appropriately the three-body energy terms, one
obtains124 the well known H3 Porter–Karplus 125 form.

4.1.1. H3

Figure 2 showsf a perspective view of the crossing seam for the H3 DMBE
potential energy surface using the coordinates (R2, R3, α), with the valence
angle α=∠HHH fixed at 60◦. Also indicated in dash and dash-dot are the
lines corresponding to Q2 = 0 and Q3 = 0 (respectively), where the sym-
metry coordinates are defined by Eq. (2). Note that such lines intersect at
the minimum of the D3h degeneracy line, with the corresponding cuts of
the 1 2E′ and 2 2E′ sheets of the potential energy surface being shown in
Fig. 3. Clearly, in the vicinity of the crossing point, such lines resemble the
intersection of a double cone by a plane containing the vertex of the cone.
The double-cone shape itself will be recovered by relaxing the condition of
a fixed Q3. This is illustrated in Fig. 4, where we have utilized the sym-
metrized coordinates in Eq. (3) suitably relaxed126 (β� = β/Q, γ� = γ/Q),
such that Q corresponds at each point to the structure of lowest energy
for that symmetry. Such coordinates can be related to the hyperspherical
ones17 (ρ, θ, ϕ) through the relations

R2
1 =

1
2
d2
1ρ

2
[
1 + sin

θ

2
cos(ϕ + χ3)

]
(105)

fUnits conversion factors are: a.u. of energy = Eh = 27.211652 eV = 4.3598 aJ =
2.194746 × 105 cm−1; a.u. of bond length= a0 = 0.529177 Å = 0.529177 × 10−10 m.
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Fig. 2. Perspective view of the crossing seam for the H3 DMBE potential energy
surface using the coordinates (R2, R3, α), with the valence angle fixed at α = 60 ◦. Also
indicated in dash and dash-dot are the lines corresponding to Q2 = 0 and Q3 = 0, where
the symmetry coordinates are defined by Eq. (2).

Fig. 3. Cuts on the H3 potential energy surface corresponding to the dash-dot lines in
Fig. 2.
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R2
2 =

1
2
d2
2ρ

2
(

1 + sin
θ

2
cos ϕ

)
(106)

R2
3 =

1
2
d2
3ρ

2
[
1 + sin

θ

2
cos(ϕ − χ1)

]
(107)

where d2
i = mi

µ

(
1 − mi

M

)
, χi = 2 tan−1

(
mi+2

µ

)
, µ = (m1m2m3/M)1/2, and

M =
∑

i mi. Thus, the plot in Fig. 4 corresponds to a stereographic projec-
tion of the surface of an upper half sphere. The β� coordinate corresponds
to sin (θ/2) cos ϕ, while γ� denotes sin (θ/2) sin ϕ. The hyperangle θ runs
from zero at the north pole (center of plot) to π/2 at the equator. In turn,
the hyperangle ϕ is measured from the positive β� axis and grows on going
counterclockwise. Note that the lowest point along the D3h crossing seam
is located at the origin of the plot and corresponds to an equilateral trian-
gular configuration. Note also that the three equivalent saddle points for
the hydrogen-atom exchange reaction lie at the outer circle of the bottom
projection in Fig. 4, while the three product channels in the lower adia-
batic sheet are indicated by the letters a, b, and c (primed letters are used
for the corresponding channels in the upper sheet). In fact, the nuclear
configurations separated by ϕ = 2π/3 are equivalent under the cyclic per-
mutation 123. Thus, the lines in black and white indicate two paths for the
adiabatic exchange of a H atom which, in principle, originate different geo-
metric phases. This suggests that a proper consideration of the GP effect
will be essential for single-surface reaction dynamics studies to attain high
accuracy.

The equation describing the crossing seam can be obtained by equating
the three interatomic distances. It corresponds to a straight line, where ρ

is arbitrary but ϕ and θ have fixed values ϕs and θs, determined only by
the nuclear masses as follows:40

ϕs = tan−1

{
cos χ3 − t cos χ1 − (d2/d1)

2 + t (d2/d3)
2

sin χ3 + t sin χ1

}
(108)

θs = 2 sin−1

{
(d2/d3)

2 − 1
cos (ϕs − χ1) − (d2/d3)

2 cos ϕs

}
(109)
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Fig. 4. Relaxed triangular plot126 for the adiabatic DMBE potential energy surfaces
of H3 using hyperspherical coordinates. The lines in white and gray indicate two distinct
paths for the adiabatic exchange of a H atom, while the line in black shows a path on
the upper adiabatic sheet encircling the conical intersection. For the 12A′ state, contours
start at −109 kcalmol−1 (−0.17370 Eh) (the contour n = 1 lies close to the H + H2
dissociation limit), and are equally spaced by 6 kcalmol−1 (9.562 mEh). The energy
contours for the 2 2A′ state are defined by (6n − 43) kcalmol−1 (note that the lowest
corresponds to the central contour).

where t =
[
(d2/d1)

2 − 1
] [

(d2/d3)
2 − 1

]−1
. If only two nuclear masses are

equal (m2 = m3), one obtains the simplified expression

θs = 2 sin−1
∣∣∣∣ m2 − m1

m2 + 2m1

∣∣∣∣ (110)

with ϕs being equal to π for m1 > m2, and zero for m1 < m2. If all nuclear
masses are identical, one has θs = 0 and ϕs = 0 (or π). This is the case for
H3, which is characterized by having its seam defined by θs = 0, and hence
independent of ϕ (or ϕs). Such a feature warrants that each path formed by
varying ϕ from 0 to 2π in either of the two electronically adiabatic sheets
(i.e. a path similar to the one shown by the green line in the upper sheet of
Fig. 4) for fixed values of θ and ρ, will encircle the seam. Thus, one expects
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all such paths to lead to ξα = π for a fixed (θ, ρ) [see Eq. (39)]. This is
indeed observed,40 implying that the DMBE potential energy surface127

correctly describes the symmetry properties of the H3 system.5,6,9,22,128,129

Note that, for a circle around the seam with a small radius d = ρ sin θ (θ
or ρ are small), the dependence of AI on ϕ is similar to that expected for a
conical intersection (α=ϕ/2). For larger values of d, the dependence of AI

on ϕ changes gradually into an equally-spaced-increasing-step-like-function
which is halved by AI = ϕ/2.40

Besides showing the correct analytic properties for a surface exhibiting
a C3v conical intersection,39,43 the H3 DMBE form then yields an accurate
representation of the first-derivative coupling,39,43 which assumes a form
similar to Eq. (36) in the vicinity of the conical intersection. Specifically,
assuming the transverse part to be zero over the entire configuration space,
one has39 from Eq. (38)

αDMBE(R) =
ϕ

2
− tan−1

[
g0(ρ) sin θ sin(3ϕ)

f0(ρ) + g0(ρ) sin θ cos(3ϕ) + f1(ρ) sin2 θ

]
(111)

where f0(ρ), g0(ρ), and f1(ρ) are functions that depend only on the hyper-
radius. Clearly, αDMBE(R) is accurate close to the conical intersection as
θ → 0. A three-body polynomial correction term that brings the DMBE
surface (referred to as DMBE-Single-Polynomial or DSP) and derivative
coupling into even closer agreement with extensive ab initio calculations on
both doublet sheets has recently been reported.43,44

Finally, Eq. (110) is applicable to any AB2-type isotopomer of H3.
Figure 5 shows the results obtained for HD2, where the seam is defined
by40 θs = 0.5048 rad and ϕs = π. Since θs �= 0, there are paths with con-
stant θ and ρ which do not encircle the seam. This is the case for the loops
with θ < θs, and hence ξα = 0; the other loops lead to ξα = π. Note that
the phase factor depends on (ρ, θ, ϕ).17 Note especially that the GP effect
is37,130 less relevant for HD2 than H3. In fact, since the conical intersection
gets closer to the circle delimiting physical space with increasing θs, one
generally expects the probability of looping around the seam to diminish
with θs (see Fig. 5.2 of Ref. 85).

4.1.2. Li3

The formalism derived in this section may also be used to obtain a double-
sheeted potential energy surface for the alkali metal trimers. Indeed, a
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Fig. 5. Plot of the geometric phase A(ϕ) for HD2, fixed ρ = 6 a0.

reliable DMBE surface has been reported elsewhere131,132 for Li3 by making
J

(3)
Γ,i = 0 and adding a global three-body EHF energy term to the radicand

in Eq. (104). The two sheets of such a DMBE potential energy surface for
Li3 are shown in Fig. 6 as relaxed triangular plots126 using hyperspherical
coordinates. As for H3, the lowest point along the D3h conical intersection
seam is located at the origin of the plot and corresponds to an equilateral
triangular configuration. Clearly, the threefold symmetry gives rise to three
wells which are equally spaced by 120◦ intervals around the origin. The
minimum energy of the barrier for pseudorotation relative to the bottom of
such wells (i.e. the height of the saddle points between the three wells), and
the energy of the lowest point along the conical intersection seam are 0.4
and 54.2 meV (relative to Li+Li2), respectively. Note that the motion along
the hyperradius ρ corresponds to the symmetric stretching mode, while the
motion along the γ� (β�) axis corresponds to the bending (asymmetric
stretching) mode. In turn, motion along the hyperangle ϕ corresponds to
the pseudorotational motion.

The two sheets of the Li3 DMBE potential energy surface have been
used for detailed zero total angular momentum calculations of the bound
and pseudo-bound vibrational states of Li3 without (NGP) and with (GP)
consideration of the GP effect.12,133,134 In particular, for the lower sheet,
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the calculated eigenvalues amount to 3524 and 3211, respectively for the
NGP and GP cases. In fact, the full spectrum has been calculated covering
the range of energies up to the threshold for Li2(X 1Σ+

g ) + Li dissociation.
Of the total number of calculated NGP (GP) vibrational levels, 953 (920),
750 (817), and 1621 (1474) have been found to belong to A1, A2, and E

symmetries in the S3 permutational group. From their relative positioning
illustrated in Fig. 7, one immediately assesses the importance of taking the
GP effect into account. For example, the lowest vibrational level in the NGP
calculations has A1 symmetry, while it is of E symmetry in the GP ones, as
it should be. It is also seen that the dynamical Jahn–Teller effect is, for this
system, about one order of magnitude smaller than the GP effect. Moreover,
a comparison of the Li3 calculations with the only available experimental
data has shown134 good agreement. Although further studies are definitely
desired, such a result seems to support the reliability of the Li3 DMBE
surface, while suggesting12 that nonadiabatic coupling effects may play a
minor role (roughly an order of magnitute smaller than the GP effect). The

Fig. 6. Relaxed triangular plot126 for the adiabatic DMBE potential energy sur-
faces of Li3 using hyperspherical coordinates. For the 1 2A′ state, contours start at
−37.4 kcalmol−1, with contour n = 1 defining the three equivalent minima. The cor-
responding energy labeling for the 2 2A′ state is (0.4n2 − 35.8) kcalmol−1. As in Fig. 4,
the lowest contour corresponds to the one close to the vertex of the double cone.
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Fig. 7. Calculated vibrational levels of A1, A2, and E symmetries for the lowest adia-
batic sheet of Li3. The dashed, dotted, and dash-dot lines indicate the energies associated
with the structures of minimum energy having D∞h, D3h, and C2v symmetries, respec-
tively; the abbreviations “min” and “sp” stand for the three equivalent minima and
saddle points of C2v symmetry.

reader is referred to the original papers133,134 for a statistical analysis of
the calculated vibrational levels.

4.2. The NO2 Molecule

The title molecule plays an important role in atmospheric chemistry135

and combustion processes,136 with its ground-state potential energy surface
being also frequently employed as a prototype in unimolecular dissociation
calculations. In this subsection, we focus on the NO2 potential energy sur-
faces of 2A′ symmetry. Because they are outstandingly complicated, the
interpretation of the visible spectrum of NO2 poses an extremely difficult
problem both to experimentalists and theoreticians. Similarly, such surfaces
are crucial to study the dynamics of the reaction

N(4Su) + O2(X 3Σ−
g ) → NO(X 2Π) + O(3Pg) (112)

which is an important source of infrared chemiluminescence in the upper
atmosphere. In fact, this reaction is believed to be an important source
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of vibrationally excited NO in the atmosphere, with vibrational levels up
to v = 7 becoming populated. Note that the reaction (112) is exoergic by
1.38 eV, but thermal rate coefficient data137 indicates an activation energy
of 0.3 eV, which implies that it can occur only via energetic N atoms.
Despite this requirement, studies of the equilibrium energy distribution of
nitrogen atoms have established that a significant population of N atoms
is created sufficiently hot to make it feasible. Note further that the first
excited 4A′ states of NO2 also correlate with both reactants and products
of the reaction (112), although such states should only play a role for col-
lision energies above ∼ 0.75 eV.138 Thus, the title system may illustrate
the scenario of difficulties encountered in modelling a manifold of adiabatic
potential energy surfaces for a triatomic system with practical interest. Of
course, an exhaustive review of the numerous studies carried out on that
system is beyond of the scope of the present work; the reader is addressed to
Refs. 139 and140, from which references to previous work may be obtained.

We begin with a brief comment on previous potential energy
surfaces139–142 for the electronic ground state of NO2. The potential of
Gilibert et al.141 is based on the single-valued many-body expansion79 for-
malism and the observation that NO2(X̃ 2A1) may lead upon dissociation to
N(2Du)+O2(X 3Σ−

g ) if one considers O2(X 3Σ−
g ) at its equilibrium diatomic

geometry. However, if the O−O bond is allowed to relax to its experimental
equilibrium geometry in NO2(X̃ 2A1), ROO = 4.150 a0,143 then it may adi-
abatically correlate for C2v geometries with N (4Su)+O2(c 3∆u), which has
an energy lower than N(2Du)+O2(X 3Σ−

g ) by about 2.4 eV. Such a correla-
tion limit cannot be obtained by using the function of Gilibert et al.141, nor
can the deep well associated to the chemically stable NO2(X̃ 2A1) species
be reached. However, their analytic function has been fitted to the ab initio
saddle point properties of Walch and Yaffe144 for reaction (112), and has
been employed in dynamics studies of the N(4Su) + O2(X 3Σ−

g ) reaction.
In fact, the fitting procedure used by Gilibert et al.141 introduced an arti-
ficial barrier of 0.55 eV, which led Duff et al.145 and Sayós et al.146 to
report improved similar fits. These show barrier heights of 0.30 eV145 and
0.27 eV146 for reaction (112), which are much closer to the recommended137

activation energy of 0.30 eV. Several dynamics studies have actually been
reported138,141,146–148 based on the above single-valued functional forms
but, although Gilibert et al.141 recognized that it might be possible to reach
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the X̃ 2A1 ground state of NO2 through Cs “near-C2v” configurations, none
of the above surfaces allows such a possibility.

Another important topological feature, which is obviously absent from
the above single-valued formulations, is the conical intersection between the
two lowest 2A′ adiabatic potential energy surfaces. A two-valued potential
energy surface, which describes such a conical intersection is due to Hirsch
et al.142 It is obtained by diagonalizing a 2 × 2 potential matrix, with
the matrix elements being written as polynomial expansions in which the
parameters are determined by least-squares fitting their own ab initio CI
energies. Although such a function has been specially calibrated to model
the spectroscopy of NO2, it is unclear how accurately it describes the var-
ious channels up to dissociation. A slightly improved version of this 2 × 2
potential energy surface has also been reported by Mahapatra et al.,139 who
have carried out calculations of the whole vibrational spectra for the title
system. Most recently, single-valued DMBE potential energy surfaces have
been reported140 for the two lowest 2A′ adiabatic potential energy surfaces
of NO2 from a fit to MR CI energies, but here too no attempt has been
made to reproduce the 1 2A′/2 2A′ conical intersection. We will return later
to these two more recent works.

The minimal atomic basis set for NO2 consists of124

ψ1 = A 3Pz
3Py

4Suχ1 ψ2 = A 3Pz
3Py

4Suχ2 (113)

ψ3 = A 3Py
3Pz

4Suχ1 ψ4 = A 3Py
3Pz

4Suχ2 (114)

ψ5 = A 3Px
3Py

4Suχ1 ψ6 = A 3Px
3Py

4Suχ2 (115)

ψ7 = A 3Py
3Px

4Suχ1 ψ8 = A 3Py
3Px

4Suχ2 (116)

where χ1 and χ2 are the appropriate doublet spin functions obtained by
coupling the 4Su nitrogen atom with the 3P oxygen atoms, and A is the
antisymmetrizing operator. A similar basis set has been employed149 to
calculate the potential energy surfaces for the 2B2 and 4B2 electronic
states of NO2, but the results were shown to be in disagreement with
ab initio calculations,150 possibly due to the use of the popular Morse and
Born-Meyer diatomic potentials. To improve the situation, Varandas and
Voronin124 used more accurate extended Hartree-Fock approximate cor-
relation energy151,152 (EHFACE2 and EHFACE2U) curves, while dressing
some of them to approximately account for the three-body effects that are
missing in DIM theory.
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The Hamiltonian matrix assumes the form in Eq. (54), where the two
oxygen atoms are A and B, and the nitrogen is atom C. In turn, the
RBC rotation matrix (antisymmetric) is defined by the following non-zero
elements: Rii = 1 for i = 1, 2, 5, 6, Rii = − cos θ2 for i = 3, 4, 7, 8, and
R37 =R48 =sin θ2. Similarly, the RAC matrix is defined by: Rii =cos θ1 for
i=1, 2, 5, 6, Rii =1 for i=3, 4, 7, 8, and R15 =R26 =sin θ1. Moreover, the
spin-recoupling matrices assume the form

TBC =


tSM
sBCsAB

0 0 0
0 tSM

sBCsAB
0 0

0 0 tSM
sBCsAB

0
0 0 0 tSM

sBCsAB

 (117)

where

tSM
sBCsAB

=
1√
6

(−1
√

5√
5 1

)
(118)

with the corresponding TAC matrix being similar to TBC in Eq. (118)
except for the definition of the auxiliary matrix elements that are now
given by

tSM
sACsAB

=
1√
6

( −1 −√
5

−√
5 1

)
. (119)

In turn, the HAB matrix assumes the form

HAB =
1
2

(
HΠΠ 0

0 H∆Σ

)
(120)

where the auxiliary block-diagonal matrices are defined by

HΠΠ =
1
2


3Πs 0 3Πd 0
0 5Πs 0 −5Πd

3Πd 0 3Πs 0
0 −5Πd 0 5Πs

 (121)

and

H∆Σ =
1
2


3∆s 0 3∆d 0
0 5∆s 0 −5∆d

3∆d 0 3∆s 0
0 −5∆d 0 5∆s

 (122)

with Πs,d =Πu ± Πg for both the triplet and quintet states, 3∆s,d = 3∆u ±
3Σ−

g , and 5∆s,d =5Σ−
u ∓ 5∆g. Finally, HBC and HAC are diagonal matrices
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defined by

HBC =
(2Π,4 Π,2 Σ+,4 Σ+,2 Π,4 Π,2 Π,4 Π

)
(123)

HAC =
(2Σ+,4 Σ+,2 Π,4 Π,2 Π,4 Π,2 Π,4 Π

)
. (124)

Thus, the NO2 DIM potential energy surfaces for the ground-state and first
seven excited states of 2A′ symmetry can be obtained by diagonalizing the
8 × 8 Hamiltonian matrix in Eq. (54) using Eqs. (117) to (124). For C2v

geometries, such a DIM matrix reduces to two 4 × 4 matrices of 2A1 and
2B2 symmetries. Similarly, for C∞v geometries, it factorizes into a 4 × 4 Π
matrix and two 2 × 2 ones of Σ and ∆ symmetries.

Figures 8 and 9 show relaxed triangular plots126 in mass-unweighted
hyperspherical coordinates (all masses are taken equal to unity) for the two
lowest 2A′ adiabatic sheets of NO2 according to a modified version153 of the
8 × 8 DMBE potential energy surface reported in Ref. 124. As in previous
work,124 the parameterization has been done by dressing the 2,4Π and 5Σ−

u

diatomic curves, using simple three-body energy terms whose parameters
have been adjusted by a trial-and-error procedure.153 The notable features
in Figure 8 are the deep minimum of the 1 2A′ adiabatic sheet which is

Fig. 8. Relaxed triangular plot126 for the 1 2A′ potential energy surface of the 8 × 8
NO2 DMBE potential energy surface.153 Contours, starting at −0.360 Eh (first countour
in the NO2 minimum), are equally spaced by 5 mEh.
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Fig. 9. As in Fig. 8 but for NO2(2 2A′) potential energy surface.153

associated with the equilibrium geometry of NO2 (this has symmetry 2A1

in the C2v symmetry point group), and the 1 2A′/2 2A′ (X̃ 2A1/Ã 2B2 in
C2v) conical intersection, which has been extensively studied by Leonardi
et al.154 and Mahapatra et al.139 (see also references therein). This occurs
along the C2v line at (β� =0, γ� =0.717), with the corresponding structural
attributes (characteristic bond length, included angle, energy above the
X̃ 2A1 minimum) at the conical intersection point of lowest energy being
RNO =2.44a0, ∠ONO=113◦, and ∆V =1.637 eV. Clearly, such attributes
deviate drastically from those of the original multivalued DMBE potential
energy surface124 (RNO =2.58a0, ∠ONO=61◦, and ∆V ∼6 eV), where such
a crossing occurs at β� =0, but only slightly off-centred at γ� ∼0.023 [note
that (β�, γ�) = (0, 0) represents an equilateral triatomic structure]. How-
ever, they are in quite satisfactory agreement with the commonly accepted
values;155 see later. Of course, the X̃ 2A1/Ã 2B2 conical intersection allows
the reaction N(4Su) + O2(X 3Σ−

g ) → O(3Pg) + NO(X 2Π) to occur on the
lowest potential energy surface of 2A′ symmetry. However, it is also seen
that products can be formed without having to sample the deep 2A1 chem-
ical well.
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Another salient feature from Fig. 8 is the high energy barrier at C2v

geometries for the reaction (112). This barrier has been estimated153

from ab initio calculations using CASPT2 perturbation theoryg (they have
employed a FVCAS root function and a cc–AVTZ basis set157,158) to be
about 1 eV relative to the N(4S) + O2(X 3Σ−

g ) asymptote. Such a barrier
has been approximately imposed on the 1 2A′ adiabatic sheet of the novel
8 × 8 DMBE potential energy surface,153 being seen from Fig. 8 that its
height decreases for Cs geometries, where it reaches a minimum of 0.3 eV
for a bent N−O−O structure, defined by RNO = 3.25a0, ROO = 2.38a0,
and ∠NOO = 114.2◦. Thus, the novel 8×8 DMBE potential energy surface
essentially reproduces the recommended value137 of the activation energy
for the reaction (112), while the barrier location is in quite good agree-
ment with that obtained from the ab initio calculations of Walch and
Jaffe;144 these predict a barrier height of 0.38 eV, with the barrier being
located at a geometry defined by RNO = 3.441a0, ROO = 2.329a0, and
∠NOO=115.0◦. Thus, the new NO2 multivalued DMBE potential energy
surface153 should also be useful to carry out dynamics and kinetics studies
of the reaction (112).

To understand better the topology of the 2A′ manifold close to the con-
ical intersection, we show in Fig. 10 energy diagrams of the four lowest
states for C2v [panel (a)] and “near-C2v” [panel (b)] geometries of NO2

[the C2v axis was tilted in panel (b) by 1◦ relative to the C2v angle of
90◦], as a function of the distance of the N atom to the center of mass
of the O − O bond, the length of which has been fixed at the calcu-
lated equilibrium geometry (ROO =4.102 a0) of the X̃ 2A1 minimum. Sev-
eral interesting features deserve attention. First, the deep chemical mini-
mum on the 1 2A′ (X̃ 2A1) surface. Then a shallow minimum on the 1 2A′

(Ã 2B2) surface, which is separated from the former by the 1 2A′/2 2A′

(X̃ 2A1/Ã 2B2) conical intersection. Interestingly, following a discussion on
symmetry breaking in the NO2 radical,159,160 such a minimum has been
characterized by Blahous III et al.161 using Cs symmetry at the double-
zeta plus polarization CAS level (DZP CAS) of theory. Their DZP CAS
calculations predict the 2B2 minimum to lie 1.06 eV above the X̃ 2A1 one,

gThe acronyms have their usual meaning: FVCAS denotes full valence complete active
space, and CASPT2 stands for second-order Moller-Plesset perturbation theory starting
from a CAS wave function.156
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(a)

(b)

Fig. 10. Cut of lowest four 2A′ adiabatic potential energy surfaces along C2v [panel
(a)] and Cs “near-C2v” [panel (b)] geometries where the attacking angle is 89◦. For
clarity, the two lowest 2A′ adiabatic potential energy surfaces are shown in solid, while
the next two are indicated by the dashed and dotted lines. The O −O distance has
been fixed at its value in C2v equilibrium NO2(X̃ 2A′), with (x, y) being the Cartesian
coordinates of the N atom relative to the centre-of-mass of O2.

with a geometry defined by RNO = 2.421 a0 and ∠ONO = 101.3◦, a result
which compares nicely with the structural parameters of the 2B2 minimum
obtained from the novel multivalued DMBE surface, namely RNO = 2.59 a0

and ∠ONO = 101.8◦. Moreover, the harmonic vibrational frequencies at
the DZP CAS level of theory were found to be 1391 cm−1 (symmetric
stretch), 730 cm−1 (bending), and 359 cm−1 (asymmetric stretch), also in
good accord with the values calculated from the 1 2A′ (X̃ 2A1) sheet of
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the novel 8 × 8 DMBE potential energy surface,153 namely 1177 cm−1,
756 cm−1, and 386 cm−1, although a reverse assignment is found for the
bending and asymmetric stretching mode frequencies. Clearly, for “near-
C2v” geometries, the conical intersection becomes a narrowly avoided cross-
ing, which may act as a saddle point for connecting the Ã 2B2 and X̃ 2A1

minima on the same 1 2A′ potential energy surface. Its barrier height has
as upper bound the height of the lowest conical intersection point, which
is found to be 0.0789 eV (1.8 kcal mol−1) relative to the minimum of the
Ã 2B2 species. This result is in excellent agreement with the DZP CAS
value of 1.8 kcal mol−1 predicted by Blahous III et al.161. The good agree-
ment extends also to the predicted characteristic parameters for the lowest
point of the X̃ 2A1/Ã 2B2 conical intersection. In fact, such parameters153

(∆V = 1.637 eV, RNO ∼ 2.44 a0,∠ONO ∼ 113◦) are found to be in quite
satisfactory agreement with the best available estimates: (1.21±0.09, 2.355,
103.1),155 (1.14, 2.379, 107.4),64 (1.287, 2.347, 108.04),139 and (1.420, 2.360,
110.5)140 (the energy is relative to the bottom of the X̃ 2A1 well). However,
the X̃ 2A1/Ã 2B2 crossing seam is probably best understood from Fig. 11,
which shows a contour plot of the two lowest 2A′ adiabatic potential energy
surfaces for C2v geometries as a function of the characteristic bond length
and included angle. Clearly, the locus of the X̃ 2A1/Ã 2B1 conical inter-
section delimits the X̃ 2A1 and Ã 2B1 minima, which lie both on the same
1 2A′ adiabatic potential energy surface.

Other interesting features from Fig. 10 are the X̃ 2A1/B̃ 2B2,
B̃ 2A1/Ã 2B2, and B̃ 2A1/B̃ 2B2 intersections. They all manifest in panel
(b) as narrowly avoided intersections, and hence are less clearly visible in
the relevant relaxed triangular plots. Note that, no matter how small a
numerical perturbation can be, it will lift the crossing in first-order, as if it
were a real physical distortion of the molecular geometry at which the cross-
ing occurs. The X̃ 2A1/B̃ 2B2 conical intersection arises at an energy just
above the lowest X̃ 2A1/Ã 2B2 conical intersection and leads to the 2 2A′

adiabatic potential energy surface. This seems to encompass a minimum of
2B2 symmetry (which would lie just above the 2B2 minimum of the 1 2A′

adiabatic potential energy surface, being higher in energy by about 0.3 eV;
see also Fig. 10), apparently in good agreement with the MRCI prediction
of Reignier et al.140 In fact, plots of the 2 2A′ adiabatic potential energy
surface obtained from the novel multivalued DMBE function153 similar to
those reported in Fig. 8 of Ref. 140 also show this “minimum”. However,
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Fig. 11. Contour plot for the two lowest adiabatic sheets of NO2(2A′) DMBE potential
energy surface124 as a function of the characteristic bond length (RNO) and included
angle (α): (a) 1 2A′, thin solid contours; (b) 2 2A′, dashed contours. Contours are equally
spaced by 5 mEh, starting at −0.360 Eh; for clarity, the contour numbers are omitted.
Also shown is the X̃ 2A1/Ã 2B2 intersection locus.

such a stationary point seems to be absent in Fig. 9, where the well corre-
sponds to the upper inverted “cones” of the X̃ 2A1/Ã 2B2 and X̃ 2A1/B̃ 2B2

conical intersections. One then wonders whether the minimum reported by
Reignier et al.140 also disappears when the hidden coordinate in their plots
is allowed to further relax.

Regarding the minimum associated with the equilibrium X̃ 2A1 geome-
try, it is found to lie 9.84 eV below the energy of the three isolated ground
state atoms, which gives dissociation energies of 4.63 eV and 3.23 eV for
the N(4Su) + O2(X 3Σ−

g ) and O(3Pg) + NO(X 2Π) product channels in
exact agreement with experiment.143 As for its geometry, the multivalued
DMBE surface gives a bond length of RNO = 2.429 a0, with the included
angle being ∠ONO ∼ 132.2◦, also in fair agreement with the experimental
values of 2.255 a0 and 133.9◦.143 However, the calculated harmonic vibra-
tional frequencies of 2508 cm−1 (asymmetric stretch), 2626 cm−1 (symmet-
ric stretch), and 987 cm−1 (bending) differ significantly from the observed
frequencies162 (1617 cm−1, 1320 cm−1, and 750 cm−1 in the above order).
In turn, the optimum D∞h geometry corresponding to NO2(2Πu) is found
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to lie 1.47 eV above the X̃ 2A1 minimum, with a characteristic bond
length of RNO =2.13 a0. Although the predicted decrease in the NO bond
length of 0.11 a0 with respect to the optimum C2v geometry contrasts with
experiment163,164 (this indicates an increase by ∼ 0.07 a0), the optimum
energy is close to available ab initio results (CAS SCF: 1.8 eV165; MR CI:
1.5 eV;165 MRD-CI: 1.85 eV142) and the experimental (1.83 eV163,164) value.
Also located on the 1 2A′ adiabatic potential energy are two shallow minima
(about 0.023 eV deep) corresponding to the two equivalent peroxy struc-
tures (NOO), a feature in qualitative agreement with the bent C1 peroxy
structure predicted by Meredith et al.166 Of course, the existing points of
disagreement in the spectroscopic properties of the 1 2A′ adiabatic poten-
tial energy surface can hopefully be fixed by combining the DMBE surface
with a local spectroscopic one (Ref. 167, and references therein) using the
ES method discussed in Sec. 3.2.4.153

We conclude this section by focusing on some recent works. One of them
deals with a further simplication of the atomic basis set in the calculation
of the DIM potential function. Using a subminimal basis set of four atomic
basis functions, it has been shown168 that the potential matrix can be
reduced from dimension 8 × 8 to 2 × 2, while reproducing the topological
features of relevance for the study of most dynamical processes of current
interest. The idea has been to choose the atomic basis set such that one
recovers at least the two lowest diatomic curves of the proper symmetry.
For NO2

(
2A′), it amounts to consider only the basis ψ5 to ψ8 in Eqs. (115)

and (116). The Hab matrix assumes then the form

Hab =
1
2


3∆s 0 3∆d 0
0 5∆s 0 −5∆d

3∆d 0 3∆s 0
0 −5∆d 0 5∆s

 (125)

with 3∆s,d =3 ∆u ±3 Σ−
g , and 5∆s,d =5 Σ−

u ∓5 ∆g. Similarly,

Hac =
(2Π,4 Π,2 Π,4 Π

)
(126)

is a diagonal matrix (a corresponding definition holds for Hbc), while the
spin-recoupling matrices Tbc and Tac are given by the corresponding blocks
in Eqs. (117) to (119). Diagonalization of the 4 × 4 Hamiltonian matrix
using Eqs. (125) to (126) then leads to the first four NO2 potential energy
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surfaces of A′ symmetry. In fact, such a diagonalization may be carried out
analytically, leading to two pairs of roots:

V1,2 =
1
2
[
∆+(R3) + Π+(R1) + Π+(R2)

]±

1
2

{[
∆−(R3) +

2
3
(
Π−(R1) + Π−(R2)

)]2

+
5
9
(
Π−(R1) − Π−(R2)

)2}1/2

(127)

and

V3,4 =
1
2
[
Σ+(R3) + Π+(R1) + Π+(R2)

]±

1
2

{[
Σ−(R3) +

2
3
(
Π−(R1) + Π−(R2)

)]2

+
5
9
(
Π−(R1) − Π−(R2)

)2}1/2

(128)

where Σ± =3Σ−
g ±5Σ−

u , Π± =4Π ±2Π, and ∆± =3∆u ±5∆g. Note that this
approach requires to consider only the X 3Σ−

g and 3∆g potential energy
curves of O2, and X 2Π and 4Π for NO. For convenience, the 5Σ−

u and 5∆g

states of O2 have been added to provide extra flexibility to the final model.
The crux in this approach is then the assumption that the other diatomic
states can be neglected, either because they lack the proper symmetry or
simply because they lie too high in energy. In fact, using the same “dressing
functions”, the results obtained from such a 4 × 4 potential matrix for
NO2 (reducible to two 2 × 2 problems) show a striking similarity with
those obtained for the original 8 × 8 formulation.124 This is an interesting
result, since in reaction dynamics studies (both classical and quantum) the
computational labor involved in the numerical diagonalization procedure
raises as the cube of the basis set size (m3). Moreover, only a small number
of excited diatomic curves and off-diagonal terms are required for states of
the same symmetry. Of course, as it also happens for the 8 × 8 potential
matrix, there are topographical features which require some tuning before
the surface can be applied for accurate dynamics calculations.

Finally, we focus briefly on the recent work of Mahapatra et al.,139

and Reignier et al.140 The first paper reports ab initio multireference
configuration-interaction (MR CI) calculations of the two lowest NO2 adi-
abatic potential energy surfaces of 2A′ symmetry, from which the diabatic
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potential matrix has been constructed using a diabatization procedure sug-
gested previously.169 Such surfaces were ultimately interpolated using three-
dimensional spline fits, and employed to investigate the nuclear dynamics
on the two electronically coupled states by a time-dependent wave packet
method. Although the approach seems to work well, it is based on the
assumption that only two states are involved, which is generally a limita-
tion. Of course, the use of splines also casts some worry on whether the
approach can be extended to larger polyatomics.

Rather than attempting to obtain the diabatic potential matrix,
Reignier et al.140 reported separate global fits of the 1 2A′ and 2 2A′ adia-
batic potential energy surfaces using the single-valued DMBE72,86 formal-
ism. The fitted surfaces provide a fairly accurate representation of their
own MR CI energies, and also a realistic representation of the anisotropic
NO(2Π) + O(3P ) long-range interaction potential, which is claimed to
have an appreciable influence on dynamical features such as the density
of states.140 The emphasis has been on this channel, which is the most
important one for studying the decomposition of NO2(X̃ 2A/Ã 2B2). Not
surprisingly, therefore, the fits perform poorly at other regions of configura-
tion space of the NO2 molecule, in particular along the N(4S)+O2(X 3Σ−

g )
dissociation channel, where both fits show deep spurious wells. Moreover, as
admitted by the authors,140 their separately modelled adiabatic potential
energy surfaces do not describe properly the X̃ 2A1/Ã 2B2 conical intersec-
tion, which is probably due to the difficulties anticipated in Sec. 3. Indeed,
a proper matching of the surfaces along the manifold of degeneracy can be
cumbersome, even if semi-numerical fitting methods are employed. At least,
the question of whether the proper topological properties are reproduced
cannot be answered a priori in this way. In summary, accurate represen-
tations of two-state manifolds exist for some X3 systems, and some are
probably well understood for heteronuclear triatomics like NO2, although
no similar understanding of electronic manifolds in larger polyatomics seems
to exist.

4.3. H3O: A Prospective on Tetratomic Systems
and Beyond

Except for the well-known LEPS form of H4 (Ref. 123, and references
therein) and related DIM expressions170 for sn-type (s=3−6) systems, no
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general global multi-sheeted potential energy surfaces have, to our knowl-
edge, been completed for any four-atom or larger polyatomic system. In
fact, although the multivalued DMBE formalism based on the “dressed-
DIM” approach is general, it is far too complicated to be applied in sys-
tems with four or more atoms. Suffice it to say that the formalism is not
trivial even for a general triatomic molecule, and then there are

(
N
Nf

)
dissociative fragments with Nf atoms in a N -atom system: four triatomic
fragments for a tetratomic system, and so on. One might then think of
adopting a polyatomics-in-molecules (Ref. 171, and references therein) for-
malism, eventually dressed within the spirit of the “dressed-DIM” (multi-
valued DMBE) method discussed in the present work. However, such an
approach would require the knowledge of global potential energy surfaces
for the relevant electronic states of the involved triatomic (or larger poly-
atomic) fragments, which are generally unavailable and contain themselves
subtle topological features such as the conical intersections on which we
have been focusing. Thus, a simplified DMBE formalism based on a gener-
alization of Eq. (62) may stand as the method of choice for such ‘medium-
size’ molecules, leaving more sophisticated treatments for the triatomic
fragments.

To illustrate the idea, let us examine briefly the case of the H3O system.
This plays a pivotal role in atmospheric172 and combustion173 chemistry,
and hence has been much studied, particularly from the point of view of
the H + H2O reaction dynamics. Although several potential energy sur-
faces have been reported99,174–178 for this system, none describes the coni-
cal intersection with the lowest excited state of the same symmetry (for a
review that points out additional difficulties, see Ref. 99). It is the formal-
ism relevant to overcome this problem that we tentatively highlight in the
remaining of this section.

First, we assume that only two sheets are relevant to discuss the dynam-
ics of the OH + H2 reaction. Within such an assumption, the elements of
the 2 × 2 potential matrix W will be defined by

W11(R) =EO(1D) +
∑

i=1−3

V
(2)
OH(2Σ+; Ri) +

∑
i=4−6

V
(2)
H2

(1Σ+
g ; Ri)

+ V
(3)
H3

(
2 2A′;Rh

)
+

∑
j=1−3

V
(3)
H2O

(
1 2A′;Rwj

)
+ V

(4)
11 (R)

(129)



April 27, 2004 12:2 Conical Intersections: Electronic Structure, Dynamics and Spectroscopy chap05

256 Conical Intersections: Electronic Structure, Dynamics and Spectroscopy

W22(R) =
∑

i=1−3

V
(2)
OH(2Π; Ri) +

∑
i=4−6

V
(2)
H2

(3Σ+
u ; Ri)

+ V
(3)
H3

(
2 2A′;Rh

)
+

∑
j=1−3

V
(3)
H2O

(
2 2A′;Rwj

)
+ V

(4)
22 (R)

(130)

W12(R) =W21(R) =
∑

j=1−3

C(Rwj) sin αwj + V
(4)
12 (R) (131)

where EO(1D) is the energy of the oxygen atom in its 1D state, Rh =
(R4, R5, R6) is the subdomain of configuration space relevant to H3, Rw1 =
(R1, R2, R6) that of one of the H2O fragments, and correspondingly for
the other two water fragments Rw2 =(R2, R3, R4) and Rw3 =(R1, R3, R5).
In turn, V

(4)
ij (R) (i, j = 1, 2) are four-body energy terms, which contain

the set of parameters to be calibrated from a fit to ab initio data or other
information on H3O. Thus, one presumes that 2×2 potential matrices have
previously been reported for the various triatomic fragments. Note that
C(Rwj) specifies a three-body coupling term of the form suggested in Ref.
179, and αwj is the valence angle of the jth H2O fragment. Furthermore,
one may impose that the three-body energy terms for H3 are taken from the
two sheets of the DMBE potential energy surface39 discussed in Sec. 4.1,
thus ensuring that dissociation to such an accurate surface will be obtained
whenever the oxygen atom is moved away from the three hydrogen ones.
Similarly, the three-body terms for H2O may be chosen such that H3O
dissociates to the H2O ES potential energy surface112 when a H atom is
separated from the remaing triatomic fragment.

The only other requirement on dissociation refers to the diatom +
diatom asymptotic limits. For this, one should bear in mind that the two
relevant dissociation limits are

H3O → OH
(2Π)+ H2

(1Σ+
g

)
(132)

→ OH
(2Σ+)+ H2

(1Σ+
g

)
(133)

with the limit in Eq. (133) being180 about 11 000 cm−1 above the conical
intersection, which in turn lies about 20 000 cm−1 above the OH(X 2Π) +
H2 asymptote. Such a conical intersection arises (see Fig. 7 of Ref. 180)
for T-shaped (C2v) structures when HO approaches the middle of the H2

bond, with the H (O) atom of OH pointing to the middle of H2 for the
channel correlating with OH

(
A2Σ+

)
+ H2 [OH

(
X2Π

)
+ H2]. The nuclear
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configurations in the relevant g−h plane representing a circular path around
the OH3 conical intersection are illustrated in Fig. 7 of Ref. 8. Clearly, at
none of the above asymptotes does one get H2

(
3Σ+

u

)
as a dissociation

product, and hence the present simplified formalism must be corrected to
allow for such a behavior. This may be achieved through the replacements

V
(2)
H2

(1Σ+
g ) → V

(2)
H2

(3Σ+
u )f(R) + V

(2)
H2

(1Σ+
g )[1 − f(R)] (134)

where the switching function is of the form79

f = 1 + tanh [β(2si − sj − sk − sj+3 − sk+3)] (135)

and si denotes a displacement from the corresponding equilibrium geom-
etry; β is some adjustable parameter, and the indices ijk cover all cyclic
permutations of 123. Note that f → 1 at the H + H2O dissociation lim-
its, but is 0 at the limit OH

(
2Π

)
+ H2

(
1Σ+

g

)
. Of course, the replacements

in Eq. (134) must be ensured for all permutationally equivalent channels.
Moreover, the four-body energy terms must be flexible enough to allow a
reliable fit of ab initio data in the regions of the intersection loci (Ref. 181,
and references therein), and reaction paths leading to the products. Note
that the surface correlating with OH(A 2Σ+) + H2 shows a shallow mini-
mum corresponding to a C3v H3O intermediate, in which the oxygen atom
is above the plane of the equilateral triangle formed by the three hydrogen
atoms [this minimum lies180 ∼1750 cm−1 above OH(X 2Π) + H2]. Clearly,
the analysis cannot be pursued prior to a fit of ab initio data.

4.4. Other Systems

A list (not exhaustive) of global multi-sheeted potential energy surfaces
for the relevant manifold of electronic states of the same symmetry of
some polyatomic systems is given in Table 1. Space limitations prevent
any discussion of such a work, with the reader being referred to the original
papers66,106,112–115,168,182–185 for details. Much of the work published using
the DIM method or some of its variants (Refs. 171,185–188, and references
therein) has also been omitted.h

hThe readers may have access to such a work through the internet, e.g. at the ISI Web
of KNOWLEDGE homepage or, of course, via more traditional bibliography searching
schemes.
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Table 1. A list of systems for which multi-sheeted global potential energy
surfaces have been developed

System Method Features Ref.

H+
3 (1A′) ES Multivalued (3 × 3) 114,115

H3 (2A′) DMBE Two-valued 39
DIM Two-valued 124
DMBE+correction term Two-valued 43

H2F (2A′) DMBE Two-valued 182
DIM Two-valued 124

H2O(2A′) ES Two-valued 112
ES Multivalued (3 × 3) 113

C2H (2A′) DMBE Two-valued 66
HCN (2A′) DIM Two-valued 184
HO2 (2A′′) DIMa Multivalued (32 × 32) 106

DMBE Multivalued (18 × 18) 183
DMBE Two-valued 168

NO2 (2A′) DMBE Multivalued (8 × 8) 124
O3 (1A′) MBE Two-valued 192
SO2 (1A′) MBE Two-valued 193
HCNO(3A) DIM Multivalued (45 × 45) 194
aSome of the excited states may not dissociate to accurate diatomic curves
as these were taken as disposable functions to fit the data on the triatomic.

5. Concluding Remarks

Extraordinary progress has been made on the calculation of potential energy
surfaces for molecular dynamics. Despite such advances in the ab initio the-
ory and computational tools, chemically accurate ab initio potential energy
surfaces are available only for systems with a few electrons. These calcula-
tions are so very time consuming that the list of such systems can hardly be
substantially increased in the forthcoming few years. Thus, there is much
room for methods to extrapolate to the complete basis set (Ref. 69, and ref-
erences therein) limit and/or the complete basis set/full configuration inter-
action (exact nonrelativistic) limit (Ref. 68, and references therein). There
has also been progress on modelling multi-sheeted potential energy surfaces
although, not surprisingly, at a much slower pace than single-valued ones.
Thus, there will also be much room for testing current strategies for multi-
sheeted model potentials and developing new ones, since this is a crucial
step toward the understanding of nonadiabatic chemistry in areas such as
spectroscopy and reaction dynamics. Further topics include the interaction
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between systems which possess by themselves a crossing seam. What hap-
pens to such seams remains to our knowledge virtually unexplored.189–191

In summary, after discussing the Born–Oppenheimer approximation and
its generalization to systems with electronic degeneracies, the present review
focused on methods for multi-sheeted global potential energy surfaces with
emphasis on DMBE, since this method has led to some of the most reliable
functions currently available. Although the multivalued DMBE applica-
tions completed thus far are only for triatomic systems, work on tetratomic
species is currently in progress. Some topological implications of the mul-
tivaluedness have also been examined, with emphasis on the GP effect.
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Appendix A. The Geometric Phase

Consider an arbitrary path R(t). The non-stationary time-dependent elec-
tronic Schrödinger equation along such a path assumes the form

HeΨ (r;R(t)) = i�
∂Ψ (r;R(t))

∂t
. (A.1)

Using the electronic basis set {ΨI (r;R(t))}, where

HeΨI (r;R(t)) = VI (R(t)) ΨI (r;R(t)) (A.2)

the wave function may be expanded as

Ψ (r;R(t)) =
∑

J

cJ(t)ΨJ (r;R(t)) exp
[
− i

�

∫ t

VJ (t′) dt′
]

(A.3)

where the term in the exponential is the usual dynamical phase.
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From Eqs. (A.1) and (A.3), one then gets

i�
dcI

dt
=
∑

J

cJ

{
HIJ − VJδIJ − i�

〈
ΨI

∣∣∣∣∂ΨJ

∂t

〉
exp

[
− i

�

∫ t

(VJ − VI) dt′
]}

.

(A.4)
Neglecting now nonadiabatic coupling with states J �= I and noting that
HIJ =SIJ =0 for adiabatic basis set, one has

dcI

dt
= −

〈
ΨI

∣∣∣∣∂ΨI

∂t

〉
cI (A.5)

and hence

cI = exp
[
−
∫ t 〈

ΨI

∣∣∣∣∂ΨI

∂t′

〉
dt′
]

= exp [iAI(t)] (A.6)

where AI(t) = i
∫ t〈ΨI |∂ΨI

∂t′ 〉dt′ is the geometric phase. Thus, retaining only
one term in the wave function expansion, one has

Ψ (r;R(t)) = ΨI (r;R(t)) exp
[
− i

�

∫ t

VI (t′) dt′
]

exp [iAI(t)] (A.7)

which has the form expressed in Eq. (13) for the time-independent formu-
lation.

Appendix B. Diatomic Curves: The EHFACE2U Model

Following the general DMBE strategy, the two-body energy curves assume
the form

V (2) = V
(2)
EHF + V

(2)
dc (B.1)

where all symbols have their usual meaning. Although the simpler
EHFACE2151 model has been employed in some of the case studies reported,
we describe here the more complete EHFACE2U152 (Extended Hartree–
Fock Approximate Correlation Energy model for 2-body interactions with
inclusion of the United-atom limit) formulation.
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First, the dynamical correlation part is written as

V
(2)
dc = −

∑
n=6,8,10

Cnχn(R)R−n (B.2)

where the damping dispersion functionsi assume the form195–197

χn(R) =
[
1 − exp

(
−An

R

ρ
− Bn

R2

ρ2

)]n

(B.3)

and An and Bn are the auxiliary functions196 An = α0n
−α1 and

Bn = β0 exp(−β1n); α0 = 16.36606, α1 = 0.70172, β0 = 17.19338, and
β1 = 0.09574 are universal parameters (dimensionless) for all isotropic inter-
actions. In turn, the scaling parameter is defined by ρ = (5.5 + 1.25R0),
where R0 = 2(〈r2

X〉1/2 + 〈r2
Y〉1/2) with 〈r2

X〉 (〈r2
Y〉) being the expectation

value of the squared radii for the outermost electrons in atom X(Y).198

Thus, all coefficients in V
(2)
dc are in principle obtained a priori from theo-

retical or semi-empirical data.
In turn, the VEHF component of the potential assumes the form152

V
(2)
EHF = −DR−1

(
1 +

N∑
i=1

air
i

)
exp[−γ(r)r] + V asym

exc (R)χexc(R) (B.4)

where γ(r) = γ0[1+γ1 tanh(γ2r)], r = R−Rm is the displacement from the
equilibrium geometry, and D, ai(i = 1−N) and γi(i = 1−2) are parameters
usually determined from a least-squares fitting procedure to RKR and/or
other available data. Moreover, V asym

exc is the asymptotic exchange energy.
Except for this, all the numerical coefficients in V

(2)
EHF are usually obtained

from a fit to accurate ab initio energies or spectroscopic information refer-
ring to the complete potential. For numerical values of the parameters in
specific interactions, the reader is referred to the original papers cited in
Sec. 4.

Appendix C. Spin Wave Functions and Recoupling
Matrices for H3

Consider first the spin states of the various species involved: s = 1
2 , ms =

± 1
2 for H; s = 0, 1, ms = 0,±1 for H2; s = 1

2 , ms = ± 1
2 for H3. By

iThese should not be confused with nuclear wave functions in Eq. (6). Similarly, ρ and
γ(r) should not be confused with similar symbols used in the main text.
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considering

|S, M〉 =
∑

mamb

CSM
sama,sbmb

|sa, ma〉|sb, mb〉 (C.1)

one gets for the AB spin functions:

|1, 1〉 = C1,1
1
2

1
2 , 1

2
1
2

∣∣∣∣12 1
2

〉∣∣∣∣12 1
2

〉
= ab (C.2)

|1, 0〉 = C1,0
1
2

1
2 , 1

2
1
2

∣∣∣∣12 1
2

〉∣∣∣∣12 1
2

〉
+ C1,0

1
2

1
2 , 1

2
1
2

∣∣∣∣12 1
2

〉∣∣∣∣12 1
2

〉
=

1√
2

(
ab + ab

)
.

(C.3)

Moreover, for H3, one obtains:

χ1 =C
1
2 , 1

2
1
2

1
2 ,10

∣∣∣∣12 1
2

〉
|10〉 + C

1
2

1
2

1
2

1
2 ,11

∣∣∣∣12 1
2

〉
|11〉 + C

1
2

1
2

1
2

1
2 ,11

∣∣∣∣12 1
2

〉
|11〉

=
1√
6

(
2abc − abc − abc

)
(C.4)

χ2 =C
1
2 , 1

2
1
2

1
2 ,00

∣∣∣∣12 1
2

〉
|00〉 =

1√
2

(
abc − abc

)
. (C.5)

In turn, the spin recoupling matrices for BC and AC are defined by:

φi =
2∑

k=1

tkiχk (C.6)

which, for diatomic BC, leads to

|sasbsc; sbcSM〉 =
∑
sab

tSM
sbcsab

|sasbsc; sabSM〉 (C.7)

where

tsbcsab = (−1)sa+sb+sc+S
√

(2sab + 1) + (2sbc + 1)
{

sa sb sab

sc S sbc

}
(C.8)

which leads to

Tbc =
1
2

(−1 −√
3√

3 −1

)
. (C.9)

Similarly, one has for diatomic AC:

Tac =
1
2

(
1

√
3√

3 −1

)
(C.10)



April 27, 2004 12:2 Conical Intersections: Electronic Structure, Dynamics and Spectroscopy chap05

Modeling and Interpolation of Global Multi-Sheeted Potential Energy Surfaces 263

Appendix D. Note Added in Proof

The main body of this article dates to May 2002, when the work described
in Sec. 4.2 for the NO2 molecule was far from completion.153 Apart from
minor corrections, we have decided at the proof stage to maintain the
text in its original form, addressing the reader to the paper116 where
the completed 8 × 8 DMBE potential energy surface for NO2(2A′) has
been published. Not surprisingly, small changes are observed, although
they should not be of concern for the purposes of the present work. In
that publication,116 we have also conveyed near spectroscopic accuracy
to the ground-state sheet (12A′) of the NO2 potential energy surface in
the vicinity of the deep potential well by merging it with a spectroscopi-
cally determined167 Taylor-series-expansion type form via a novel multiple
ES scheme. After this work has been completed, a paper by Kurkal et al.199

reporting global potential energy surfaces for the ground (12A1) and the
first excited (12B2) electronic states of NO2 has also appeared. In this
paper, about 5000 ab initio points have been calculated at the internally
contracted MR CI level using the standard correlation consistent polar-
ized quadruple (cc − pVQZ) atomic basis set. The calculated dissociation
energy corresponding to NO2 → NO + O and other features of the surfaces
are found to be in close agreement with experimental values. Not surpris-
ingly therefore, the structure and energy parameters of the two electronic
states of NO2 tabulated in Ref. 199 show good agreement with the cor-
responding attributes of the DMBE/ES116 potential energy surface. Note
that the fundamental frequencies and energies of low lying bound states
have also been reported116,199 for the two surfaces from quantum dynam-
ics calculations, with the results showing reasonably good agreement. Since
the grid of calculated ab initio points is dense enough, they have adopted
an interpolation with a three-dimensional cubic spline rather than an ana-
lytical representation of the NO2 potential energy surface. However, as the
authors themselves have pointed out,199 their chosen coordinates are not
well suited to describe the N + O2 channel. In particular, this is found199

to be 1.30 eV above the O + NO channel, which underestimates the exper-
imental value by 0.1 eV. Thus, the accuracy of their surface for reaction
dynamics studies remains to be shown. We should mention in this context
that the lowest adiabatic sheet of the DMBE/ES116 potential energy sur-
face has recently been employed for dynamics and kinetics studies200 of the
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reaction N(4Su) + O2(X3Σ−
g ) → NO + O and its reverse, with the calcu-

lated thermal rate coefficients being found to be in good agreement with
the recommended values over a wide range of temperatures. A final remark
goes to a recent paper201 where a new scheme is presented to allow an
accurate representation of a double-sheeted potential energy surface using
standard single-valued DMBE theory. According to this new approach, the
degeneracy of the two sheets along the conical intersection line is guaran-
teed by construction. Such a method has been applied to the lowest triplet
state of H+

3 (a3E′) for which the lowest vibrational levels have also been
calculated.
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1. Introduction: The Search for the Photochemical Funnel

With their seminal 1935 work on the structure of potential-energy surfaces,
Eyring,1 Evans and Polany2 were able to define the exact nature of the
“activated complex” or “transition state” for ordinary (thermal) chemical
reactions. The molecular structure of a transition state describes the spa-
tial arrangement of the atoms corresponding to the highest point (TS) on
the potential-energy surface that has to be overcome by the reactant to
form the product. This discovery not only provided the basic “conceptual
tool” for understanding chemical reactivity, but also indicated the way for
getting, through quantum chemical calculations, information on the molec-
ular structure of the transition state. If the TS structure is known, the
full reaction path can be determined by computing the minimum-energy
path [(MEP), see dashed line in Fig. 1]: the curve that connects the TS
(a saddle point on the potential-energy surface) with the energy minima
associated with the reactant (Min1) and the product (Min2). The suc-
cessful development of quantum chemistry packages and the availability of
increasingly fast computers in recent years have made the computational
investigation of thermal reaction paths a routine practice in the modern
chemical laboratory.

Until the early 1990s, the systematic computation of photochemical
reaction paths was unpractical if not impossible. In a photochemical reac-
tion, the reactant is an electronically excited-state molecule or complex M∗,
while the product is a ground-state species. Thus, in order to describe a
photochemical reaction, one must first establish the nature of the spatial
arrangement of the atoms corresponding to the point where M∗ decays from
the excited-state potential-energy surface to the ground state and initiates
product formation. Loosely, this critical molecular structure plays the role
of the “transition state” for a photochemical process.3

The classic view of unsensitized (i.e. singlet) photochemical reactions is
mainly due to the 1969 computational work of Van der Lugt and Ooster-
hoff 4 on the photochemistry of butadienes. As illustrated in Fig. 2(a), these
authors proposed that decay of M∗ takes place at an excited-state energy
minimum corresponding to an avoided crossing of the excited- and ground-
state potential-energy surfaces. However, experimental evidence such as the
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Fig. 1. Schematic representation of the structure of the potential-energy surface for a
thermal chemical reaction. The dashed curve indicates the minimum-energy path. Min1
and Min2 are local energy minima corresponding to reactants and products. TS is a
saddle point corresponding to the transition structure. Max is a local maximum.

lack of fluorescence from such a minimum indicated that the decay must be
extremely fast, which can only occur when the energy gap between excited
and ground state is within a few kcal mol−1. On the other hand, the calcu-
lations available at that time, which, as stressed in Fig. 2(b), were forced
to assume the conservation of molecular symmetry along the reaction path,
predicted quite sizable energy gaps.4,5 In these conditions M∗ would rapidly
equilibrate and the excited-state decay would occur on a time scale close
to that of fluorescence (i.e. allowing many vibrational oscillations) as in
standard internal conversion processes.

In 1966 and 1972, Zimmerman,6 Michl7−10 and, in 1974, Salem11−13

were the first to suggest, independently, that certain photoproducts origi-
nate by decay of the excited-state species M∗ through a conical intersection
(CI) of the excited- and ground-state potential-energy surfaces. Zimmer-
man and Michl used the term “funnel” for this feature that corresponds,
in contrast to the Van der Lugt and Oosterhoff computations, to a real
crossing of two potential-energy surfaces. The same idea was proposed by
Edward Teller14 in 1969. Teller made two general observations:

(a) in a polyatomic molecule, the non-crossing rule, which is rigorously
valid for diatomics, fails and two electronic states, even if they have
the same symmetry, are allowed to cross at a conical intersection.
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Fig. 2. The relationship between (a) the Van der Lugt–Oosterhoff model and (b) a
model (see Sec. 2.1) based on MEP computations for the photochemical electrocycliza-
tion of buta-1,3-diene. The Van der Lugt–Oosterhoff model is based on an assumed
(interpolated) reaction coordinate and suggests that the photochemical funnel corre-
sponds to an avoided crossing at M∗ (see dashed frame). MEP computations yield a
different, but unbiased coordinate, corresponding to the steepest-descent path from the
excited-state reactant. The reaction coordinate characterizing such a path leads to a
conical intersection between the excited (S1) and ground (S0) states. The framed region
in part (b) indicates the position of the Van der Lugt–Oosterhoff avoided crossing in the
conical intersection region.

(b) radiationless decay from the upper to the lower intersecting state occurs
within a few vibrational periods when the system “travels” in the vicin-
ity of such intersection points.15

On the basis of these observations, Teller proposed that conical intersections
provide a very fast decay channel from the lowest excited states of poly-
atomics that would explain the lack of fluorescence from the excited state.
Despite the fact that the ideas of Teller, Zimmerman, Michl and Salem rep-
resented an important refinement of the avoided crossing model,4,5 conical
intersections were thought to be extremely rare or inaccessible (i.e. located
too high in energy) in organic compounds and thus were disregarded for
many years.

At the end of the 1980s, improved ab initio quantum chemical method-
ologies became available which were suitable for computing, in a balanced
way, excited- and ground-state potential-energy surfaces. In particular, the
ab initio CASSCF method16 had an analytical gradient which could be
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employed for efficient geometry optimization (the search for the structure
corresponding to energy minima and transition states) taking into account
the complete set of the 3N − 6 nuclear degrees of freedom of the reacting
system (N is the number of atoms). It was thus obvious that with this
new methodology it was possible to overcome the limits (i.e. symmetry
constraints and pre-defined reaction coordinates) used in the Van der Lugt
and Oosterhoff4 and Devaquet5 calculations [see Fig. 2(b)].

A first application17,18 of the ab initio CASSCF method in 1990 to the
photoinduced cycloaddition of two ethylene molecules showed that:

(i) a conical intersection exists right at the bottom of the first excited-state
energy surface.

(ii) the molecular structure of the conical intersection is related to the
observed photoproducts and stereochemistry of the reaction.

Therefore it appeared possible that conical intersections could, contrary
to the common belief, be frequent (if not ubiquitous) in organic systems.
Further, they may constitute the photochemically relevant decay channel.

Despite the hypothesis of Zimmerman6 and Michl7−10 as well as few
encouraging computational results by Michl and coworkers19,20 and by
ourselves17,18 one has to reckon that there is no general theorem sup-
porting the existence of low-lying (i.e. accessible in ordinary experimental
conditions) conical intersections in organic chromophores. The only way
to prove the validity of the hypothesis stated above was a painstaking sys-
tematic search for properties (i)–(ii) in different classes of organic chro-
mophores. Thus, in 1992 Bernardi, Robb and one of the authors started
a long-term project, focusing on a systematic investigation of the basic
organic chromophores: alkenes, isolated and conjugated dienes, polyenes,
arenes, enones, azoalkanes and others (see Sec. 3.1). The results showed
that, in all cases, it is possible to locate a low-lying conical intersection
with a structure related to the observed photoproducts. Furthermore, for
a number of species it was possible to compute the entire excited-state
reaction path (see also Sec. 2.1) starting at the ground-state equilibrium
geometry (the Franck–Condon structure FC) and ending at the low-lying
conical intersection CI.

Due to the recent availability of suitable computational methods in stan-
dard quantum chemistry packages (e.g. GAUSSIAN21), the computation
of conical intersections of organic chromophores and, to a certain extent,
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the computation of excited-state reaction paths are becoming a standard
practice among computational chemists. As a consequence, the amount of
structural data on conical intersections and, thus, on the mechanism of
the critical step of different classes of organic photochemical reactions are
rapidly increasing. In this context, the present book chapter has two main
objectives. The first is a discussion of the main mechanistic results that
have been achieved in the field. The second is a presentation of the conical
intersections detected in a number of basic organic chromophores. These
objectives are the subject of Secs. 2 and 3, respectively.

2. Mechanistic Results

2.1. General Structure of the Photochemical Reaction Path

In Sec. 1 we have stressed that, in a statistically significant number of
cases, a conical intersection plays the role of the photochemical funnel. How-
ever, the discovery of a conical intersection structure in a reactive organic
molecule does not guarantee that such a structure corresponds to the photo-
chemical funnel or that the computed conical intersection is involved in the
reaction at all. A rigorous evidence for the involvement of a conical intersec-
tion in a photochemical process can be provided through the computation
of the photochemical reaction path. The result of such a computation for
the fairly complex organic molecule 122 (a Z polyeniminium cation) under-
going a photoinduced Z/E isomerization to produce the E form 2, is given
in Fig. 3.

In the figure we show that a photochemical reaction path is defined
and computed in terms of a set of connected minimum-energy paths.23 In
particular, the path starting at the FC structure 1 on the potential-energy
surface of the spectroscopic excited state and ending at the photoprod-
uct energy minimum 2 located on the ground-state energy surface is con-
structed by joining two MEPs. A first MEP (full squares) connects the FC
point to the conical intersection (FC→CI). A second MEP (open squares)
connects the conical intersection to the photoproduct (CI→Photoproduct).
A third MEP (full circles) can be computed that starts at CI and describes
the photochemical reactant reconstitution process (CI→Reactant) respon-
sible for partial return of the photoexcited species to the original ground-
state minimum. In the same figure, we also show that it is possible to
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Fig. 3. Computed photochemical reaction path for the Z/E isomerization of 4-Z-nona-
2,4,6,8-tetraeniminium cation derivative 1 featuring a 4-Z double bond embedded in an
eight-membered-ring. The values of the relevant structural parameters are given in Å.

compute the thermal reaction pathways describing the evolution of the pri-
mary photoproduct towards secondary products. In the specific case, this
evolution describes the reactant reconstitution via two different transition
structures (open and full diamonds). Of course, these transition structures
(TS1GS and TS2GS in Fig. 3) define two additional ground-state MEPs.

The computed set of MEPs can, in principle, provide a full description of
the direct and indirect photochemical reactivity of the system. The analy-
sis of the reaction coordinate associated to each MEP provides information
on the spatial/geometrical relationship between the MEPs and, effectively,
on the multidimensional structure of the chemically relevant part of the
excited- and ground-state energy surfaces. The same analysis also reveals
the nature of the molecular modes involved in the reactivity process. In cer-
tain favorable cases, such as that of the Z/E photoisomerization discussed
above, this structural information can be condensed in a two-dimensional
cross-section of the intersecting surfaces displaying the topography of the
excited- and ground-state energy surfaces, respectively. Such a representa-
tion is given in Fig. 4.
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Fig. 4. Three-dimensional representation of the topography of the excited- and ground-
state potential-energy surfaces in the framed region (see dashed rectangle) of Fig. 3.
Although one of the two coordinates is referred to as “torsion”, it does not really corre-
spond to the change of a dihedral angle, but to a “local” torsional distortion of the central
segment of the molecule. Indeed, it can be described as a coupled pyramidalization at
the C3 and C6 centers of the carbon skeleton.

As extensively discussed in other chapters of this book, a conical inter-
section is characterized by two “special” molecular modes forming the so-
called “branching”24 or “g, h”25 plane. A molecular structure deformation
along this plane lifts the excited-/ground-state energy degeneracy. Fur-
thermore, the ground- and excited-state wavefunctions undergo a dramatic
change as the molecular structure is changed along a closed loop lying on
the branching plane and comprising the conical intersection. In particu-
lar, these wavefunctions exchange their character along the loop. One will
therefore have regions of the ground-state energy surface with an electronic
structure that correlates with that of the excited state at FC and vice
versa. A detailed analysis of the structure of the branching plane and of
the behavior of the wavefunctions of the excited and ground state in the
region of the conical intersection can be used to provide information on the
nature of the “reactive” process mediated by the CI.

In Fig. 5 we plot the branching plane vectors (X1 and X2) at the
conical intersection of 1. It is apparent that in this molecule X1 and X2

describe either a “local” torsional deformation of the central segment of the
molecule (this second mode can be more rigorously described as coupled
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Fig. 5. Branching (or g, h) plane vectors for the CI structure of Fig. 3. The X1 and X2
vectors correspond to the derivative coupling24 (or non-adiabatic coupling) and gradient
difference24 vectors between the S1 and S0 states.

pyramidalization (wagging) modes at the C3 and C6 centers of the π-chain)
or a stretching deformation (a double-bond expansion and single-bond con-
traction mode) of the N=C1–C2=C3–C4=C5–C6= chain segment. As illus-
trated in Scheme 1 (here and throughout the text, conical intersections will
be denoted with the χ symbol), simple structural considerations suggest
that evolution of the conical intersection structure along the X2 and –X2

directions would ultimately yield two structures which may be represented
by (resonance) formulas with inverted single and double bonds and with the
positive charge shifted from the nitrogen to the C9 position (indeed these
deformations lead to the two transition structures TS1GS and TS2GS of
Figs. 3 and 4). Similarly, structural deformation along the X1 and –X1

directions yields structures that can be represented by formulas with the
Z and E central double bond, respectively. Obviously these two structures
will be more stable than the 90◦ twisted structure generated by motion
along X2, since in this case the deformation allows for reconstitution of
the central double bond (i.e. the reactant and the primary photoproduct in
Fig. 3). For this reason, the analysis of the branching plane suggests that
upon decay from CI the molecule will generate the Z and E stereoisomers.
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Scheme 1

Notice that the position of the positive charge of 1 is not the same along
the four possible directions. Furthermore, notice that at the CI where the
excited- and ground-state energies are degenerate, the positive charge (i.e.
the electronic distribution) is very different in the excited and ground state
as shown in Scheme 1. These electronic features will now be discussed.

As mentioned above, the analysis of the wavefunction, taken together
with the analysis of the branching plane, provides the basis for the ratio-
nalization of the electronic structure of the part of the ground-state energy
surface (see Fig. 4) comprising the reactant and product valleys and the
transition structures connecting them. Notice that the topography of this
region is conceptually related to the topography of the moat of the Mexi-
can hat of Jahn–Teller-type intersections discussed elsewhere in this book.
The result of such an analysis for chromophore 1 is shown in Scheme 2,
where the wavefunction is analyzed in terms of point charges of the C9–C8–
C7–C6–C5– and –C4–C3–C2–C1–N fragments. It is clear from the scheme
that 1, 2 and TS1GS exhibit the same type of electronic structure. This
can be described by a resonance formula with the charge located on the
nitrogen atom. On the other hand, TS2GS clearly shows a different elec-
tronic structure, where the positive charge has partially migrated to the
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C9–C8–C7–C6–C5– fragment. The structure is thus characterized by a large
contribution of a different resonance formula. The two types of charge dis-
tribution correlate with those computed for the ground and excited states
of FC (at FC the charge is mainly located on the –C4–C3–C2–C1–N frag-
ment in the ground state, but is shifted to the C9–C8–C7–C6–C5– fragment
in the excited state) and with those of the two intersecting states at CI (at
CI the 99% of the charge is located on the –C4–C3–C2–C1–N fragment in
one state, but is located on the C9–C8–C7–C6–C5– fragment in the other
state). The energy equality between the covalent and ionic configurations
at CI has been explained for the model system prop-2-eniminium cation
by Bonačić-Koutecký and Michl.26 While the change from one type of elec-
tronic structure to the other occurs along a loop centered on the CI, this
change is usually not smooth. In fact, the intramolecular charge-transfer
process that characterizes the change occurs in a rather restricted region
of the branching plane. For 1 this region corresponds, schematically, to the
area comprised between the two dashed lines in Scheme 2.

As reported in other parts of the book, a conical intersection point is,
in general, part of a subspace of conical intersection points. This is usually
a 3N −8 dimensional subspace (N is the number of atoms of the molecule)

Scheme 2
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Fig. 6. MEP along the intersection space of cyclohexa-1,3-diene. The 21A1 excited-
state energies are labelled with open diamonds, while the 11A1 ground-state energies
are labelled with full squares (the labels 21A1 and 11A1 refers to the symmetric (left)
conical intersection structure). Adapted from Ref. 27.

called the intersection space24 (or seam of intersection25) and it is, locally,
orthogonal to the two-dimensional branching plane. Recently, it has become
possible to obtain information on the structure of the low-lying region of the
intersection space of organic molecules through constrained MEP compu-
tations that yield paths residing entirely on the intersection space.27 Such a
MEP may connect a higher-energy conical intersection structure to a lower-
energy conical intersection, provided that these intersections belong to the
same pair of potential-energy surfaces. An example is reported in Fig. 6 for
the case of the cyclohexa-1,3-diene molecule.

From inspection of the figure, it is apparent that a continuum of
conical intersection points connects a higher-energy conical intersection
with C2 symmetry C2-CI) to a lower-energy asymmetric conical inter-
section C1-CI). It has been independently shown via conical intersection
optimization27−29 that the asymmetric intersection is the lowest-energy
minimum of the intersection space in the chemically relevant region. The
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mapping of low-lying segments of the intersection space by means of MEP
computations provides information on the family of low-lying molecular
structures that, if achieved during the excited-state motion of the reactant,
could provide efficient access to the ground state.

It must be stressed that excited-state relaxation/reaction paths (such
as the FC→CI path of Fig. 3) do not necessarily hit the lowest-energy
point belonging to the intersection space. Thus the actual decay may occur
in a region removed from the lowest-energy conical intersection located
via direct optimization methods (see also Sec. 3.1). One of these cases is
reported in Fig. 7, where it is shown that the relaxation path of the penta-
2,4-dienimminium cation (a minimal model of the retinal protonated Schiff
base chromophore) ends at a conical intersection with a ca. 70◦ (CI70◦)
twisted structure, while the lowest-energy intersection (CI92◦) located on
the intersection space has a 92◦ twisted structure.30 Notice that in this
situation the main locus of excited-state (S1) decay is predicted to be CI70◦ .

Fig. 7. The excited-state reaction path of the penta-2,4-dienimminium cation inter-
cepts the conical intersection point CI70◦ located ca. 5 kcal mol−1 above the minimum-
energy conical intersection CI92◦ . FC→CI70◦ MEP (S1 open diamonds and S0 full
diamonds), CI70◦→CI92◦ MEP (S1 open circles and S0 full circles). The values of the
relevant structural parameters are given in Å and degrees.
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In Sec. 3 we will mainly concentrate on the discussion of the structure
(both geometrical, electronic and topographical) of the chemically relevant
(low-lying) conical intersections that have been documented in a number
of basic organic chromophores. As we will further point out in Sec. 3.1, the
majority of these structures have been computed via conical intersection
optimizations and do not strictly correspond to the conical intersection
points located at the very bottom of the excited-state path. Nevertheless,
their general features are representative of the chemically relevant segment
of the intersection space and can be used for the mechanistic rationalization
of different photoinduced molecular processes.

2.2. Bond Making, Bond Breaking, Group Exchange,
Electron Transfer

The elementary events occurring during chemical reactions are bond mak-
ing, bond breaking, group (and atom) exchange, electron (and charge)
transfer. A first basic result of the extensive computational investigation of
organic compounds is the demonstration of the existence of conical inter-
sections that mediate all types of chemical events. Thus, in Fig. 8 we report
the structure of three conical intersections that mediate bond making, bond
breaking and group exchange, respectively.

Fig. 8. Conical intersections in (left to right) benzene, cyclohexa-1,3-diene and
bicyclo[2.2.1]hept-2-ene (norbornene).
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The molecular structures of Fig. 8 may appear unusual. However, it must
be noticed that in all structures specific σ-bond and/or π-bond lengths are
far from their equilibrium values. This basic feature reinforces the idea
(see Sec. 1) that these structures can be thought as the “photochemical
analogue” of transition structures. Analysis of the geometry, π-electron
distribution and branching plane vectors reveals the nature of the pho-
tochemical event mediated by the computed conical intersection structure.
In Scheme 3, we display the structure of the branching plane for the coni-
cal intersection between the first singlet excited state and the ground state
of benzene31 (see also Sec. 3.3.4). It is clear from X1 that this intersec-
tion mediates a σ-bond-making process between the centers C1and C3,
leading to the formation of a bicyclic biradical species (–X1 leads to ben-
zene reconstitution). This species is prefulvene, the postulated intermediate
leading to fulvene32 and benzvalene.31 In contrast, evolution along the X2

and –X2 vectors leads to two distorted Kekulè structures (i.e. unstable
cyclohexatrienes) that must revert to benzene upon further relaxation. The
branching plane shown in Scheme 4 is associated with the conical intersec-
tion of cyclohexa-1,3-diene given in Fig. 8(b) (the chromophore of steroids
such as ergosterol and 7-dehydrocholesterol).27−29 Inspection of the highly
distorted structure of the intersection indicates that this mediates a C5–C6

Scheme 3
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Scheme 4

σ-bond-breaking event, leading to ring opening. Indeed, evolution along X1

leads to the acyclic photoproduct hexa-1,3,5-triene chain in a s-cis,Z,s-cis
conformation. In contrast to benzene, evolution along the X2 vector leads to
the methylenecyclopentenyl biradical intermediate that is a precursor of a
bicyclic compound (a bicyclo[3.1.0]hex-2-ene). On the other hand, evolution
along the –X2 vector leads to an unstable acyclic biradical structure that
must relax to s-cis,Z,s-cis-hexa-1,3,5-triene. The structure of Fig. 8(c) pro-
vides an example where the conical intersection mediates an intramolecular
group transfer (more precisely an intramolecular [1,3]-sigmatropic shift) in
norbornene.33,34 Notice that this process is characterized by simultaneous
σ-bond breaking at C1–C6 and σ-bond making at C6–C3. In Scheme 5, we
report the structure of the branching plane of this reaction as well as a plot
of the X1 and X2 vectors.

Evolution along X1 and –X1 leads to the [1,3]-sigmatropic shift product
bicyclo[3.2.0]hept-2-ene and to the original norbornene, respectively. On the
other hand, evolution along X2 leads to a [1,2]-sigmatropic shift product,
corresponding to a bicyclic biradical species (which may further evolve to
generate a tricyclic product). In contrast, evolution along –X2 leads to an
unstable biradical, where the two unpaired electrons reside on an allyl and
an ethyl moiety, respectively, and are apart from each other.
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Scheme 5

A different category of conical intersections mediates photoinduced
electron- and charge-transfer processes (i.e. photoinduced redox reactions).
The first example is given by a bimolecular reaction between a 1n − π∗

azoalkane (pyrazoline) and a chlorinated hydrocarbon (CH2Cl2),35,36 where
decay at a conical intersection leads to simultaneous production of radical
and ion pairs. Reaction path computations show that, after excited-state
hydrogen atom transfer from CH2Cl2 to pyrazoline, the path intercepts a
conical intersection with a nearly formed N–H bond. The structure of the
associated branching plane is shown in Fig. 9(a). Distortion along X1 leads
to production of a radical pair, while distortion along −X1 leads to produc-
tion of an unstable ion pair (see discussion in Ref. 36). In analogy with the
branching plane of Scheme 1, evolution towards the X2 and –X2 directions
leads to two equivalent ground-state transition structures which feature a
distorted pyrazoline ring. In Fig. 9(b), we show the result of wavefunction
analysis (in terms of fragment charges) along a loop [see dashed arrows in
Fig. 9(a)] centered on the conical intersection. It is clear that at ω = 0◦ one
has an ion-pair region, where the charge on the azoalkane and chlorinated
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Fig. 9. (a) Structure of the branching plane for the conical intersection mediating the
hydrogen-atom transfer from methylene chloride to an 1n-π* azoalkane (pyrazoline). (b)
Analysis of the fragment charges along a circle (dashed arrows) centered on the conical
intersection. The ω angle describes the progression along the circle starting at the ion-pair
structure (−X1 direction). Data from Ref. 36.

hydrocarbon are positive and negative, respectively. In contrast, for values
of ω around 200◦ one has a nearly neutral pair. The regions of the two tran-
sition states are instead characterized by a sharp change of the electronic
distribution (i.e. an electron-transfer process) in the chlorinated hydrocar-
bon → azoalkane direction at ω = 100◦ and in the azoalkane → chlori-
nated hydrocarbon direction at ω = 290◦. Reaction path analysis shows,
consistently with the experimental observations on diazabicyclo[2.2.2]oct-
2-ene (DBO)+chloroform, that both the radical and ion pairs are transient
species and revert back to the original reactant. As we will see in the next
section, this constitutes a case of unsuccessful photochemistry.
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Fig. 10. The conical intersection of cyanine dyes is characterized by two electronic
states that differ in the position of a positive charge. The intersection mediates a charge-
transfer process in the X2 direction of the branching plane dominated by stretching
deformations and Z/E isomerization in the X1 direction. The same situation occurs in
polyenal protonated Schiff bases (see Scheme 1).

The conical intersection seen in Fig. 3 for a protonated polyene Schiff
base is an example of a conical intersection between two electronic states
that differ for the position of one positive charge. It is thus obvious that
such an intersection is not only related to a Z/E photoisomerization process,
but also to a charge transfer along the conjugated backbone. Indeed, such a
charge transfer occurs along X2. A related example is that of carbocyanine
dyes. The conical intersection found for a short carbocyanine model is given
in Fig. 10 together with the associated branching plane vectors.37 These are
strictly related with the vectors seen in Fig. 5. In particular, X1 is related
to the coupled pyramidalization of three centers of the conjugated chain
and X2 is a stretching.

2.3. Chemical Reaction, Quenching and Deactivation

Conical intersections, whose structure appears to mediate (locally) a chem-
ical event such as the ones described in the previous section, do not nec-
essarily take part in a truly successful chemical reaction.38 Computations
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Scheme 6

of excited-state reaction pathways such as those described for the electron
transfer in Sec. 2.2 show that, in certain organic materials, an intersection
is the hub of the molecular mechanism for light energy wastage such as
quenching and internal conversion processes. In both these events, the
energy of the photon is converted to ground-state vibrational energy with
no net permanent change in the original molecular structure. In Scheme 6
we show the three basic types of photochemical reaction paths found in
organic chromophores. Path (a) corresponds to that of a successful photo-
chemical reaction, where a finite percentage of the absorbed photon energy
is used to produce a different chemical species. This type of path operates,
for example, in the reactions mediated by the intersections seen in Fig. 8
and discussed in Sec. 2.2. In path (b), we show a case where the production
of an excited- or ground-state short-lived new chemical species is achieved,
but then this species is immediately converted to the original material and
no net chemical reaction is accomplished. Finally, path (c) illustrates a case
where there is no formation of ground-state photoproduct. In this case, the
photochemical reaction is simply aborted at the conical intersection point.
In Fig. 11, we show a conical intersection structure loosely belonging to
path (b). This regards the case of the quenching of the fluorescence of
1n-π∗ azoalkanes as DBO.39 This molecule is quenched when it interacts
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Fig. 11. Conical intersection for intermolecular charge transfer between 1n-π* pyrazo-
line and trimethylamine. Excited-state path (open circles), ground-state relaxation path
(open squares). LD is a weak covalent complex, TS indicates the position of the barrier,
EX is the exciplex. The values of the relevant structural parameters are given in Å.
Adapted from Ref. 39.

with electron donors such as amines. In Fig. 11, we report the computed
photochemical reaction pathway for the intermolecular charge transfer from
a photoexcited 1n-π∗ pyrazoline (taken as a model of DBO) to an amine
(trimethylamine). Notice that the excited-state branch of the reaction path
is dominated by the decrease in distance between the reactant moieties.
This process, which is controlled by a small excited-state barrier, leads
to the formation of an exciplex located in the close vicinity of a conical
intersection. The geometrical structure of the conical intersection and the
vectors of the branching plane are given in the same figure. Notice that
X1 is dominated by the out-of-plane deformation of the pyrazoline ring,
and X2 is dominated by the interfragment distance. While, in principle,
the reaction could lead to formation of an ion pair, this process is aborted
immediately after the exciplex formation where already 0.3 electrons have
been transferred from the amine to the azoalkane.

In the example above, the quenching occurs with the intervention of an
unstable excited-state species. A different quenching process that involves
the formation of an unstable ground-state species that readily reverts to
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the reactant via a thermal reaction [thus conforming closely to path (b)
of Scheme 6] is given in Fig. 9 of Sec. 2.2. In fact, the quenching of 1n-π∗

pyrazoline occurs via hydrogen abstraction, leading to formation of a tran-
sient radical pair.35,36 This transient reverts efficiently to the reactant pair.

The conical intersections of Fig. 12 are responsible for the efficient inter-
nal conversion of azulene from its first excited state.40,41 This process occurs
according to path (c). The two intersections belong to the same intersec-
tion space that, in the region of interest (i.e. the lowest energy region),
is spanned by a ring-flipping deformation. This mode simply interconnects
the intersections of C2v and CS symmetries. On the other hand, an analysis
of the shape of the branching plane vectors reveals that X1 is dominated
by a transannular bond contraction and X2 is dominated by a stretch-
ing deformation. Notice that both intersections involve the formation of
a transannular double bond (X1 direction in Scheme 7). However, this
“chemical event” is aborted and the molecule relaxes back to the original
structure.

Fig. 12. Conical intersections (C2v-CI and Cs-CI) driving the internal conversion of
azulene. MINEX is the azulene S1 energy minimum. FC is the Franck–Condon struc-
ture. Comparison of the X1 and X2 vectors associated with the two conical intersections
indicates that they belong to the same intersection space.
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Scheme 7

3. Classification of Conical Intersections in Organic
Compounds

3.1. Tracing and Recording Conical Intersections

As mentioned in Sec. 1, a long-term project was started in the early 1990s
for the search of conical intersections in organic compounds. Between 1992
and 2000, the potential-energy surfaces of ca. 25 different organic chro-
mophores were mapped to search for photochemically relevant conical inter-
sections. These compounds belong to one of the following classes:

Chromophores with one Double Bond (or two Isolated Double Bonds)
Chromophores with conjugated double-bonds
Chromophores with a Carbonyl Group or a Conjugated Carbonyl Group
Azo-Chromophores
Models of the Retinal Chromophore (Schiff Bases)
Model Photochromic Compounds and Dyes
Aromatic Chromophores and Related Compounds
Polysilanes
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Such a systematic investigation could not be carried out without the
development of novel computational tools. The first tool developed was
a method (the CIO method) for the unbiased search and optimization
of low-lying conical intersection points between pairs of potential-energy
surfaces.42 Other novel tools were designed and implemented to compute
the excited- and ground-state branches of photochemical reaction paths
(the IRD method in Ref. 43) and most recently to compute “photochemi-
cal” semi-classical surface hopping trajectories (SHT),40,44,45 and Ehrenfest
trajectories,46 i.e. trajectories that start on the excited-state energy surface
and continue along the ground-state surface in the region of the conical
intersection. With the help of these tools, a complete computational strat-
egy was defined to compute the entire photochemical reaction path.47−49

The traditional (e.g. stationary point search, vibrational frequency and
intrinsic reaction coordinate computations) and the new mapping meth-
ods used in our project are schematically summarized in Fig. 13.

While, as already mentioned above, the ab initio CASSCF method has
been considered the reference quantum chemical methodology for locat-
ing conical intersections in organic compounds, in principle any quantum
chemical method including model Hamiltonians, semi-empirical and ab ini-
tio configuration interaction methods, can be used to trace conical intersec-
tions. This is mainly due to the fact that conical intersections are topological
features of the potential-energy surfaces and usually do not disappear as
a function of the level of theory used. However, it is clear that their rela-
tive energy and geometrical structure may not be realistic if a low level of
theory is used. It is useful to mention that parameterized effective Hamil-
tonian methods (e.g. the MMVB method50) have been developed that can
be used to trace conical intersections in hydrocarbon chromophores with
an accuracy close to that of CASSCF.

The results of the project described above strongly support the hypothe-
sis that low-lying conical intersections are ubiquitous in organic molecules.51

During the last years, different research groups have been focused on the
computational investigation of organic chromophores and the number of
novel conical intersection structures of organic materials reported in the
literature is currently growing. Below, we will not attempt to assemble an
exhaustive classification of all conical intersections found, but we will limit
ourselves to a survey of the conical intersection structures found for a num-
ber of important classes of organic chromophores.
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Fig. 13. The computational methods used for constructing a photochemical reaction
path. The full path is computed by joining different MEPs, each one providing infor-
mation on a specific part of the excited- or ground-state potential-energy surface. The
IRD method is used to compute the steepest relaxation directions departing from the
FC point (excited-state relaxation) or CI (ground-state relaxation). The IRC method
is used to compute the steepest-descent line defined by the computed IRDs. The CIO
method is used to compute the lowest-energy conical intersection point directly. With
TSO we indicate the standard transition structure optimization procedure.

3.2. Types of Classification

Thermal organic reactions are often classified in terms of the molecular and
electronic structure of their transition state or reactive intermediate (which
is often taken as a model of the transition state). Thus, for instance, one has
the SN2 transition state for concerted bimolecular nucleophilic substitution
reactions; one has the E2 and E1 transition states in elimination reactions,
etc. Given the transient nature of the transition states, the use of quantum
chemical methodologies is essential for the determination of their detailed
geometrical and electronic structure. Furthermore, the computation of the
associated transition vectors provides information on the reactive mode



June 4, 2004 14:18 Conical Intersections: Electronic Structure, Dynamics and Spectroscopy chap06

296 Conical Intersections: Electronic Structure, Dynamics and Spectroscopy

Table 1. List of photochemical reactions where a conical
intersection structure has been shown to be related to the
structure of the photoproducts.

Reaction Ref. Number

Ring-opening and Ring-closure 28,29,52–59
[1,2]-, [1,3]-Sigmatropic Shifts 53,60
Di-π-methane Rearrangement 61
Oxadi-π-methane Rearrangement 62
Valence Isomerization of Aromatics 31,63
[2+2], [4+2] and [4+4] Cycloadditions 64–66
Bicyclization of Dienes 67
Cis/trans Isomerization 58,68–73
Deazetization 74–76
Hydrogen Transfer 35,77
Charge Transfer 39
Paterno–Büchi 78
Polysilane Fragmentation 79

and therefore on the expected products. The same type of concept can be
applied to photochemical organic reactions. In fact, these can be classified
by computing the geometrical, electronic, and branching plane structures
of the associated conical intersections. As reported in Table 1, in a number
of cases, the structure of the conical intersections has been shown to be
related to the structure of the observed photoproducts of a specific successful
photochemical reaction.

As seen in Sec. 2.3, conical intersections that mediate unsuccessful chem-
ical reactions have been shown to provide the decay channel associated
with processes that are usually thought to occur through a photophysical
mechanism (e.g. controlled by the Fermi Golden Rule80) such as the radia-
tionless deactivation and/or quenching processes. Furthermore, important
organic chromophores have been demonstrated to undergo either photo-
chemical reactions or internal conversion processes on an extremely fast
(usually sub-picosecond) time scale (i.e. emission is not observed from the
excited state, since the time scale of the reaction is faster than the radiative
lifetime).

In Scheme 8, we show the structures of the path for a standard photo-
chemical reaction [Scheme 8(a)] and for an ultrafast photochemical reac-
tion [Scheme 8(b)]. The fact that these processes occur on an ultrafast time
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Scheme 8

Table 2. List of ultrafast photochemical processes
whose excited-state path is characterized by a small
or negligible barrier.

Ultrafast Radiationless Decay Ref. Number

Polyenes and Polyene Schiff Bases 81–83
Benzene 31
Azulene 40
Fulvene 45
Indacene 84
Cyanine 37
Styrene 85

scale is explained by the fact that the computed excited-state paths are
barrierless or feature a negligible energy barrier. In these systems, evolu-
tion towards the conical intersection funnel is not restrained. The same type
of feature has been documented for ultrafast internal conversion processes
[see Scheme 8(c)], where the unsuccessful chemical process leading to decay
is, again, controlled by a small or negligible barrier. A list of these types of
reactions is given in Table 2.

The computational investigation of the reactions and chromophores rela-
tive to the references of Tables 1 and 2 would constitute, together with addi-
tional results from our and other research groups, the basis for a systematic
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presentation of computed conical intersection structures. Given the length
limitations, it will be not possible to implement such a presentation in the
present chapter. Nevertheless in Sec. 3.3 we present a selection of results
(Scheme 9) that, in our view, complement those already given above in
providing an overview of recent case studies. This presentation has been
designed to:

(i) Focus on the chemical role played by the conical intersection. Thus,
for the computational aspects (e.g. the level of theory used in the
computation) the reader shall refer to the cited literature.

(ii) Despite the fact that a number of conical intersections have now
been located for processes involving higher excited states (e.g. S2/S1

intersections), here we limit ourselves to a discussion of S1/S0 con-
ical intersections. Conical intersections between states of other spin
multiplicities (e.g. T2/T1) also exist, but will not be systematically
described.

Scheme 9
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(iii) Although crossings between states of different spin multiplicity (e.g.
T1/S0) are chemically very important, they do not correspond to con-
ical intersections and thus will not be discussed.

3.3. Basic Organic and Bioorganic Chromophores

3.3.1. Conjugated Dienes and Polyenes

Buta-1,3-diene represents the simplest conjugated polyene. There are three
states involved in the photochemistry and photophysics of polyenes.55,57,81

In fact, these chromophores are initially excited to the S2 state (11B2 and
11Bu states for polyenes with CS and C2h symmetry, respectively), then
they relax (through a S2/S1 conical intersection) to a low-lying doubly
excited covalent S1 state (21A1 and 21Ag states for CS and C2h symmetry,
respectively). Further relaxation along S1 leads to barrierless decay to the
ground-state via a S1/S0 conical intersection. The S1/S0 conical intersec-
tions (Fig. 14) accessed from s-cis- and s-trans-buta-1,3-dienes are charac-
terized by the same sharp –(CH)3– “kink” in the carbon backbone:55,81,86,87

the two C–C bonds of the –C2–C3–C4 segment are twisted and the C2–C3–
C4 bending angle is decreased, resulting in the pyramidalization of the
–C2–C3–C4 segment central carbon. In Scheme 10 we show that the elec-
tronic structure of the kink is characterized by three uncoupled π-electrons
arranged at the vertex of a triangle defined by the C2, C3, and C4 atoms.
The C2–C3–C4 kink is loosely coupled to an isolated π-electron located
at the terminal methylene group C(1)H2. The structure of the branching
plane is similar to that described in Scheme 3 for the prefulvenic conical

Fig. 14. The –(CH)3– kink intersection of s-cis-buta-1,3-diene. φ1−2, φ2−3, φ3−4
describe the torsion about the C1–C2, C2–C3 and C3–C4 bonds, respectively. The values
of the relevant structural parameters are given in Å and degrees.
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Scheme 10

intersection of benzene. It is clear from the X1 vector that the intersec-
tion mediates a σ-bond-making process between the C2 and C4 centers to
generate a biradical species. This species is the precursor of bicyclobutane.
Alternatively, motion along the X2 and –X2 directions leads to two highly
distorted butadiene structures that must revert to the parent molecule upon
further relaxation.

In longer polyenes, the –(CH)3– kink intersection is a common feature
of the S1 state as documented for s-cis,Z,s-cis-, s-trans, Z,s-trans-, and
all-trans-hexa-1,3,5-triene28,68,81,88 (see Fig. 15 for the latter conformer)
and for all-trans-octa-1,3,5,7-tetraene,81,82 all-trans-dodeca-1,3,5,7,9,11-
hexaene,83 as well as for the allyl, pentadienyl, heptatrienyl polyene
radicals.81 In Fig. 15(a), we compare the structure of the –(CH)3– units
of six all-trans conjugated hydrocarbons, three polyenes (butadiene, hex-
atriene, and octatetraene) and three polyene radicals (allyl, pentadienyl,
and heptatrienyl). The comparison of these structures with that of buta-
1,3-diene seen in Fig. 14 reveals that each structure contains the same tri-
angular arrangement of the carbon skeleton that we have already discussed
above. In longer polyenes, there is the possibility of several conical intersec-
tions with the kink located at different positions in the chain. For example,
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Fig. 15. (a) Superimposed –(CH)3– kinks of six all-trans conjugated hydrocarbons:
three polyenes (butadiene, hexatriene, and octatetraene) and three polyene radicals
(allyl, pentadienyl and heptatrienyl). Adapted from Ref. 81. (b) Structures of the coni-
cal intersections of all-trans-hexa-1,3,5-triene. (left) the –(CH)3– kink corresponds to the
C1–C2–C3– segment, (right) the –(CH)3– kink corresponds to the –C2–C3–C4 segment.
The shaded atoms indicate the position of the kink. The data are from Ref. 88.

Fig. 15b shows that in all-trans-hexa-1,3,5-triene there are two distinct
kinked S1/S0 conical intersections, one with the –(CH)3– kink located at
the C2–C3–C4 position mediating simultaneous Z/E and s-cis/s-trans iso-
merizations, and the other with the kink located at the C1–C2–C3 position,
mediating simultaneous s-cis/s-trans isomerization and methylene twisting.
The conical intersection of benzene,31,89−92 displaying the typical –(CH)3–
kink arrangement, has already been reported in Fig. 8(a) of Sec. 2.2.
The –(CH)3– kink intersection has been recognized in other aromatic sys-
tems such annulene,63 styrene,85,93 stilbene94 and azabenzenes90−92,95 and
pyrrole,96 and antiaromatic molecules such as cyclo-1,3,5,7-octatetraene97

(see below).

3.3.2. Cyclocta-1,3,5,7-tetraene

Cyclooctatetraene is formally an antiaromatic compound. Its ground-state
structure is far for being planar and displays a tub conformation with four
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Scheme 11

Fig. 16. Structure of the “boat-like” conical intersection of cyclocta-1,3,5,7-tetraene.
This intersection mediates semibullvalene formation and double-bond/single-bond shift-
ing. The values of the relevant structural parameters are given in Å and degrees. Data
from Refs. 97 and 98.

moderately interacting localized double bonds (left structure in Scheme 11).
In contrast, the S1 excited-state minimum is a planar structure that cor-
relates with S3 at FC.97 The vertical S3 state is described in terms of the
molecular orbitals involved in the electronic excitation as a doubly excited
state 1π∗2 that it is totally symmetric (21A1 in the D2d group that applies
to the ground-state cyclooctatetraene tub form) as the ground state (11A1).
There are two tetraradical S1/S0 conical intersections. One corresponds to
the –(CH)3– kink intersection of the same type as the previously discussed
intersection of linear conjugated hydrocarbons (e.g. butadiene and longer
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polyenes in Sec. 3.3.1)97,98 and aromatic compounds such as benzene [see
Fig. 8(a) discussed in Sec. 2.2]. While for benzene there is only one low-
energy tetraradical pattern involving three adjacent unpaired electrons (i.e.
the kink, see Scheme 3) and an allyl radical, in cyclooctatetraene, due to
its larger size, a new and more stable tetraradical type configuration is pos-
sible that corresponds to a boat-like conical intersection (Fig. 16). Here,
there are two unpaired facing electrons on the C1 and C5 centers, plus two
delocalized allyl radicals (Scheme 11). Obviously, this configuration is more
stable than the kink one and correspondingly the boat-like intersection is
the lowest-energy crossing point. A tetraradical tetrahedral structure can
be also found in the higher-energy C2 symmetric intersection in cyclohexa-
1,3-diene seen in Fig. 6 of Sec. 2.1. The main geometric feature is the
C1–C5 transannular bond distance (2.89 Å). In Scheme 11, we show that the
structure of the branching plane is similar to that previously documented
for benzene. The geometry, the electronic distribution, and the branching
plane vectors clearly indicate that this conical intersection mediates a σ-
bond formation process between C1 and C5. Indeed, motion along X1 leads
to the formation of a bicyclic biradical product (bicyclo[3.3.0]octadienyl
biradical) which is the precursor of semibullvalene. On the other hand, evo-
lution along the X2 and –X2 vectors leads to two unstable structures with
alternating single/double bonds that relax towards the parent molecule or
its double-bond-shifted isomer.

3.3.3. Conjugated Enones

The simplest conjugated enone is acrolein. In Fig. 17 we show the structure
of the branching plane of the 1n-π∗ S1/S0 conical intersection of s-cis-
acrolein.58 The conical intersection structure features inverted single and
double-bonds with a 90◦ twisted terminal methylene. X1 describes a
stretching deformation that corresponds to double-bond expansion and
single-bond contraction. In contrast, X2 corresponds to a CO stretching
coupled to terminal CH2 torsion. Evolution along the X2 and –X2 direc-
tions would yield two structures that correspond to the four-membered-ring
oxetene and ground-state reactant, respectively. Since the conical intersec-
tion structure has the CH2 moiety twisted, the cis/trans isomerization prod-
uct could be formed by terminal CH2 forward rotation. Evolution along the
X1 and –X1 directions would yield two unstable structures that may be
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Fig. 17. The conical intersection for cyclization and Z/E isomerization of s-cis-acrolein
and the corresponding branching plane structure. Data from Ref. 58.

represented by formulas with inverted single and double bonds and corre-
spond to ground-state cyclization transition states. These unstable struc-
tures should revert to acrolein and to oxetene. In Sec. 3.3.8 we shall see
that a similar intersection has been located for photoinduced ring opening
of benzopyran.

3.3.4. Benzene and [18]annulene

Benzene displays a symmetric (Cs symmetry) S1/S0 conical intersection
between states that correlate with the 1E2g state (S2 in the FC region) and
the ground state of the planar equilibrium structure.31,89−92 In Scheme 12,
we show that the electronic character of the anti-aromatic (i.e. difference of
the two Kekulé structures indicated with a dashed circle) S1 surface (1B2u)
changes along the S1 reaction path due to an avoided crossing between the
S2 and S1 states.31 The S2 (1E2g) state can be described by a combination
of quinoid (Dewar type) and antiquinoid spin couplings. As seen in Fig. 8(a)
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Scheme 12

Fig. 18. The photochemistry of benzene. The curve connecting the two conical inter-
sections in the centre of the scheme indicates that the two structures belong to the same
intersection space. Data from Refs. 31 and 32.

of Section 2.2, the benzene S1/S0 intersection structure is characterized
by the same –(CH)3– “kink” feature found in polyene hydrocarbons. In
fact, one –CH– unit is raised out of the original plane of the ring and
pyramidalized, yielding a highly distorted allyl radical moiety with a small
C–C–C bending angle (the distance between the carbons at position 1 and
3 is ca. 2.0 Å, and corresponds to a closing cyclopropanyl σ-bond). The
remaining part of the molecule corresponds to a planar allyl radical moiety
with a geometry that is very close to that of the equilibrium allyl radical.
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Scheme 13

This intersection is usually referred to as the “prefulvenic” intersection. As
shown in Scheme 12, the intersection is accessible from: (i) the S1 state
by surmounting an energy barrier related to the S1/S2 avoided crossing
(see dashed curves), and (ii) from the S2 state through a barrierless path
involving a higher-energy S2/S1 conical intersection.

The photochemistry of benzene leading to formation of benzvalene, ful-
vene, and Dewar benzene is summarized in Fig. 18 and rationalized by
the branching plane of Scheme 3 in Sec. 2.2. The four quasi-unpaired elec-
trons (see minimal-energy CI) can recouple in two different ways, leading
to the reactant or to a ground-state prefulvene biradical intermediate. This
species in turn isomerizes to benzvalene. We have found that the prefulvene
structure does not correspond to a minimum, but to a transition state con-
necting two slightly distorted structures named prebenzvalene.31 Another
photoproduct observed upon irradiation of benzene is fulvene. In Fig. 18
we also report a plausible low-energy pathway for the thermal conversion
of prefulvene (or prebenzvalene) to fulvene involving the formation of 1,3-
cyclopentadienylcarbene via C2–C3 bond breaking followed by [1,2]-H shift
to yield fulvene.32 Calculations show that Dewar benzene is a product of S2

photochemistry (at vertical geometries S2 is 1B1u, but it soon acquires the
character of the E2g state as motion along the reaction path occurs). This
is due to the fact that the molecule moves downhill on the S2 surface to
an S2/S1 conical intersection and reaches the S1 surface at a higher energy
S1/S0 conical intersection (see Fig. 18) belonging to the same intersection
space of the prefulvenic intersection with a geometry that potentially medi-
ates either Dewar benzene or benzvalene formation.

A benzene-like intersection exists also for [18]annulene (Scheme 13)
that, similarly to benzene, obeys to the Hückel 4n + 2 aromaticity rule.63

In fact, the annulene S1/S0 intersection has a –(CH)3– “kink” feature, a
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3-electron allyl center and 6 fully formed double bonds. While in principle
the reaction could lead to formation of a cross-ring σ-bond, this process
is simply aborted at the conical intersection point and radiationless decay
leads exclusively to the reactant reconstitution [see path (c) in Scheme 6].
In analogy to benzene, in [18]annulene the S1 (1B2u) and relaxed S2 states
correspond to the anti-aromatic (i.e. difference of the two Kekulé structures)
and antiquinoid structures, respectively.

3.3.5. Indole

The relevant potential-energy surfaces for photochemically induced H-
detachment in indole are shown in Fig. 19(a).99,100 The key role in this

Fig. 19. Schematic representation of the potential-energy profiles of the 1π-σ∗, 1Lb and
1La, 1π-π∗ excited states and ground state for the NH group hydrogen-atom detachment
of indole. The 1π-σ∗ state is repulsive. The values of the relevant structural parameters
are given in Å. Data from Refs. 99 and 100.
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picture is played by the 1π-σ∗ excited state, which has a repulsive potential-
energy function relative to the in-plane stretching of the N–H bond and
intersects in turn the 1Lb and 1La excited states of 1π-π∗ character and the
ground state that instead are bound. The resulting multiple conical inter-
sections can provide the mechanism for efficient internal conversion to the
ground state. The 1π-σ∗ S1/S0 intersection is planar and occurs at a disso-
ciating NH distance of ∼1.9 Å. Since the intersection has been located under
a symmetry constraint and not by applying the CIO method, the existence
of lower-energy intersections of lower symmetry cannot be excluded. This
intersection provides a mechanism for repopulation of the ground-state par-
ent molecule or dissociation to ground-state radical and H atom. The dia-
gram in Fig. 19(a) derives from two important properties of the electronic
structure of the 1π-σ∗ excited state. First, the 1π-σ∗ state is antibonding
relative to the NH bond. Initially, the 1π-σ∗ excited state is described by
a Rydberg-like configuration due to the diffuse character of the σ∗-orbital,
which resembles the 3s hydrogen orbital. However, a stretching of the NH
bond leads to a collapse of the antibonding σ∗-orbital towards the 1s orbital
of hydrogen. Accordingly, as shown in Fig. 19(b), the N–H bond in the 1π-
σ∗ state is described by a configuration consisting of a linear array of two
orbitals containing three electrons, two forming a lone pair on the N atom
and one localized in the 1s orbital of the detaching hydrogen. Since the
ground state and 1π-π∗ states are bound (two electrons in the NH σ-bond),
stretching the NH bond lowers the 1π-σ∗ energy and raises the correspond-
ing S0 and 1π-π∗ energies, bringing the states to cross. Second, the crossings
are enforced by symmetry. The 1π-σ∗ state is of 1A

′′
symmetry, while the

1π-π∗ and the S0 states are of 1A
′
symmetry in the Cs group, and therefore

the intersections are symmetry-allowed intersections of 1A
′′

and 1A
′
states.

The existence of a conical intersection of the lowest 1π-σ∗ state with
the ground state is a general property of planar aromatic systems con-
taining hydroxy or azine groups. The H-detachment intersection has been
documented along the N–H stretch coordinate in (c) pyrrole, and (d) 9H
tautomer of adenine (Fig. 19).99−101 A similar conical intersection mediat-
ing O–H cleavage has been identified in phenol [Fig. 19(e)].100

3.3.6. Tryptophan

In zwitterionic tryptophan (the amino acid chain contains an ammonium
group and a carboxylate anion), in addition to the S1/S0 H-detachment
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intersection of the indole chromophore discussed above, there is a S1/S0

intersection that arises from the interaction between the amino acid chain
and the indole chromophore and is held to be responsible for the 1π-π∗

fluorescence quenching (Fig. 20).102 The two paths may in fact coexist
on the same multidimensional potential-energy surface along different geo-
metric coordinates. Reaction-path computations show that after hydrogen
transfer from the amino acid chain to the indole chromophore, the path
intercepts a conical intersection along the amino acid chain decarboxyla-
tion coordinate with the C–C σ-bond linking the amino acid chain to the

Fig. 20. Schematic representation of the reaction coordinate for tryptophan fluores-
cence quenching induced by hydrogen transfer and aborted decarboxylation. The elec-
tronic nature of the S1 surface changes character along the S1 path due to two avoided
crossings between S1 and S2. The first one occurs between the covalent 1Lb state and the
ionic 1La state along the reaction coordinate that interconverts the S1-Min and S1-Exc
minima. The second one occurs between the ionic 1La state and the biradical 1Bb state
along the tautomerization coordinate that leads to the excited-state tautomerized form
S1-Taut. This point does not corresponds to a minimum on the potential-energy surface
and it is found that evolution along a decarboxylation coordinate leads to a S1/S0 con-
ical intersection, where efficient radiationless decay to the ground state takes place. The
values of the relevant structural parameters are given in Å. Data from Ref. 102.
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indole chromophore nearly broken (1.74 Å). Thus, the amino acid chain
acts not only as the hydrogen donor, but is involved in another step of the
reaction, namely the decarboxylation process. In Fig. 9(a), we have seen
that in azoalkanes the decay at the intermolecular H-transfer intersection
leads to simultaneous production of radical and ion pairs. In tryptophan,
the decay at the conical intersection leads to simultaneous formation of
a zwitterionic and biradical species (framed structures). Distortion along
X1 that corresponds to the stretching of the C–C bond involved in the
decarboxylation process leads to production of the biradical species, while
distortion along –X1 leads to production of the zwitterionic species. The
zwitterionic species can be derived from the biradical species by means of
an electron transfer from the side chain to the indole chromophore. The
zwitterionic species is a transient species and relaxes toward the ground-
state tautomerized form. This is an additional case of unsuccessful photo-
chemistry, where the second part of the quenching mechanism corresponds
to an aborted decarboxylation process and conforms to the case depicted in
Scheme 6(c). The tautomerized form in turn reverts to the untautomerized
form via back-proton transfer from the chromophore to the side chain on
the ground-state surface.

3.3.7. Cytosine

Figure 21 shows two intersections that occur in the amino keto tautomer
of cytosine. The azine and carbonyl functionalities introduce two low-lying
1n-π∗ excited states, one involving the nitrogen lone pair and the other the
oxygen lone pair. Each state gives a conical intersection with the ground
state.103 In the 1nO-π∗ S1/S0 intersection (excitation involves the oxygen

Fig. 21. Conical intersections in the amino keto tautomer of cytosine. The values of
the relevant structural parameters are given in Å and degrees. Data from Ref. 103.
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lone pair, nO) the C–O bond is stretched to 1.41 Å and C6 is significantly
pyramidalized (the deviation from planarity, calculated as the difference
between 360◦ and the sum of the three bending angles is 35◦). This inter-
section is similar to the acrolein intersection that features a stretched C–O
bond and a twisted terminal methylene (see Sec. 3.3.3). A type of reasoning
similar to that employed in acrolein can indeed be used to rationalize the
degeneracy in cytosine. The S0 and S1 states correspond to two biradical
configurations (nOpC/pOpC) that can be interconverted by swapping the
relative occupancies of the nO- and pO-orbitals. When the unpaired elec-
trons are completely uncoupled, the two arrangements, one with two elec-
trons in the nO-orbital and one electron in the pO-orbital and the other with
reversed occupancies, are energetically equivalent. The decoupling between
the biradical centers requires C–O bond stretching and pyramidalization
in cytosine, while it is achieved by means of C–O bond stretching and
methylene twisting in acrolein. However, one should bear in mind that the
intersection is associated with two different reaction coordinates for the two
molecules and describes a photochemical process in acrolein and a purely
photophysical process in cytosine.

The geometry of the 1no-π∗ S1/S0 intersection has not been confirmed
upon inclusion of dynamical correlation.104 At the 1no-π∗ S1/S0 crossing
geometry of Fig. 21 the lowest excited state becomes 1π-π∗ while 1no-π∗

corresponds to S2. As the C–O bond distance is stretched further from
1.41 to 1.43 Å, a 1π-π∗ S1/S0 crossing is reached.104 This type of situa-
tion arises because the 1π-π∗ and 1no-π∗ states are close in energy and
their order is altered upon inclusion of dynamical correlation. A precise
location of the two S1/S0 crossings (i.e. 1no-π∗ S1/S0 and 1π-π∗ S1/S0)
would require a conical intersection optimization procedure that includes
dynamical correlation.96

The 1nN-π∗ S1/S0 intersection (the excitation involves the oxygen lone
pair, nN) features out-of-the plane distortion of the C4 ring atom and resem-
bles the prefulvenic conical intersection, although, strictly speaking, it can
not be classified as a prefulvenic intersection, because there is no tendency
to form a partial cross σ-bond between the C3 and C5 pair of neighboring
atoms. The S1 state and S0 state have both one electron in the C4 p-orbital
raised out of the plane, so that it is rotated of ∼45◦ relative to the original
molecular plane (see Newman projection). At this geometry, the electronic
configurations, one with two electrons in the nN-orbital and one electron
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in the pN-orbital (S0 state) and the other with swapped occupancies of the
nN- and pN- orbitals (S1 state), are degenerate.

3.3.8. Benzopyran

An s-cis-acrolein-like S1/S0 conical intersection arising from the degener-
acy between the 1n-π∗ excited and ground states has also been found to
occur along the photochemical ring-opening coordinate involving C–O bond
cleavage in benzopyran (Fig. 22).59 The geometry is acyclic, with the C–O
σ-bond fully broken (2.35 Å). While the s-cis-acrolein intersection has the
O–C–C–C dihedral angle close to 0◦ and the terminal CH2 moiety twisted
of ∼90◦, the benzopyran intersection has a spiral-like structure with some
degree of torsion about the C2–C3, C3–C4, C4–C5 bonds. In acrolein, the
radical centers are separated by two sp2-carbons, whereas in benzopyran

Fig. 22. The S1/S0 conical intersection mediating the photochemical ring-opening of
benzopyran together with the X1 and X2 vectors. (right) Schematic representation of
the branching plane structure. The values of the relevant structural parameters are given
in Å and degrees. Data from Ref. 59.
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by four sp2-carbons. Benzopyran is a suitable model to describe the excited
reaction coordinate for the ring opening of benzospiropyran.59 The benzene
moiety acts as an antenna, absorbing light energy that in turn is trans-
ferred to the carbonyl-group along the ring-opening coordinate. At FC the
S1 state is described by a benzene-like anti Kekulé state, whereas at the
intersection S1corresponds to a 1n-π∗ carbonyl-group-like state. In Fig. 22,
we report the branching plane vectors. The X2 vector clearly corresponds
to the C–O bond breaking mode. Distortion along −X2 leads to the cyclic
benzopyran product; evolution along X2 leads to the acyclic 6-allylidene-
cyclohexa-2,4-dienone system. X1 describes an asymmetric stretching coor-
dinate. Evolution along the X1 and –X1 directions yields two structures
that may be represented by formulas with inverted single and double bonds.
These unstable structures should revert to benzopyran and to the acyclic
molecule.

4. Conclusions

Above we have given an (not exhaustive) overview of the present knowledge
of the geometrical, electronic and branching plane structure of the conical
intersections associated with different classes of organic compounds. This
knowledge could potentially provide the basis for the rationalization, sys-
tematic classification and design of photochemical organic reactions. It is
our hope that the current and future increase in the amount of available
computational results in the field of excited-state organic molecules will
prompt a more complete classification and comprehension of these features
that are already been taught in advanced organic chemistry courses.105

On the other hand, the importance of the progress in this field has been
recently reckoned by the European Commission for the Research.106 Very
obviously, the knowledge of conical intersections appears to be a key step
for the rational design of molecules capable to either exploit or waste the
photon energy (see for instance Ref. 38).

The extension of this knowledge to bioorganic chemistry107 and
organometallic chemistry108 is only in its early stage. The major diffi-
culty for the search and classification of conical intersections in these
systems is related to the larger molecular size and extension of the π-
systems. This calls not only for faster computers, but also for improved
as well as new methodologies. These may include: (i) methodologies that
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allow the treatment of larger π-systems in CASSCF computations, (ii)
methodologies for computing the dynamic correlation energy corrections
at a lower computational cost such as the CAS-DFT109 or TD-DFT110

and (iii) suitable QM/MM hybrid methodologies that allow for excited-
state computations111 and conical intersection search in proteins (e.g. in
rhodopsins, fluorescent proteins and others).

A different research field awaiting further methodological development
and testing is that of solvent effects in photochemical reactions. It is clear
that this type of investigation will only be possible when it will be pos-
sible to compute the structure of conical intersections in solution. All
intersections discussed above have been computed in isolated conditions
and for organic ions (e.g. PSB, cyanines and radical cations) in absence
of the couterion. It would be therefore mandatory, for the many cases
where the experimental observations are carried out in solution, to fur-
ther develop methodologies112 and computational strategies allowing such
an investigation.

The search of conical intersections both in solution and in proteins repre-
sents remarkable applicative research targets for modern quantum chemical
methodologies. However, it must be stressed that the understanding of the
exact nature and structure of the intersection space (i.e. the ≤ 3N − 8
dimensional space spanned by a family of conical intersection) is still very
poorly understood. Regions where two such spaces cross, leading to a lower
dimensional intersection space (but higher dimensional branching space),
have been demonstrated for simple molecular systems.113 In the authors’
opinion, the knowledge of such structural/topological features of a pair of
intersecting potential-energy surfaces and their relationship with photo-
chemical reaction paths in organic chromophores represents a fundamental
research topic. In principle, photochemical properties such as the time scale,
quantum yield, stereoselectivity and substituent effects may well be affected
by the structure of the intersection space.

Finally, the development of methodologies for the computation of non-
adiabatic trajectories in sizable organic molecules at a level of theory that
ensures qualitatively correct force fields represents another fundamental
research target.114 In fact, while the qualitative aspects of the dynamics
of organic chromophores can be derived by the mapping of the excited-
and ground-state reaction coordinates (e.g. as illustrated in Fig. 13), the
evaluation of the reaction time scale, quantum yields as well as the direct
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comparison with time-resolved spectroscopic measurements can only be car-
ried out when direct-dynamics data become available.
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1. Introduction

The concept “vibronic coupling” subsumes all phenomena which arise
from the mixing of several electronic states (or components of degener-
ate electronic states) by nuclear displacements. Vibronic-coupling effects
become important whenever there is a degeneracy or near-degeneracy of
electronic states. Vibronic-coupling effects are ubiquitous in the electronic
spectroscopy of highly symmetric polyatomic molecules as well as crystals,
the Jahn–Teller effect being the most widely known example.1,2 In this
case the electronic degeneracy or near-degeneracy arises as a consequence
of symmetry. The concept of vibronic coupling is of much wider relevance,
however, and applies to essentially all polyatomic systems in excited elec-
tronic states. The dynamics at conical intersections, in particular, involves
a strong mixing of electronic and vibrational degrees of freedom and thus
is generically of “vibronic” character.

Vibronic-coupling theory has been a well established area of research
since many years. The basic elements of the theory are the concept of dia-
batic electronic states, the normal-mode description of vibrational motion,
and the application of symmetry selection rules to derive appropriate model
Hamiltonians. The applications of vibronic-coupling theory cover the full
range of molecular spectroscopy, including, in particular, optical absorption
and emission and photoelectron spectroscopy. Typical spectroscopic phe-
nomena associated with vibronic interactions are the appearance of nom-
inally forbidden electronic bands, the excitation of nontotally symmetric
modes, or unusual and complex vibronic fine structures of electronic spec-
tra. A fairly comprehensive and up-to-date exposition of vibronic-coupling
theory is provided by the monograph of Bersuker and Polinger.3
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Traditionally, vibronic-coupling Hamiltonians have been considered as
heuristic models, involving certain parameters, the values of which had to
be determined by the fitting of observed spectra. More recently, the advent
of large-scale computing has lead to new developments in vibronic-coupling
theory. Owing to considerable progress in ab initio electronic-structure the-
ory, it is now possible to compute all relevant parameters such as harmonic
vibrational frequencies and vibronic coupling constants from first principles,
even for somewhat larger polyatomic systems. Although vibronic-coupling
parameters derived from ab initio calculations may often not be sufficiently
accurate for a quantitative calculation of spectra, these data generally pro-
vide a very useful first guess, which subsequently may be refined to improve
the agreement with the experiment.

Vibronic-coupling dynamics, that is, the solution of the Schrödinger
equation for vibronic-coupling Hamiltonians, represents another area where
modern computational techniques have been fruitfully applied. The com-
putation of spectra of systems with several vibronically active vibra-
tional modes generally requires the diagonalization of very large, but
sparse, Hamiltonian matrices. Iterative diagonalization methods such as
the Lanczos algorithm4 are ideally suited for this purpose, as they do not
require the Hamiltonian matrix to be stored in computer memory. Vibronic
eigenvalue problems involving up to 109 vibronic basis states have been
treated with such techniques.

Strong vibronic coupling of degenerate or nearly degenerate states can
lead to an essentially complete mixing of zero-order electronic states as well
as very dense and irregular vibronic line spectra. When considered in the
time domain, such systems exhibit radiationless electronic decay (internal
conversion) at femtosecond time scales.5,6 To describe such phenomena, it
is computationally advantageous to solve the time-dependent Schrödinger
equation directly in the time domain, employing an appropriate finite-basis
representation and one of many available numerical propagators7 for first-
order differential equations. Here again explicit storage of the Hamiltonian
matrix can be avoided by a direct coding of the matrix-vector prod-
uct. With such techniques, the femtosecond dynamics of complex systems
involving many millions of vibronic basis states have become accessible to
computation.

The combination of modern electronic-structure theory with efficient
numerical techniques for the solution of the vibronic Schrödinger equation
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represents a powerful tool for the analysis of complex electronic spectra
as well as ultrafast electronic decay processes in polyatomic molecules. In
this chapter we give a brief exposition of the basic concepts of vibronic-
coupling theory and its application to conical intersections. More detailed
and comprehensive descriptions can be found in several monographs1,3,8−10

and review articles.5,6,11,12 We emphasize the ab initio determination of
vibronic-coupling parameters and the numerical treatment of multi-mode
vibronic-coupling dynamics in the time as well as the frequency domain. A
few applications will be briefly reviewed which illustrate the present state
of the art in this area.

2. Vibronic-Coupling Hamiltonians

2.1. General Concepts

The basic elements of the description of non-Born–Oppenheimer dynamics
in either the adiabatic or diabatic representations have been outlined in
Chapters 1–4. The point of departure of the present discussion are the
coupled equations in the diabatic representation

(TN + Wnn(R) − E) χn(R) =
∑
m�=n

Wnm(R)χm(R) (1)

where

Wnm(R) =
∫

drΦ∗
n(r,R)[TE + U(r,R)]Φm(r,R) (2)

are matrix elements of the electronic Hamiltonian in the diabatic basis.
Eq. (1) is equivalent to the following representation of the molecular Hamil-
tonian in a basis of diabatic electronic states

H =
∑

n

|Φn〉 [TN + Wnn(R)]〈Φn| +
∑
n �=m

|Φn〉Wnm(R)〈Φm |. (3)

We refer to Chapter 4 for a detailed discussion on the definition and
explicit construction of diabatic states. The diabatic representation is gener-
ally advantageous for the computational treatment of the nuclear dynamics
if the adiabatic potential-energy surfaces exhibit degeneracies such as con-
ical intersections. Moreover, the diabatic representation often reflects more
clearly than the Born–Oppenheimer adiabatic representation the essential
physics of curve crossing problems and is thus very useful for the construc-
tion of appropriate model Hamiltonians for polyatomic systems.
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An essential aspect in the construction of model Hamiltonians for chem-
ical dynamics is the choice of the nuclear coordinates R. The form of the
electronic potential-energy as well as the kinetic-energy expression depends
on the choice of coordinates; coordinate systems may be selected to sim-
plify either the construction of potential-energy (PE) functions or the
construction of the kinetic-energy operator. For classical trajectory calcula-
tions, where the computational cost scales only linearly with the dimension,
Cartesian or mass-weighted Cartesian coordinates are the obvious choice,
since the kinetic-energy expression is trivial. In quantum-mechanical treat-
ments, the computational cost grows much more rapidly with the dimen-
sion of the problem, and the elimination of translation and overall rotation
is usually essential. It appears thus natural to formulate the Hamiltonian
in internal coordinates as defined, for example, by Wilson et al.13 Bond
length/bond angle internal coordinates are best suited for the modeling of
the PE function. Their drawback is the possibly very complicated form of
the quantum-mechanical nuclear kinetic energy operator.14−16

The construction of appropriate kinetic-energy operators and PE func-
tions simplifies considerably if we can assume that no large-amplitude
motions are involved. In this case we can define a suitable reference geom-
etry of the system (for example, the equilibrium geometry of the electronic
ground state) and adopt internal displacement coordinates to describe
vibrations of moderate amplitude about the reference geometry. It is then
a standard procedure to introduce normal coordinates by the simultaneous
diagonalization of the kinematic matrix (taken at the reference geometry)
and the matrix of force constants for the electronic ground state.13 The
normal coordinates are defined by

q = L−1δ R (4)

where δR is the 3N − 6 (3N − 5 for linear molecules) dimensional vector
of internal displacement coordinates (changes of bond lengths and bond
angles) for an N -atomic molecule, and L is the L-matrix of the well-known
Wilson FG-matrix method.13 It is convenient to introduce dimensionless
normal coordinates via

Qi = (ω i/�)1/2qi (5)

where ωi is the harmonic vibrational frequency of the ith normal mode. In
the harmonic approximation, which implies the expansion of the electronic
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ground-state PE up to second order in the displacements as well as
the approximation of the metric tensor by its value at the equilibrium
geometry,13 the kinetic-energy and PE operators of the electronic ground
state take the simple form

TN = −1
2

∑
i

�ωi∂
2 /∂ Q2

i (6)

V0 =
1
2

∑
i

�ωiQ
2
i . (7)

We proceed by expanding the diabatic excited-state PE functions and
coupling elements in terms of normal-mode displacements:

Wnn(Q) = W0(Q) + En +
∑

i

κ
(n)
i Qi +

∑
ij

γ
(n)
ij QiQj + · · · (8)

Wnn′(Q) = Wnn′(0) +
∑

i

λ
(nn′)
i Qi + · · · (9)

where

κ
(n)
i = (∂Wnn/∂Qi)0 (10)

λ
(nn′)
i = (∂Wnn′/∂Qi)0 (11)

γ
(n)
ij =

1
2
[(∂2Wnn/∂Qi∂Qj)0 − �ωiδij ]. (12)

Here En denotes the vertical excitation energy of the nth excited electronic
state. The κ

(n)
i represent the gradients of the excited-state potential func-

tions at the equilibrium geometry of the ground state and are referred to as
first-order intra-state electronic-vibrational coupling constants. The λ

(nn′)
i

are correspondingly called first-order inter-state coupling constants. The
second-order intra-state coupling constants γ

(n)
ij are responsible for the so-

called Duschinsky rotation of the normal modes in the excited state. For
simplicity, we have included in Eq. (9) only the linear term in the Taylor
expansion of the off-diagonal diabatic PE matrix elements. The effect of
bilinear inter-state couplings has been discussed, for example, in Refs. 102
and 113.
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Combining Eqs. (6)–(9), the molecular Hamiltonian takes the form

H =
∑

n

|Φn〉hn〈Φn| +
∑
n �=n′

|Φn〉[Wnn′(0) +
∑

i

λ
(nn′)
i Qi]〈Φn′ | (13)

with

hn = h0 + En +
∑

i

κ
(n)
i Qi +

∑
ij

γ
(n)
ij QiQj (14)

h0 =
∑

i

1
2

�ωi(−∂2/∂Q2
i + Q2

i ). (15)

In practical applications of the theory, the computational problem is simpli-
fied by restricting the electronic Hilbert space to just two or three electronic
states of interest, e.g. the ground state and two excited states. A further sig-
nificant simplification arises from symmetry selection rules. It follows from
the definition (10) that the first-order intra-state coupling constants κ

(n)
i

can be nonzero only for totally symmetric modes. Wnn′(0) is zero if Φn and
Φn′ transform according to different irreducible representations. The first-
order inter-state coupling constant λ

(nn′)
i is nonzero only for modes which

transform according to the irreducible representation ΓQ which fulfils

Γn × ΓQ × Γn′ ⊃ ΓA (16)

where Γn, Γn′ are the irreducible representations of the electronic states
and ΓA denotes the totally symmetric representation. In molecules with
high symmetry these selection rules strongly restrict the number of nonzero
electronic-vibrational coupling parameters.

The interaction of the molecular system with the radiation field is
described in the dipole approximation

Hint(t) = −
∑
n>m

|Φn〉 �E(t) · �µnm〈Φm|. (17)

The �µnm are electronic transition dipole moments, defined as matrix ele-
ments of the electronic dipole operator with diabatic states

�µnm = 〈Φn|�µ|Φm〉 (18)

and �E(t) is the external electric field. Since the electronic basis functions
|Φn〉, |Φm〉, are diabatic, �µnm is a slowly varying function of the nuclear
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coordinates and can thus be expanded in a rapidly converging Taylor series

�µnm(Q) = �µnm(0) +
∑

i

(
∂�µnm

∂Qi

)
0
Qi + · · · . (19)

It should be stressed that for multidimensional curve crossing problems
the low-order Taylor expansions (8), (9) and (19) are justified only in the
diabatic electronic representation. In the adiabatic representation, curve
crossings generally lead to rapid variations of potential-energy functions
and transition dipole moments, rendering a low-order Taylor expansion of
these functions in terms of nuclear coordinates meaningless.

Model Hamiltonians constructed according to Eqs. (13)–(15) are par-
ticularly well suited for the calculation of low-resolution absorption spec-
tra, photoelectron spectra and resonance-Raman spectra of polyatomic
molecules. As is well known,17−19 these spectra are largely determined by
the short-time dynamics in the excited state, which in turn is governed by
the shape of the PE functions within the so-called Franck–Condon zone of
the optical transition. In this limited range of nuclear geometries, the mul-
tidimensional PE functions are generally well approximated by the Taylor
expansions of Eqs. (8) and (9).

2.2. Specific Models

The presumably most widely known example of vibronic coupling is the
Jahn–Teller effect of a doubly degenerate electronic state, that is, the cou-
pling of the two components of the degenerate state by a doubly degener-
ate vibrational mode.1−3,8−11 The symmetry selection rule for this type of
vibronic coupling, the so-called E × E Jahn–Teller effect, is20

(E)2 ⊃ E (20)

i.e. the symmetrized product of the E representation has to contain the E

representation itself. This condition is fulfilled in point groups with at least
one three-fold symmetry axis.20

The E × E Jahn–Teller model comprises two diabatic electronic states
(the two components of the degenerate electronic state) and two vibra-
tional degrees of freedom (the two components of the degenerate vibrational
mode), which transform as x and y under three-fold rotations. It is conve-
nient to introduce complex electronic basis states and complex vibrational
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coordinates

|Φ±〉 =
1√
2
(|Φx〉 ± i|Φy〉) (21)

Q± = Qx ± iQy = ρe±iϕ (22)

The E ×E Jahn–Teller Hamiltonian then takes the well-known form1−3

H = |Φ+〉h0〈Φ+|+ |Φ−〉h0〈Φ−|+{|Φ+〉
(

κρeiϕ − 1
2
gρ2e−2iϕ

)
〈Φ−|+h.c.}.

(23)
Here

h0 = − �ω

2ρ2

(
ρ

∂

∂ρ
ρ

∂

∂ρ
+

∂2

∂ϕ2

)
+

1
2

�ωρ2 (24)

is the Hamiltonian of the two-dimensional isotropic harmonic oscillator,
and κ and g are the linear and quadratic Jahn–Teller coupling constants,
respectively.

The adiabatic potential-energy surfaces are obtained by diagonalizing
the Hamiltonian (23) in the fixed-nuclei limit (TN = 0). For vanishing
quadratic coupling (g = 0), this yields

V± =
1
2

�ωρ2 ± κρ. (25)

The potentials (25), often referred to as “mexican hat”, represent the pro-
totype of a conical intersection. The azimuthal symmetry of the adiabatic
potentials reflects the existence of a constant of motion of the linear Jahn–
Teller problem, the so-called vibronic angular momentum1,2

J = �

(
−1

2
+

1
i

∂

∂ϕ

)
|Φ+〉〈Φ+| + �

(
1
2

+
1
i

∂

∂ϕ

)
|Φ−〉〈Φ−| (26)

which commutes with H of Eq. (23).
For nonvanishing quadratic Jahn–Teller coupling, the adiabatic poten-

tials V± exhibit the threefold symmetry of the point group. The lower sheet,
in particular, exhibits three equivalent local minima which are separated
by three equivalent saddle points.1−3

The seemingly simple E × E Jahn–Teller model exhibits a surprisingly
rich variety of dynamical phenomena. The Hamiltonian (23) and its eigen-
values and eigenfunctions have been discussed in several comprehensive
reviews and monographs.1−3,8−12 The richness of dynamical phenomena



April 27, 2004 13:14 Conical Intersections: Electronic Structure, Dynamics and Spectroscopy chap07

332 Conical Intersections: Electronic Structure, Dynamics and Spectroscopy

arises from the presence of both strong non-Born–Oppenheimer coupling
(the derivative couplings diverge at the point of intersection of the adiabatic
energy surfaces) as well as strong anharmonic distortions of the adiabatic
potential surfaces.

Most systems exhibiting the Jahn–Teller effect possess more than one
degenerate vibrational mode (the exception are triatomic systems, such as
H3, Li3, etc.). The Hamiltonian is then given by

H =
∑

j

Hj (27)

where each Hj describes Jahn–Teller coupling by a degenerate mode accord-
ing to Eq. (23). It is important to realize that the Hj , acting in a two-
dimensional electronic Hilbert space, do not commute with each other. The
multi-mode Jahn–Teller effect is thus a nontrivial extension of the single-
mode E × E Jahn–Teller effect. The dynamics of two-mode or few-mode
Jahn–Teller systems has been analyzed, for example, in Refs. 5, 21 and 22.
It has been found that strong Jahn–Teller activity of several modes leads
to particularly strong inter-mode energy transfer and irreversible electronic
decay dynamics on ultrafast time scales.5,12,23,24 These aspects are dis-
cussed in more detail in Chapter 10.

In systems with triply degenerate states, both doubly as well as
triply degenerate modes are generally Jahn–Teller active, resulting in the
T × T, T × E or, more generally, the T ×(T +E) Jahn–Teller effects. For a
discussion of the corresponding Hamiltonians and their energy-level spectra
we refer to the literature.1−3,8−11

Another vibronic-coupling phenomenon which is frequently encountered
in highly symmetric polyatomic molecules is the interaction of a doubly
degenerate electronic state with a nearby nondegenerate electronic state via
a degenerate vibrational mode, usually referred to as pseudo-Jahn–Teller
coupling. The electronic Hilbert space of the pseudo-Jahn–Teller problem
is three-dimensional (given by the two components of the degenerate state
as well as the nondegenerate state). The corresponding vibronic-coupling
Hamiltonian can be set up in the same manner as in the E ×E Jahn–Teller
case.5,25,26 Again, the Hamiltonians referring to different pseudo-Jahn–
Teller-active vibrational modes do not commute. The multi-mode pseudo-
Jahn–Teller effect is therefore a nontrivial generalization of the single-mode
case.23,24 In Chapter 10 the vibronic dynamics of the benzene cation will be
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discussed as an example of combined multi-mode Jahn–Teller and pseudo-
Jahn–Teller effects.

According to the Jahn–Teller theorem,20 linear polyatomic molecules in
degenerate electronic states (Π, ∆, etc.) do not exhibit the first-order cou-
pling which applies for nonlinear molecules in degenerate electronic states.
The coupling of the components of a Π electronic state via the degenerate
bending mode occurs in second order of the bending normal mode and is
referred to as the Renner effect.27−29 The vibronic coupling of a degenerate
(Π) with a nearby nondegenerate (Σ) electronic state, however, occurs in
first order of the bending displacement.30,31 The (Π+Σ)×Π vibronic prob-
lem is in fact isomorphic to the (E +A) ×E pseudo-Jahn–Teller problem.5

So far we have considered systems with relatively high symmetry at the
reference geometry (usually the equilibrium geometry of the closed-shell
electronic ground state), such that there exist degenerate electronic states
and degenerate vibrational modes. The degeneracy in these cases is a con-
sequence of the molecular symmetry. High symmetry is not a prerequisite,
however, for conical intersections of adiabatic PE surfaces to occur. There
are now well-documented examples of conical intersections which are not
due to the existence of a symmetry operation, see Chapter 2.

The most frequently encountered type of conical intersection is partly
induced by symmetry in the following sense. Let us consider a molecu-
lar system that possesses at least one nontrivial symmetry element, e.g. a
plane of reflection (Cs point group), and thus at least two irreducible rep-
resentations (A′ and A′′ in the case of the Cs point group). Consider two
electronic states transforming according to different irreducible representa-
tions. In this case, the Hamiltonian (13) takes the form

H = h0 + |Φ1〉
(

E1 +
Nt∑
i=1

κ
(1)
i Qi

)
〈Φ1| + |Φ2

(
E2 +

Nt∑
i=1

κ
(2)
i Qi

)
〈Φ2|

+ {|Φ1〉
 Nc∑

j=1

λjQj

 〈Φ2| + h.c.} (28)

h0 =
�

2

Nt∑
i=1

(−ωi∂
2/∂Q2

i + ωiQ
2
i ) +

�

2

Nc∑
j=1

(−ωj∂
2/∂Q2

j + ωjQ
2
j ) (29)
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where we have neglected second-order electronic-vibrational couplings for
simplicity. The normal coordinates Qi, i = 1 . . . Nt, are totally symmetric.
Displacements in these coordinates “tune” the energy gap |E2 − E1| of the
two electronic states and generally lead to intersections of the PE functions,
which are allowed by symmetry. These vibrational modes have therefore
been termed “tuning modes”.5 The normal coordinates Qj , j = 1 . . . Nc,
are of the symmetry species determined by the selection rule (16). They
are responsible for electronic inter-state coupling and have therefore been
termed “coupling modes”.5 The coupling modes lift accidental electronic
degeneracies induced by the tuning modes in first order and thus convert
the surface intersections in the subspace of the tuning modes into conical
intersections. A well documented example of a conical intersection described
by a Hamiltonian of the type (28) is provided by the S1(nπ∗) and S2(ππ∗)
excited states of pyrazine, see below.

2.3. Ab initio Determination of Electronic-Vibrational
Coupling Parameters

Modern electronic-structure theory provides all tools which are required
to determine the parameters entering vibronic-coupling Hamiltonians from
first principles.

We consider systems with a closed-shell electronic ground state and
adopt the equilibrium geometry of the electronic ground state as the
reference geometry. The equilibrium geometry and the harmonic force
field in Cartesian displacement coordinates can routinely be obtained for
electronic-structure models for which analytic derivatives of the energy
are available, e.g. restricted Hartree–Fock (RHF) augmented by second-
order Møller–Plesset perturbation theory (MP2). Geometry optimization
and normal-mode analysis at the MP2 level employing basis sets of at least
double-zeta-plus-polarization (DZP) quality are nowadays feasible for rea-
sonably large polyatomic systems. Modern variants of density-functional
theory appear also suitable for this purpose and will allow the treatment
of even larger systems.

Let us next consider the computation of intra-state coupling constants
κ

(n)
i , γ

(n)
ij defined in Eqs. (10) and (12) as first and second derivatives

of the excitation energy with respect to ground-state normal coordinates.
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For this purpose an electronic-structure model is required which accurately
describes excited electronic states. The most widely applicable zeroth-order
model for excited electronic states is provided by the complete-active-space
self-consistent-field (CASSCF) method.32 The CASSCF method is able to
provide a balanced description of several excited states and fully accounts
for quasi-degeneracy effects. The dynamical correlation energy, which is
neglected in the CASSCF approximation, can be taken into account by a
multi-reference configuration-interaction (MRCI) calculation33 or by many-
body perturbation theory based on the CASSCF reference.34 Alternative
electronic-structure models which have been found useful for excited states
and ionized states are the equation-of-motion coupled-cluster (EOMCC)35

and many-body Green’s function (MBGF)36 methods, respectively. It
should be noted that the computation of the κ

(n)
i , γ

(n)
ij , being defined as

derivatives of the energy at a single geometry, is a much simpler task than
a geometry optimization of the excited state.

The computation of the inter-state coupling constants λ
(nn′)
j , being

defined as first derivatives of off-diagonal elements of the electronic
Hamiltonian in the diabatic representation (see Eq. (11)), appears at first
sight to be more difficult. It can be shown, however, by analyzing the adia-
batic PE functions associated with the vibronic-coupling Hamiltonian (13)
that the λ

(nn′)
j can be determined from second derivatives of the adiabatic

energies with respect to the nontotally symmetric coordinate Qj . For an
electronic two-state system, the following simple formula results5

λ
(1,2)
j =

[
1
8

∂2

∂Q2
j

|V1(Q) − V2(Q)|2
]1/2

0

. (30)

A reliable electronic-structure model which provides a balanced descrip-
tion of the electronic states of interest is required for the computation of
inter-state vibronic coupling constants. In particular, artifactual symmetry-
breaking effects in the electronic wave function37 should be avoided. For
excited electronic states, a CASSCF/MRCI description with appropriately
chosen active space is generally to be recommended. For ionized states, the
OVGF method,36 the ADC(3) method38 or the EOM-CC method35 have
been found to be appropriate tools.
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3. Multi-Mode Vibronic Dynamics

In this section we consider various observables associated with Hamiltoni-
ans of the type of Eqs. (13)–(15) and discuss methods for their numeri-
cal determination. These quantities are useful in characterizing the system
dynamics and making contact with experiment. Both time-independent and
time-dependent aspects are addressed in turn.

3.1. Time-Independent Approach

3.1.1. Vibronic Eigenvalue Problem and Spectra

In the time-independent approach, the object of primary importance is the
spectral intensity distribution for an electronic transition into the vibroni-
cally interacting manifold. According to Fermi’s golden rule it can be writ-
ten as

P (E) =
2π

�

∑
ν

|〈Ψi|T̂ |Ψν〉|2δ(E − Eν + Ei). (31)

Here T̂ denotes the transition operator and E the energy transferred to
the system (e.g. the photon energy in optical absorption). The initial state
|Ψi〉 (with energy Ei) can, but need not, belong to the set |Ψν〉 of vibronic
states (with energies Eν) which constitute the set of final states given by the
solutions of the vibronic Hamiltonian. In the applications to be discussed
below, |Ψi〉 will be the zero vibrational level of the electronic ground state
which is assumed to be vibronically uncoupled from the excited states.

By making use of a well-known integral representation of the Dirac
delta-function δ(x) appearing in Eq. (31), this equation can be rewritten in
the following compact form

P (E) =
∫

dtei(E+Ei)t/�〈Ψi|T̂ e−iHt/�T̂ †|Ψi〉. (32)

Equation (32) does not exhibit explicitly the final states and energies, but
rather is expressed in terms of the pertinent vibronic Hamiltonian H of
Sec. 2. Through the Fourier integral it is related to the time-dependent
approach of Sec. 3.2. Its use has been advocated especially by Heller and
coworkers who demonstrated its efficiency when combined, e.g. with the
Gaussian wavepacket approach.17

The spectrum, Eq. (31), can be computed immediately once the eigen-
value problem of the vibronic Hamiltonian H has been solved. Except for
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special cases, the latter task requires numerical techniques. To this end the
state vector is expanded in a direct-product basis of suitable harmonic-
oscillator wavefunctions

|Ψν〉 =
∑

i,n1,n2,...,nk

a
(ν)
i,n1,n2,...,nk

|Φi〉|n1〉|n2〉 · · · |nk〉. (33)

Here the subscripts 1 . . . k characterize the relevant set of vibrational modes
appearing in the Hamiltonian, Eq. (13), and the expansion coefficients
a
(ν)
i,n1,n2...nk

are to be determined numerically. For each mode I the choice
of the basis functions {|nI〉} is, in principle, free (as far as equilibrium
position and frequency, for example, are concerned). However, it is usually
advantageous to choose the eigenfunctions of the unperturbed Hamiltonian
h0 of Eq. (15) as basis functions. Although other alternatives may lead to
a more compact expansion, requiring less basis functions in Eq. (33), this
choice offers a significant computational advantage.

When the eigenfunctions of h0 are taken as basis functions, the vibronic
secular matrix is highly sparse, i.e. most of the matrix elements are zero.
The degree of sparsity increases with the number of modes considered. For
f vibrational modes, and with typically n basis functions per mode, the
fraction R of non-zero entries per row or column is

R ≈ (2f + 1)n−f . (34)

In addition, the non-zero elements follow a simple pattern, both by posi-
tion in the matrix and by value. This behaviour has been termed “struc-
tured sparsity”39 and greatly facilitates the computations. It is a direct
consequence of the concept of the low-order Taylor expansion introduced
in Sec. 2 and becomes particularly pronounced for its simplest variant, the
linear vibronic-coupling scheme, cf. Eq. (28).

Despite these simplifications, the solution of the full eigenvalue problem∑
m

(Hnm − Eνδnm)a(ν)
m = 0 (35)

often represents a formidable numerical task. For typical parameter values,
10–30 basis functions per mode are needed to obtain converged results,
leading to 106–109 basis functions for vibronic systems with 5 or 6 vibra-
tional modes. The computation of all eigenvalues and eigenvector com-
ponents would be hopelessly time-consuming on present-day computers.
Fortunately, two essential simplifications arise when calculating the spectral
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intensity profile, Eq. (31). First, only those eigenstates are relevant which
enter with a notable spectral intensity

Iν = |〈Ψi|T̂ |Ψv〉|2. (36)

In practice, this may be only a small fraction of all eigenstates, especially in
multi-mode problems. Secondly, the Iν may be calculated directly, without
computing all eigenvector components in Eq. (33), see below. Moreover, if
there are many dense-lying eigenvalues in a certain energy interval, not all
individual states may be of interest but only a smoothed spectral envelope

Pδ(E) = P (E) ⊗ Lδ(E) (37)

where “⊗” denotes convolution and Lδ(E) stands, e.g. for a Lorentzian of
suitable width δ. There exists a computational tool nearly ideally suited
to deal with this situation, the Lanczos algorithm.4 With this algorithm,
described in the next subsection, the structured sparsity of the Hamiltonian
matrix can be fully exploited.

3.1.2. Lanczos Algorithm

Consider some initial state |p0〉 and define the state vector |p1〉 by the
relations

|q1〉 = H|p0〉 − 〈p0|H|p0〉|p0〉
|p1〉 = q1/

√
〈q1|q1〉. (38)

Here H may be any hermitean operator of interest, but in our case is iden-
tified with the vibronic Hamiltonian. Given these states, one may start the
following three-term recurrence relations, also called Lanczos iteration4,40

|qi+1〉 = H|pi〉 − 〈pi|H|pi〉 −
√

〈qi|qi〉|pi−1〉
|pi+1〉 = |qi+1〉/

√
〈qi+1|qi+1〉. (39)

This generates a sequence of states |p0〉, |p1〉, |p2〉, . . . spanning the so-called
Krylov subspace of H.
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Straightforward algebra shows that these states are orthonormal. The
matrix elements Tij of the Hamiltonian read

Tii = 〈pi|H|pi〉
Ti,i+1 = Ti+1,i =

√
〈qi+1|qi+1〉 (40)

Ti,j = 0 for |i − j| > 1.

This means that in this new basis the Hamiltonian takes the form of a
tridiagonal matrix. The matrix elements are generated automatically during
the recursion process, Eq. (39).

For our purposes we identify

|p0〉 = T̂ †|Ψi〉 (41)

and use the basis-set expansion (33) to represent the Kylov subspace as the
sequence of (column) vectors p0, p1, p2 . . .. Likewise, the coefficients a

(ν)
m

are combined into a column vector a(ν). With Eq. (40) we have

P†
mHPm = T(m)

Pm = (p0,p1, . . . ,pm) (42)

where T(m) denotes the m×m tridiagonal matrix with elements, Eq. (40),
resulting from performing m Lanczos iterations according to Eqs. (38)
and (39). Let x(m)

ν be the eigenvector of T(m) with eigenvalue E
(m).
ν Then

Pmx(m)
ν represents the corresponding eigenstate of the original Hamiltonian

and its spectral intensity becomes

I(m)
ν = |p†

0Pmx(m)
ν |2

= p†
0(p0,p1, . . . ,pm)x(m)

ν |2
= |(1, 0, 0, . . . , 0)x(m)

ν |2
= |x(m)

ν (1)|2.

(43)

Owing to the orthogonality of the pi, and by virtue of the choice of |p0〉,
Eq. (41), it is only the first component x

(m)
ν (1) of the eigenvectors of the

tridiagonal matrix that determines the spectral intensity.41 This result is
very relevant, since with standard algorithms the various eigenvector com-
ponents of tridiagonal matrices are computed separately.42 Thus, by simple
modifications of existing library routines, the required information can be
obtained with negligible additional effort as compared to eigenvalue-only
calculations.
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Summarizing, the calculation of the spectrum (31) with the aid of the
Lanczos algorithm proceeds in three steps.

(i) Select a basis-set representation, Eq. (36), and perform a suitable
number m of Lanczos iteration steps (38) and (39) with the initial
state, Eq. (41). Only matrix-vector multiplications are to be per-
formed. Therefore, the secular matrix need not be built explicitly, and
its structured sparsity can be exploited efficiently in the vector-update
routine. Nevertheless, this is the most time-consuming step.

(ii) Diagonalize the resulting tridiagonal matrix T(m) and obtain the first
eigenvector components along with the eigenvalues.

(iii) Take these energies and the residues according to Eq. (43) to obtain
the vibronic line spectrum. If desired, compute the spectral envelope
according to Eq. (37).

The approximate nature of the solutions of T(m) deserves further com-
ments. If the number m of Lanczos iteration steps is equal to the dimension
M of the secular matrix and if exact arithmetic is assumed, then the matrix
PM , Eq. (42), is orthogonal. At the (M +1)th step the iteration terminates.
In finite precision, this turns out to be not the case, due to a global loss of
orthogonality of the vectors pm.4 This numerical instability has prevented
the use of the Lanczos algorithm for a long time. Later it was recognized
that the Lanczos algorithm nevertheless converges to the correct solutions,
starting at the edges of the spectrum.4,43 Here, convergence is achieved
even for a small number of iterations, m � M . There exist also criteria
for distinguishing correct from spurious eigenvalues.4 Even more important
for our purposes, the spectral envelope (for moderate resolution) converges
rapidly (m � M), even though dense-lying eigenvalues are not converged
individually.44 The latter fact can be attributed to the close relationship
between the Lanczos procedure and the method of moments.45,46

In the applications, we are interested in individual eigenstates mostly
in the low-energy part of the spectrum, while for higher energies it is more
the spectral envelope that matters. For both of these pieces of informa-
tion, the Lanczos algorithm converges particularly fast. In representative
applications typically 103–104 Lanczos steps are found to be sufficient, even
though the dimension of the secular matrix may be 108 or more.

The first application of the Lanczos procedure to quantum molecular
dynamics appears to have been a study on the T × T Jahn–Teller effect.47
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Shortly later, it has been used by O’Brian and coworkers and by the Hei-
delberg group for the E × E Jahn–Teller effect48,49 and related multi-
mode systems.50,51 Of course, the advantages of the method are related
to the multimode nature of the system and can likewise be exploited for
single-surface problems. The latter type of applications has been advocated
especially by Wyatt and coworkers,52 who called the method recursive-
residue-generation method (RRGM). In their early work, the tridiagonal
matrix was diagonalized twice (the second time without the first row and
column), and the information on the residues has been extracted from the
comparison of eigenvalues. We have shown above (and have made use of
this fact since a long time) that the second diagonalization can actually be
avoided and the residues be computed with negligible additional effort.

3.2. Time-Dependent Approach

Additional insight into the vibronic dynamics can be achieved by perform-
ing time-dependent calculations. The latter allow for a more direct visual-
ization of the coupled electronic and nuclear motions. Moreover, given only
the spectrum, Eq. (31), or a small number of resonance Raman amplitudes,
the information obtained from the time-dependent wavefunction differs also
in principle from that of stationary spectra.

3.2.1. Observables of the Time-Dependent Dynamics

Let us consider the time evolution of an initial wavepacket Ψ(0) ≡ Ψ(t = 0)
created by optical excitation out of an initial state Ψi. With the transition
operator T̂ as in Eqs. (31) and (32) we have

|Ψ(0)〉 = T̂ †|Ψi〉 (44)

i.e. the same initial state as in Eq. (41) for the Lanczos iteration scheme.
Equation (44) corresponds, for example, to optical excitation by an ideally
short laser pulse.6 If the dependence of the electronic matrix elements of
T̂ on the nuclear coordinates is negligible, this amounts to vertically lifting
the nuclear wavefunction of the electronic ground state to the excited-state
PE surface. In practice, the initial state will be the zero vibrational level of
the electronic-ground state potential surface. The latter is usually vibroni-
cally uncoupled from the excited state manifold and taken to be described
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in the harmonic approximation. Then |Ψ(0)〉 is simply a product of Gaus-
sians (with appropriate widths) centred at the ground-state equilibrium
geometry.

Evolving under the influence of the vibronic Hamiltonian H, the time-
dependent wavepacket |Ψ(t)〉 will change in position, shape and electronic
composition. A generally used, though necessarily incomplete, measure of
these changes is provided by the so-called autocorrelation function (see, for
example, Refs. 53 and 54)

Φ(t) = 〈Ψ(0)|Ψ(t)〉 = 〈Ψ(0)|e−iHt/h|Ψ(0)〉. (45)

By definition, Φ(t) represents the probability amplitude that, after a finite
evolution time t, the system is still in the same state as at time t = 0.
Referring back to Eq. (32), we see that Φ(t) and the spectral intensity
distribution P (E) are related by Fourier transformation and thus contain
the same information on the system dynamics. The square |Φ(t)|2 is also
known as survival probability and provides a measure of nonradiative decay
processes occurring on picosecond or nanosecond time scales.53,54

To proceed, we note that the initial state |Ψ(0)〉 usually represents
a coherent state on the excited-state potential surface (because of the
assumed broadband excitation). Moreover, as emphasized in Sec. 2 above,
the strong nonadiabatic coupling effects at conical intersections may lead
to a pronounced mixing of vibrational levels of the upper and lower of the
intersecting surfaces. For these reasons, it is appropriate to introduce the
overall electronic population Pi(t) (of electronic state i) as a direct and
natural measure of the internal-conversion dynamics on strongly coupled
surfaces.5,6 The population of electronic state |Φi 〉 is defined as the expec-
tation value of the projection operator

P̂ d
t = |Φd

i 〉〈Φd
i | (46)

with the full time-dependent wavefunction |Ψ(t)〉, i.e.

P̂ d
t (t) = 〈Ψ(t)|P̂ d

t |Ψ(t)〉. (47)

In Eq. (46) the diabatic electronic representation has been employed. Of
course, adiabatic electronic populations P a

t (t) may be defined in a com-
pletely analogous manner. These electronic population probabilities and
their behavior for typical conical intersection models are further discussed
in Chapter 9.
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Owing to the strong coupling of electronic and nuclear motions, the
vibrational dynamics also exhibits nontrivial features at conical inter-
sections. Observables which directly reflect the nuclear motion are, for
example, the expection values of the position and momentum operators
of individual normal modes55

Qi(t) = 〈Ψ(t)|Q̂i|Ψ(t)〉 (48)

Pi(t) = 〈Ψ(t)|P̂i|Ψ(t)〉. (49)

In the absence of vibronic coupling, Qi(t) and Pi(t) are simply periodic func-
tions of time for the harmonic diabatic potentials of Eq. (8). The vibronic
coupling introduces an effective damping of the vibrational amplitudes and
a noisy behaviour of the mean values for longer times, in a very simi-
lar way as already mentioned for the electronic populations.55 The vibra-
tional dephasing process is accompanied by a drastic broadening of the
wavepacket, so that the significance of the “trajectories” Qi(t) should not
be overinterpreted for longer times. These aspects are discussed in more
detail in Chapter 9.

3.2.2. Integration of the Time-Dependent Schrödinger Equation

In the above discussion we have tacitly assumed that the full time-
dependent state vector |Ψ(t)〉 is known. As in the case of the spectrum,
this in general requires numerical techniques. To this end we introduce a
basis-set expansion similar to Eq. (33)

|Ψ(t)〉 =
∑

i,n1,...,nk

ai,n1,...,nk
(t)|Φi〉|n1〉 · · · |nk〉 (50)

with time-dependent expansion coefficients ai,n1,...,nk
(t). Inserting Eq. (50)

into the time-dependent Schrödinger equation

i�∂/∂t|Ψ(t)〉 = H|Ψ(t)〉 (51)

immediately leads to the following set of coupled first-order differential
equations

i�ȧ(t) = Ha(t). (52)

Here the dot denotes differentiation with respect to time, a(t) stands for
the vector of expansion coefficients ai,n1,...,nk

(t), and H represents the
Hamiltonian matrix.
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Equation (52) can be solved with various integration schemes which are
available in the literature and have increasingly been employed for chemical
dynamics problems in the last decade. In general, there are no specific
aspects in this task related to inter-surface coupling. Therefore, we confine
ourselves to a very brief discussion of several relevant integration techniques
and our computational experiences with some of them.

We may distinguish between all-purpose integrators suitable also for
nonlinear differential equations and for time-dependent Hamiltonians and
others, specifically designed for time-independent Hamiltonians with the
formal solution

a(t) = exp(−iHt/�)a(0). (53)

Prominent representatives of the first class are predictor-corrector
schemes,56 the Runge–Kutta method,7 and the Bulirsch–Stoer method.57

Among the more specific integrators we mention, apart from the sim-
ple Taylor-series expansion of the exponential in Eq. (53), the Cayley
(or Crank–Nicholson) scheme,58 finite differencing techniques, especially
those of second or fourth order (SOD and FOD, respectively),59−61 the
split-operator method62 and, in particular, the Chebychev63 and the short-
time iterative Lanczos (SIL)64 integrators. Some of these latter integration
schemes are norm-conserving (namely Cayley, split-operator and SIL) and
thus accumulate only phase errors; the SOD and FOD integrators are con-
ditionally stable (i.e. up to a maximum time step), while the Taylor series
and Chebychev integrators are unstable.

Besides stability, accuracy is the other important criterion characteriz-
ing an integration scheme. Here, the Chebychev integrator is unique because
of the high order of the polynomial approximation achieved, which also
overcomes the aforementioned stability problems.63 On the other hand, if
the time-dependent wavefunction |Ψ(t)〉 is needed for many intermediate
times, and if very high accuracy is not important, usually the SIL method
is recommended in the literature.65

In our early work on multimode vibronic dynamics, a fourth-order
predictor-corrector method56 has been used to integrate the time-dependent
Schrödinger equation. Later, FOD schemes61 and a fourth-order Runge–
Kutta method66 have also been employed. These techniques proved to be
superior to the predictor-corrector method; for example, the FOD scheme
was found to be ∼3–5 times faster than the SOD integrator61 (the latter
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being at least as efficient as the predictor-corrector method). More recently,
the SIL scheme has been successfully implemented67,68 for vibronic prob-
lems, exceeding in turn the FOD integrator by a factor of ∼3 in speed. In
many of these latter implementations a variable time step size has been
provided to achieve a predefined accuracy of the wavefunction.66,67

All the applications mentioned in the preceding paragraph have dealt
with propagation with time-independent, purely intramolecular Hamilto-
nians. Many of these integration schemes can also be used with time-
dependent Hamiltonians, provided the time step is chosen sufficiently small.
This will generally reduce the efficiency of higher-order and sophisticated
techniques more than that of simpler schemes, which require a small
time step from the outset. In our work with externally driven vibronic-
coupling systems, we found the Runge–Kutta method and the Bulirsch–
Stoer method with judicious step-size control particularly efficient and
reliable.69−71

To conclude this section, we mention another class of integrators, called
symplectic, which have gained increasing interest quite recently.72,73 These
rely on the formal equivalence between the time-dependent Schrödinger
equation and the classical Hamilton equations of motion for the real and
imaginary parts of the components of the state vector.74 By this analogy,
symplectic integrators for the solution of the classical equations of motion
can be transferred to the quantal problem. Modifications have been pro-
posed to tailor them for this latter use.75 Symplectic integrators combine
an efficiency similar to the SIL method with minimal storage requirements
(only two (complex) state vectors need be kept in memory). This experi-
ence by Gray et al.75 is confirmed by first results on vibronically coupled
systems.24 It makes symplectic integrators a very attractive tool for mul-
timode vibronic-coupling problems, since often many basis functions are
needed in the expansion, Eq. (50), and storage limitations may be a crucial
aspect.

The expansion (50) of the time-dependent state vector in terms of
time-independent basis functions becomes impractical for vibronic-coupling
problems with more than about 7 vibrational modes, especially if one or
several modes possess large coupling parameters or if the excess energy is
very large. For such more demanding applications the MCTDH scheme,
which is based on an expansion of the time-dependent state vector in terms
of variationally determined time-dependent basis functions,76 has proven
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to be a powerful tool. The application of the MCTDH method to vibronic-
coupling problems is described in detail in Chapter 14.

4. Representative Applications

The spectroscopy and photophysical dynamics of numerous systems exhibit-
ing conical intersections have been treated within the multi-mode vibronic-
coupling approach, see5,6,77,78 for reviews. The first investigations of the
dynamics and spectroscopy of non-symmetry-induced conical intersections
(that is, conical intersections which are not of the Jahn–Teller type) have
been performed by the Heidelberg group for certain polyatomic cations,
employing the linear vibronic-coupling formalism with ab initio determined
vibronic coupling constants.50,79−81 Multi-mode vibronic-coupling systems
involving degenerate vibrational modes (Jahn–Teller and pseudo-Jahn–
Teller effects) are discussed in Chapter 10. Aspects of the photophysical
dynamics of conical intersections are analyzed in some detail in Chapters 9
and 14. We limit ourselves in this chapter to a brief discussion of elec-
tronic spectra (absorption, resonance Raman and photoelectron spectra) of
multi-mode vibronic-coupling systems. The techniques for the calculation
of spectra are further elaborated and exemplified in Chapter 16.

As mentioned above, vibronic-coupling model Hamiltonians constructed
by low-order Taylor expansions of the diabatic PE functions in terms of
normal coordinates are particularly suitable for the calculation of low-
resolution spectra of polyatomic molecules. In resonance Raman spec-
troscopy, for example, the usually extremely fast electronic dephasing in
polyatomic systems limits the time scale for the exploration of the excited-
state PE surface by the nuclear wave packet to about 10 fs.17,82,83 In
this limited range of nuclear geometries accessible to the wave packet, the
multi-dimensional diabatic PE surfaces are generally well approximated by
low-order Taylor expansions. The same argument applies for low-resolution
absorption and photoelectron spectra.18,19 For this reason, even the sim-
plest version of the multi-mode vibronic-coupling approach, the so-called
linear coupling model,5 can be surprisingly successful in reproducing the
vibronic structures of optical or photoelectron spectra associated with con-
ical intersections which are located within or near the Franck–Condon zone
of the optical transition. Moreover, the Lanczos algorithm represents a tool
which is specifically tailored to the calculation of spectral band shapes.
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The combination of the linear-coupling model with the Lanczos algorithm
allows for an extremely efficient computation of even very complex vibronic
spectra.

4.1. Photoelectron Spectra of Triatomics: NO2 and O+
3

The NO2 molecule has a long-standing history as an example of a notori-
ously complex low-energy electronic absorption spectrum. For an overview
over the large amount of work prior to 1978, see the monograph by Hsu,
Monts and Zare.84 More recent experimental work has been carried out, in
particular, by Jost et al., as described, e.g., in Refs. 85 and 86 and refer-
ences cited therein. The low-energy absorption spectrum of NO2 arises from
the dipole-allowed transition from the X̃2A1 ground state to the Ã2B2 first
excited electronic state. Early ab initio calculations87,88 have revealed that
a conical intersection between the 2A1 and 2B2 PE surfaces is involved.
The intersection occurs at a bond angle of ∼105◦, to be compared with
the equilibrium bond angles of the X̃2A1 state (∼133◦) and of the Ã2B2

state (∼101◦). The intersection is located at an energy slightly above the
minimum energy of the Ã state.

The data of these early ab initio calculations have been used to develop
a PE model within the linear vibronic-coupling scheme, employing all three
nonseparable nuclear degrees of freedom5,51. The complex line structure
of the X̃2A1 − Ã2B2 absorption system could be satisfactorily reproduced
and the origin of the complexity could unambiguously be traced back to the
conical intersection between the 2A1 and 2B2 PE surfaces.5,51 A one-by-
one reproduction of spectral lines was not possible within this simple model
and will be difficult to achieve even with more elaborate treatments of this
system that have been developed more recently89 (see also Chapter 16).

In view of these results, the vibrational structure of the second band of
the photodetachment spectrum of NO−

2 appears surprising. The photode-
tachment spectrum exhibits a regular, apparently single-mode progression
which has been assigned to the bending mode of NO2(Ã2B2).90 It is an
important difference to the visible absorption spectrum mentioned above
that the equilibrium geometry of NO−

2 corresponds to a bond angle of ∼117◦

which is between that of the Ã state of NO2 and the X̃ state of NO2. There-
fore, the photodetachment process probes the level structure of the 2B2

state closer to its energetic minimum than the X̃ − Ã absorption process.
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A comparison between the measured90 and calculated91 second band of
the photodetachment spectrum of NO−

2 is shown in Fig. 1. The theoretical
line spectrum has been generated by employing the linear vibronic-coupling
model with parameters determined by ab initio calculations which are more
accurate than those previously available.91 Subsequently, the line spec-
trum has been convoluted with Lorentzians of suitable width to account for
the finite experimental resolution and thermal line broadening effects. The
experimental spectral envelope is seen to be very well reproduced by the the-
ory. The theory predicts, moreover, a sub-structure of vibronic lines under
most of the peaks of the spectral envelope, which could not be resolved
experimentally.

The vibronic sub-structure shown in Fig. 1 is an important result and
reflects the coupling between the Ã2B2 and X̃2A1 vibrational levels caused

Fig. 1. Comparison of experimental90 and theoretical91 photodetachment spectra of
NO−

2 . The zero of the energy scale corresponds to the minimum of the X̃2A1 potential
energy surface of NO2. Only the higher-energy band corresponding to the Ã2B2 state
of NO2, is discussed in the text. The theoretical line spectrum has been convoluted
by Lorentzians of an energy-dependent width of 8–14 meV HWHM to account for finite
instrumental resolution and rotational broadening. The arrow in the theoretical spectrum
indicates the minimum energy of the seam of conical intersection.
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by the conical intersection. The coupling is relatively weak, which causes the
vibronic levels to form “clumps” of lines, each clump being associated with
a single zero-order bending vibrational level of the Ã2B2 state. Compared
to the earlier calculation of the visible absorption spectrum, the coupling
constant λ is substantially smaller (0.087 eV rather than 0.28 eV). This
reduction can be traced primarily to the new and more accurate ab initio
calculations underlying the simulation of the photodetachment spectrum.
In addition, also the different probing of the conical intersection may play
a role: due to the smaller equilibrium bond angle of NO−

2 mentioned above,
the seam of intersection is probed closer to its energetic minimum by the
photodetachment process than in the case of the absorption spectrum.90,92

As more accurate calculations confirm, the vibronic coupling constant is
indeed varying substantially along the seam.92

The type of vibronic coupling effects displayed in Fig. 1 is unusually
weak for conically intersecting PE surfaces. A more generic scenario emerges
when we consider the isoelectronic system O+

3 which is also characterized by
an X̃2A1 ground and Ã2B2 first excited electronic state.93. The equilibrium
bond angles of these two states are ∼130◦ and ∼105◦, respectively, and
the vertical X̃2A1 energy gap for the photoionization process is ∼0.2 eV,
compared to ∼1.1 eV for NO−

2 /NO2.
Figure 2 shows a comparison between the experimental94 and theoreti-

cal first band of the photoelectron spectrum of O3 which corresponds to the
transition to the interacting manifold of the X̃2A1 and Ã2B2 states of O+

3 .95

In the theoretical spectrum, final states of A1(B2) vibronic symmetries are
indicated by dashed (full) lines to distinguish the different vibronic contri-
butions. It is seen that for low vibronic energies there is a regular series
of lines corresponding to the bending vibrational mode.95 The regularity
is lost for energies above ∼12.8 eV, where the minimum of the seam of
conical intersection between the X̃2A1 and Ã2B2 PE surfaces occurs.95 For
these higher energies, the nonadiabatic coupling effects lead to a complete
reordering of the spectral lines, resulting in an irregular spectral envelope
which matches the experiment at least qualitatively quite well. Additional
calculations for λ = 0 give a very regular series of lines throughout the
spectral band.95 This shows that the vibronic coupling effects are much
stronger in the photoelectron spectrum of O3 than in the photodetachment
spectrum of NO−

2 (as is evidenced also by the ratio λO+
3
/λNO2 ≈ 1.4). They

are, in fact, much closer to the other examples discussed in the following.
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Fig. 2. (a) Experimental photoelectron spectrum of O3 as recorded by Dyke et al.94

(b) Calculated first (composite) band of the photoelectron spectrum of O3 using ab
initio values of the coupling parameters.95 The linear-plus-quadratic coupling scheme
and a difference of the vertical ionization potentials of 0.24 eV has been used in the
computation. Final states of A1(B2) vibronic symmetries are indicated by dashed (full)
lines. The theoretical line spectrum has been convoluted with a Lorentzian of width
0.02 eV HWHM to account for finite experimental resolution.

In concluding this subsection, we mention that both systems have
been treated also by more elaborate calculations beyond the linear-plus-
quadratic vibronic-coupling model. The vibronic dynamics of O+

3 has been
studied using anharmonic C2v PE surfaces,95 while in case of NO2 global
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anharmonic (i.e. also for Cs nuclear conformations) PE surfaces have been
employed in the vibronic calculation.92 In the latter example, diabatic elec-
tronic states have been constructed using the concept of regularized diabatic
states (see Chapter 4). For both examples the spectra obtained with the
comparatively simple multi-mode vibronic-coupling approach agree rather
well with those obtained with more accurate descriptions of the PE surfaces.
This finding underlines the usefulness of the LVC scheme for an efficient
modeling of the overall spectral features of vibronically coupled systems.

4.2. The Photoelectron Spectrum of Allene

Allene (H2C=C=CH2) is an interesting species as the first member of the
cumulene series and as a representative of the less common point group
D2d. In the D2d point group the degeneracy of electronic states is not
lifted, as is usually the case, by degenerate modes of E symmetry, but by
nondegenerate modes of B1 and B2 symmetry.20 This so called E × B
Jahn–Teller effect is described by the Hamiltonian of Eqs. (13)–(15), where
the modes of B2 symmetry (v5, v6, v7 in allene) possess non-vanishing intra-
state linear coupling constants (κ), while the modes of B1 symmetry (v4 in
allene) possess non-vanishing inter-state linear coupling constants (λ).

It has been shown by an early vibronic-coupling model calculation96 that
the unusual band shape of the first band in the photoelectron spectrum
of allene97, corresponding to the X̃2E state of the allene cation, can be
qualitatively explained by a two-mode E×B Jahn–Teller effect. More recent
high resolution recordings of the photoelectron spectrum of allene98,99 have
stimulated more comprehensive and accurate ab initio calculations of the
vibronic-coupling parameters and more extensive simulations of the multi-
mode dynamics.100−102 Here we restrict ourselves to a brief discussion of the
relatively simple E × B Jahn–Teller effect in the electronic ground state of
C3H+

4 . The more complex multi-mode Jahn–Teller and pseudo-Jahn–Teller
effects of the multiply intersecting excited states of the allene cation are
discussed in Chapters 10 and 14.

Ab initio calculations100,101 have identified the torsional mode v4 (B1

symmetry) and the asymmetric stretching mode v6 (B2 symmetry) as the
only active modes in the X̃2E ground state of the allene cation. Figure 3
displays the potential energies of the X̃2E, Ã2E and B̃2B2 states of C3H+

4
(calculated in Koopmans’ approximation100) as a function of these two
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Fig. 3. Potential energies of the X̃2E, Ã2E and B̃2B2 states of the allene cation as
a function of the normal coordinates Q6 (asymmetric stretch, upper panel) and Q4
(torsion, lower panel), calculated in Koopmans’ approximation.100

normal modes. The lifting of the degeneracy of the X̃2E state by distortion
of the molecule along both v4 and v6 is clearly discernible. It is also seen that
the X̃2E state can approximately be considered as an isolated electronic
state, while the Ã2E and B̃2B2 states are closely spaced and their PE
functions exhibits crossings both along Q4 and Q6 as well as other normal
coordinates.100−102

The calculated vibronic structure of the X̃2E photoelectron band100

is compared in Fig. 4 with the experimental recording.98 To obtain this
nearly quantitative agreement with experiment, it has been necessary to
adjust the ab initio calculated vibronic-coupling constants and the vibra-
tional frequencies of the cation.100 The low-energy part of the spectrum
is dominated by an extended progression in the torsional mode v4. This
regular progression is associated with the lower adiabatic energy surface
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(a)

(b)

Fig. 4. The X̃2E band in the photoelectron spectrum of allene. (a) Calculated spec-
trum including two (v4+v6) Jahn–Teller active modes. (b) Experimental high-resolution
spectrum98 (reproduced from Ref. 100).

(cf. Fig. 3). The progression completely breaks down at the energetic loca-
tion of the conical intersection. At higher energies we observe a much denser
and rather irregular vibronic line structure, reflecting a strong nonsepara-
bility of the v4 and v6 Jahn–Teller active modes. In this relatively simple
case, the conical intersection is thus spectroscopically identifiable by the
transition from a regular to an irregular vibronic line spectrum.

4.3. Absorption, Resonance Raman and Photoelectron
Spectra of Pyrazine

The S1[1B3u(nπ∗)] and S2[1B2u(ππ∗)] excited states of pyrazine represent
a classic example of vibronic coupling in aromatic systems.103 The gas-
phase absorption spectrum of pyrazine exhibits typical features of such
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systems, namely a well-resolved vibronic structure in the lower energy band,
corresponding to the S1 −S0 transition, and a largely structureless spectral
profile for the S2 −S0 transition.104 The S2 state is characterized by a lack
of detectable emission, implying a fluorescence quantum yield Φ < 10−5.104

Earlier theoretical work on the excited-state dynamics of pyrazine
focused on the vibronically induced anharmonic couplings in the S1 state,105

on the interactions between gerade and ungerade nπ∗ states106 or on
selected PE functions107 and electron-vibrational coupling parameters.108

In a series of papers the Munich group has characterized the S2 and S1-
state PE surfaces in the conformational subspace relevant for the short-time
photophysics following the S2 − S0 and S1 − S0 transitions.109,110 In the
course of this work, the treatment has steadily improved, as regards the
accuracy of the electronic-structure calculation as well as the number and
description of the vibrational modes considered. The most accurate calcu-
lations are based on the CASSCF/MRCI method with a basis set of DZP
quality.111

These computations establish conclusively that there is a seam of low-
energy conical intersections, primarily in the Q1, Q6a, Q10a subspace of
normal-coordinate space. Here, ν1 and ν6a are two of the five totally sym-
metric normal modes, while ν10a is the (single) mode of appropriate sym-
metry (B3u×B2u = B1g) to couple the S1 and S2 excited states in first
order. Two other totally symmetric modes, ν8a and ν9a, turn out to be of
secondary importance, while the coupling strength of the remaining mode
of this symmetry, ν2, is found to be negligible.111 The existence of a conical
intersection has already been inferred from lower-level ab initio data,106 as
well as from a combination of semiempirical calculations and adjustments
of parameters to reproduce the spectral profile.109 This conical intersection
dominates the short-time photophysics of S1 and S2-excited pyrazine, as
documented below for absorption and resonance Raman spectra.

The absorption spectrum of the S2−S0 and S1−S0 electronic transitions
of pyrazine has been calculated at various levels of sophistication.105,109−113

The most elaborate treatment of the Munich group relies on the
CASSCF/MRCI data mentioned above and includes seven vibrational
modes, ν1, ν4, ν6a, ν8a, ν9a, ν10a and ν14.

112 The Heidelberg group has
gone beyond this 7-mode model by including all 24 vibrational modes
of pyrazine113 within a linear-plus-quadratic vibronic-coupling model,
employing the MCTDH method76 for the solution of the time-dependent
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Schrödinger equation (see also Chapter 14). The linear vibronic coupling
approach, Eq. (28), has been shown to be appropriate for the totally sym-
metric modes ν1, ν6a, ν8a. Consequently, it has been adopted for these
modes in the calculation of the spectrum. For the coupling mode ν10a, the
significant reduction of vibrational frequency in the excited states has been
accounted for.112 The two additional non-totally symmetric modes, ν4 and
ν14, are characterized by relatively large diagonal quadratic coupling con-
stants γii, Eq. (12). The resulting secular problem of dimension 1.360.800
(per vibronic symmetry) has been solved with the aid of the Lanczos algo-
rithm to yield the stick spectrum shown in Fig. 5(b). Convolution with
Lorentzians of fwhm ≈ 0.04 eV leads to the envelope which is also included
in the drawing and may be compared with the experimental gas-phase
absorption profile104 in Fig. 5(a).

The calculated envelope matches the experimental result in almost every
detail. It should be mentioned that all parameters, except for an empiri-
cal dephasing time114 have been determined by ab initio calculations (the

(a)

(b)

Fig. 5. Experimental (a) and calculated (b) absorption spectrum of the S2(ππ∗)
state of pyrazine. The stick spectrum in (b) represents the vibronic energy levels and
absorption intensities of the seven-mode vibronic-coupling model. The envelope has been
obtained by including a phenomenological line broadening (reproduced from Ref. 112).
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vertical electronic energy gap ∆ has been adjusted slightly, from 0.83 to
0.846 eV). This demonstrates that the ab initio calculations provide a cor-
rect picture of the short-time dynamics in the S2 state. While the line struc-
ture in the lower energy-band (S1) is sparse and regular, and allows for the
assignment of approximate vibrational quantum numbers, the line struc-
ture of the S2 state (Fig. 5) is very complex and irregular. (This impression
of an inspection by eye can actually be quantified by a statistical analysis of
energy levels and spectral intensities115.) The irregular line structure results
from the fact that the vibrational levels of the upper adiabatic energy sur-
face have completely dissolved into the dense manifold of excited levels of
the lower surface, whereby many mixed vibronic eigenstates share the spec-
tral intensity of a few zero-order levels (of the upper surface). The strong
mixing reflects the large nonadiabatic coupling elements in the vicinity of
the intersection and the pronounced anharmonicity of the PE surfaces. This
is a typical finding which characterizes the dynamics on conically intersect-
ing PE surfaces and has been found also for other systems.5 It can only be
correctly described by nonperturbative numerical techniques.

Resonance Raman (RR) spectra yield valuable additional information
on the excited-state dynamics and allow for a further test of the theo-
retical model. RR excitation profiles and spectra can be computed via
a straightforward generalization of the Lanczos algorithm to allow for
several initial states (namely, all those states where RR transitions are
sought for). This amounts to a block-Lanczos or band-Lanczos procedure,
both of which are well established in the literature.4 Alternatively, RR
amplitudes may be obtained through Fourier transformation of appropri-
ate cross-correlation functions which can be directly extracted from the
time-dependent wavepacket Ψ(t).17,114

Figure 6 displays calculated (b) and observed (a) RR spectra of pyrazine
for an excitation wavelength λ = 266 nm close to the origin of the S2

band.112 Several modes are found to be excited besides the dominating
modes ν1 and ν6a. Interestingly, the coupling mode ν10a hardly shows up
in the S2 RR spectrum, in marked contrast to the preresonant S1 Raman
spectrum, obtained with λ = 337 nm.112 The overall features of the S2 RR
spectrum are similar for other excitation wavelengths; this holds also for the
generally very satisfactory agreement between theory and experiment.112

This confirms that the vibronic-coupling model111,112 yields an authentic
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(a)

(b)

Fig. 6. Experimental (a) and calculated (b) resonance Raman spectra of pyrazine,
obtained for an excitation wave length of 266 nm, close to the onset of the S2(ππ∗)
absorption band (reproduced from Ref. 112).

description of the primary photophysical processes of pyrazine in the S1

and S2 excited states.
Interestingly, a conical intersection very similar to that of the S1(nπ∗)

and S2(ππ∗) neutral excited states has been found for the n−1 and π −1 hole
states of the pyrazine cation.116 A linear vibronic-coupling model has been
constructed for the n−1 and π−1 states of the pyrazine cation employing
many-body Green’s function methods for the calculation of the vibronic-
coupling parameters.116 The ab initio calculated photoelectron spectrum
of the X̃2Ag(n−1) and Ã2B1g (π−1) states is compared in Fig. 7 with the
experimental photoelectron spectrum of pyrazine.117 Similar to the case
of the S2(ππ∗) spectrum in Fig. 5, the line spectrum of the higher Ã2B1g

state is very dense, reflecting the dissolution of the Ã adiabatic energy levels
into the manifold of levels of the lower X̃ surface. In the experimental low-
resolution spectrum, this effect is reflected by a noticeable broadening of the
apparent vibrational structure (Fig. 7). Correspondingly, the population of
the Ã state decays to the X̃ state on a femtosecond time scale, as has been
discussed for a number of related examples (cf. Chapter 9).
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(a)

(b)

Fig. 7. Experimental117 HeI UV photoelectron spectrum of pyrazine (a) and calculated
spectrum (b), showing the X̃2Ag and Ã2B1g bands. The envelope in (b) represents the
convolution of the theoretical spectrum with a typical experimental resolution function
(reproduced from Ref. 116).

4.4. Absorption Spectra of Trans-Butadiene and
Trans-Hexatriene

Understanding the mechanistic details of the photochemistry of polyenes
has been a challenge since many years.118,119 It is known that the small-
est members of the polyene series, butadiene and hexatriene, exhibit
strongly homogenously broadened S0 → 1B(ππ∗) absorption spectra120 and
are completely nonfluorescent.119 Recent femtosecond time-resolved pump-
probe ionization experiments have confirmed the extremely short lifetime of
the 1B(ππ∗) state in butadiene and hexatriene.121−123 These experimental
findings suggest that the spectroscopy and photophysical dynamics of the
1B(ππ∗) states of butadiene and hexatriene are dominated by a directly
accessible conical intersection.

The investigation of the electronic structure of excited states of polyenes
has a long history118 which cannot be reviewed here. It suffices to say that
modern methods of electronic-structure theory, in particular multi-reference
configuration-interaction and multi-reference perturbation methods, allow
the determination of the vertical excitation energies of valence and Rydberg
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excited states of small polyenes with reasonable accuracy, see, e.g. Ref. 124
and references therein. Conical intersections and photochemical reaction
pathways have been explored at the CASSCF level125−128 and a quali-
tative picture of the internal conversion process to the electronic ground
state via two conical intersections has been developed for butadiene and
hexatriene129−134 (see also Chapter 9).

The available electronic-structure data indicate the existence of a coni-
cal intersection of the optically allowed 11B(ππ∗) state with the dark 21Ag

state in the vicinity of the Franck-Condon zone of the S0 → 1B tran-
sition of trans-butadiene and trans-hexatriene. Accurate calculations of
excited-state PE functions of trans-butadiene have been performed with the
CASPT2 method in order to determine the precise location of this inter-
section and to determine the relevant coupling modes.135,136 On the basis
of these ab initio data, a vibronic-coupling model has been constructed
which includes the most relevant vibronically active and Condon active
vibrational modes.135 It has been found that only one normal mode of Bu

symmetry, the in-plane bending mode v8, is involved in the 11Bu − 21Ag

inter-state coupling, while six of the nine totally symmetric modes exhibit
nonnegligible activity as tuning modes.

The details of the vibronic dynamics calculations employing the Lanc-
zos algorithm as well as time-dependent wave packet propagation methods
are described in Ref. 135. Figure 8 shows the comparison of the calculated
1Bu(ππ∗) absorption spectrum with the experimental UV absorption spec-
trum of jet-cooled trans-butadiene.120 The stick spectrum represents the
vibronic energy levels and absorption intensities of the seven-mode vibronic-
coupling model. The envelope has been obtained by inclusion of a phe-
nomenological electronic dephasing time of 15 fs. The strong coupling of the
11Bu state with the adiabatically lower-lying dark 21Ag state is reflected
by the dense and irregular vibronic level structure. It is seen that the calcu-
lated envelope is in quantitative agreement with the experimental spectrum.
The physical mechanisms responsible for the surprisingly short electronic
dephasing time have not yet been definitively established. It is likely that
a very fast decay of the 21Ag state via a conical intersection with the 11Ag

ground state is mainly responsible for the ultrafast decay of the autocorre-
lation function.121

The calculations predict a decay of the population probability of the 1Bu

state of trans-butadiene on a time scale of 30 fs135 which is in excellent
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(a)

(b)

Fig. 8. Calculated (a) and experimental (b) UV absorption spectrum of the 1Bu(ππ∗)
state of trans-butadiene. The envelope in (a) has been obtained with the inclusion of a
phenomenological optical dephasing time of 15 fs (reproduced from Ref. 135).

agreement with recent direct experimental measurements, which yielded
40 fs and 35 fs, respectively.121,122 These results demonstrate that first-
principles calculations of the time-scale of ultrafast internal conversion
through a conical intersection are nowadays feasible.

While the 11Bu − 21Ag conical intersection in trans-butadiene can be
reasonably accurately modeled within the multi-mode vibronic-coupling
approach, this is not the case for the 21Ag −11Ag conical intersection. Sev-
eral large-amplitude deformations, in particular out-of-plane torsion and
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pyramidization of CH2 groups, are involved in the reaction path leading to
this intersection.129−133 The treatment of the internal-conversion process
from the 21Ag state to the electronic ground state is thus beyond the scope
of the multi-mode vibronic-coupling approach.

Similar ab initio based calculations of absorption and RR spectra have
been performed by Woywod et al. within the multi-mode vibronic-coupling
framework for trans-hexatriene and cis-hexatriene.137,138 As an example
of these results, we show in Fig. 9 the calculated S0 → 1Bu(ππ∗) absorp-
tion spectrum137 in comparison with the experimental spectrum of jet-
cooled trans-hexatriene.120 The vibronic calculation involved eight modes,
two inter-state coupling modes of Bu symmetry, five tuning modes of Ag

symmetry, and one mode of Au symmetry which exhibits strong intra-state
quadratic coupling.137 The ab initio calculated vertical 11Bu −21Ag energy
gap ∆ is 0.5 eV. An electronic dephasing time of 90 fs has been assumed to
obtain the envelope of the theoretical spectrum.

(a)

(b)

Fig. 9. Experimental (a) and calculated (b) UV absorption spectra of the 1Bu(ππ∗)
state of trans-hexatriene (reproduced from Ref. 137).
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It is seen that the calculated envelope is in good agreement with exper-
iment, although the progression in the high-frequency C–C stretch mode is
somewhat overestimated (see137 for a discussion of details of the spectra).
Figure 9b again shows the high density of vibronic levels which arises from
the dissolution of the 1Bu adiabatic energy levels in the dense manifold
of levels of the lower-lying dark 21Ag state. The corresponding population
decay time of the 1Bu(ππ∗) state has been estimated to be of the order of
100 fs.137

5. Conclusions

We have outlined the concepts, the technical aspects and typical applica-
tions of the multi-mode vibronic-coupling approach. This approach allows
a comparatively simple and computationally highly efficient description of
the photophysical dynamics and spectroscopy of conical intersections. The
advantages of this approach are its conceptual and technical simplicity and
wide applicability. The latter aspect is documented by numerous successful
applications of the multi-mode vibronic-coupling model to a wide variety
of molecular systems, from triatomics to medium-size polyatomics.5,6,77,78

Ground-state normal modes and Taylor expansions of diabatic excited-state
potential energies are universal concepts and can routinely be constructed
for essentially any stable molecule. The treatment of the vibronic dynamics,
in either the time-dependent or the time-independent formalism, is highly
efficient. With the MCTDH scheme, in particular, an impressive number
of nonseparable vibrational degrees of freedom can be included, as demon-
strated by recent benchmark calculations (see Chapter 14).

The multi-mode vibronic-coupling approach is restricted, on the other
hand, to cases where the photoinduced nuclear dynamics is restricted to
a limited region of configuration space. In this sense, the approach is a
useful tool for the microscopic first-principles modeling of photophysical
relaxation dynamics, but it is not applicable for the description of pho-
tochemical dynamics (isomerization or dissociation) triggered by conical
intersections. In the latter case, a global modeling of the potential-energy
surfaces is necessary at least in some of the nuclear degrees of freedom.
Alternatively, so-called direct-dynamics methods with “on the fly” compu-
tation of the electronic potential energies139−141 may be employed.
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30. H. Köppel, W. Domcke and L. S. Cederbaum, J. Chem. Phys. 74, 2945
(1981).

31. S. Carter, I. M. Mills and R. N. Dixon, J. Mol. Spectrosc. 106, 411 (1984).
32. B. O. Roos, Adv. Chem. Phys. 69, 399 (1987).
33. H. J. Werner, Adv. Chem. Phys. 69, 1 (1987).
34. K. Andersson, P.-A. Malmquist and B. O. Roos, J. Chem. Phys. 96, 1218

(1992).
35. J. F. Stanton and R. J. Bartlett, J. Chem. Phys. 98, 7029 (1993).
36. L. S. Cederbaum and W. Domcke, Adv. Chem. Phys. 36, 205 (1977).
37. E. R. Davidson and W. T. Borden, J. Phys. Chem. 87, 4783 (1983).
38. W. von Niessen, J. Schirmer and L. S. Cederbaum, Comput. Phys. Rep. 1,

57 (1984).
39. J. E. Castillo and R. E. Wyatt, J. Comput. Phys. 59, 120 (1985).
40. C. Lanczos, J. Res. Natl. Bur. Stand. 45, 255 (1950).
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67. U. Manthe and H. Köppel, Chem. Phys. Lett. 178, 36 (1991).
68. A. Ferretti, G. Granucci, A. Lami, M. Persico and G. Villani, Chem. Phys.

104, 5517 (1996).
69. M. Seel and W. Domcke, J. Chem. Phys. 95, 7806 (1991).
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(1999).
102. S. Mahapatra, G. A. Worth, H.-D. Meyer, L. S. Cederbaum and H. Köppel,
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1. Introduction

The continuous progress in Theoretical and Computational Chemistry pro-
duced, in the last years, a growing amount of accurate information on coni-
cal intersections (CIs) occurring in molecules of chemical interest, and then
encouraged the treatment of specific cases. However, in our opinion, the
“exact” numerical study of simpler model systems remains a necessary pre-
liminary step to unravel various general aspects of the complex dynamics
of such strongly non-adiabatic systems. Before illustrating some represen-
tative examples, it is worthwhile to spend a few words to clarify what we
mean here by model systems. These are essentially built up choosing the
simplest Hamiltonian sharing with actual systems the essential features
of the problem under study (in our case the CI), while disregarding the
details that are of course necessary if the scope is to reproduce the out-
put of an experiment on a given molecule, but are judged non-essential for
a basic understanding of the process. Thus, the accent here is on general
features that may give some interpretative rules, beyond specific examples.
There are a number of general points that can be elucidated looking at
model systems and we will proceed discussing a few of them, also with the
aim of underlining the origin of their interest. In the following, we focus
on the dynamics around the conical intersection, assuming that the ini-
tial excitation is obtained by a light pulse so short that it is seen as a
Dirac δ-function by the nuclei (which means that, if the transition dipole
is constant, a vertical excitation is achieved) but sufficiently long (and thus
not too broad in energy) to be selective as far as the electronic state is
concerned.

2. Basic Concepts and Simple Interpretation Schemes

The dynamical behavior of strongly non-adiabatic multimode systems
exhibits complex features that can perhaps be better understood by trying
first to underline the aspects that they share with simple one-dimensional
models basically derived from scattering theory. To this purpose we intro-
duce a minimal model for the CI and then discuss the limit of validity of
an interpretation scheme grounded on the Landau–Zener formula as well
as of a simple one-dimensional time-dependent model obtained by treating
quantum-mechanically only the coupling mode.
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2.1. The Minimal Model for a CI

As is well known, the minimal model for a CI involves two purely (i.e. com-
pletely independent on nuclear coordinates) diabatic states with identical
but displaced (both vertically along the energy axis and horizontally along a
vibrational coordinate) harmonic surfaces.1 The minimum number of vibra-
tional modes required to have a CI is two: the totally symmetric mode Q

(tuning mode) that is involved in the shift of the equilibrium position, and
the so-called coupling mode Qc, which is a symmetry-breaking coordinate
responsible for the electronic coupling (which is taken as linear in Qc). In the
usual mixed representation (operator for the nuclear terms and matrix for
the electronic part) it is written, using dimensionless normal coordinates:

H =
(

H11 H12

H21 H22

)
(1)

with:

H11 =
�ω

2
Q2 + g1 Q +

�ωc

2
Q2

c − �ω
∂2

∂Q2 − �ωc
∂2

∂Q2
c

(2a)

H22 = ∆E +
�ω

2
Q2 + g2Q +

�ωc

2
Q2

c − �ω
∂2

∂Q2 − �ωc
∂2

∂Q2
c

(2b)

H12 = H21 = λf(Q,Qc)Qc. (2c)

The parameters g1 and g2 are simply related to the equilibrium positions
Q1m, Q2m of the two diabatic surfaces along the tuning coordinate and
could be reduced to a single parameter by placing the zero of Q just in
the middle of them. Here, however, we prefer to maintain this notation,
reserving the minimum at Q = 0 to the ground state, which might not
coincide with state |1〉.

The above two-state, two-mode model Hamiltonian can be easily gen-
eralized to include more tuning and coupling modes (and electronic states,
if necessary) as well as higher-order terms in both the intrastate and inter-
state coupling. It has been successfully used in the last twenty years, mainly
by the Heidelberg and Munich groups,1−3 to study several low-energy CI’s
in molecules, as discussed in Chapter 7, both from the point of view of cw
spectra and of time-resolved non-linear spectroscopy.

The function f(Q,Qc), which is assumed to be symmetric in both coor-
dinates, is often taken as the identity. It has been introduced here for gen-
erality, since we will explore in the following the consequences of the fact
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that the diabatic coupling is actually damped out as one moves away from
the conical intersection point.

The time-dependent Schrödinger equation:

i�
∂

∂t

(
χ1(Q,Qc, t)
χ2(Q,Qc, t)

)
= H

(
χ1(Q,Qc, t)
χ2(Q,Qc, t)

)
(3)

can be numerically solved, opening the way to the computation of any
time-resolved quantity. We do not examine here the various available
techniques, just recalling that all the “exact” results shown below have
been obtained through a Lanczos propagation scheme3,4 (with Householder
orthogonalization5) working with a basis set built as tensorial product of
diabatic electronic states and harmonic oscillator states for each mode.4

Figure 1 gives a pictorial representation of the diabatic (a) and adiabatic
(b) surfaces for the model two-mode CI utilized for several computations
discussed in the following. The third panel (c) gives a cross-section along
the tuning coordinate Q at Qc = 0 and also reports the numbering of the
different initial conditions for the excited wavepacket used in the calcula-
tions presented and discussed in the following. As is clear from the adiabatic
surfaces, the interstate coupling λ is large enough to develop a double min-
imum along the coupling coordinate. The crossing has been placed at the
minimum of the upper diabatic surface, a position which makes the CI well
accessible for various initial conditions.

2.2. The Vibronic Model

When studying the photochemical/photophysical behavior of large
molecules, one finds that, whenever a CI is present and accessible, the decay
from the initially excited PES to a lower one occurs in a few femtoseconds.
From a chemical point of view, the most interesting situations are those
in which reactive channels are open both on the surface directly reached
by excitation and on the one populated by internal conversion through the
CI. This means that the wavepacket moves into regions where any mode
separation breaks down and then rapidly spreads out. In practice, also in the
absence of a true continuum giving rise to energy dissipation (as for chan-
nels leading to isomerizations), a kind of irreversibility arises, in such a way
that the excited wavepacket has rarely the possibility of experiencing more
than a single passage through the CI, in contrast with what happens for
low-energy CIs, when no reactive channels are open. The above motivates
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Fig. 1. The figure shows the CI for the two-mode model Hamiltonian [Eqs. (1) and (2)].
The parameters are: ω = 0.001, ωc = 0.003873, g1 = 0, g2 = 1.02873, λ = 0.00787196,
∆E = 0.02 are all in a.u., while the coordinates are dimensionless. (a) A view of the
diabatic surfaces. In order to put in evidence the intersection, the upper diabatic surface
is plotted for values of Q < Q2m (the minimum of the excited diabatic state), while
the lower for Q > Q2m. (b) The adiabatic surfaces. (c) The sections of the two diabatic
surfaces at Qc = 0. The numbered points refer to various initial conditions for the excited
wavepacket, as discussed in the text.
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the interest for simple generalizations of the Landau–Zener formula to give
a reasonable estimate of the transition probability after a single passage
through the CI.

The Landau–Zener formula is a scattering solution to the problem of
crossing between two diabatic curves, derived by assuming that the nuclei
follow a classical trajectory.6,7 The diabatic curves are linearized around
the crossing point, which translates into an electronic energy gap varying
linearly with time. The transition probability P is:

PLZ(1 → 2) = 1 − e−γ ; γ =
2πλ2

V ∆F
(4)

where λ is the coupling, V the velocity at the crossing point, and ∆F is
the difference of the slopes at the same point. Equation (4) refers to a
constant coupling between diabatic potential energy curves and as such
cannot directly applied to the conical intersection problem.

Let us take as an example the two-mode model system depicted in Fig. 1,
exhibiting a CI at the bottom of the upper diabatic surface. We may inter-
pret Fig. 1 as referring to a pair of excited states while leaving as undeter-
mined the equilibrium position of the electronic ground state (not shown),
which is assumed, for simplicity, to share the same frequencies. Different
initial positions [numbered points in Fig. 1(c)] of the excited wavepacket on
both diabatic surfaces will then be considered in the following, to mimic not
only different minima of the ground state, but also different dipole selection
rules (only one diabatic state is assumed to be bright).

As a first attempt, one may take the displacement along the tuning coor-
dinate, Q, as a parameter and assume that each level of the coupling oscil-
lator gives rise to a distinct diabatic curve with its crossings, as shown in
Fig. 2.8 The “good” crossings are those between levels for which ∆vc = ±1
and to each one is associated a different coupling: for example the levels |vc〉
and |vc − 1〉 experience a coupling λ〈vc|Qc|vc − 1〉 = λ

√
vc (here f(Q,Qc)

is taken as 1, for simplicity). Let us take as an example the initial condition
numbered as 1 in Fig. 1(c). As should be clear from Fig. 2, the relevant
crossings are 10 → 21 → 12 , where e.g. 10 is the ground vibrational level of
the coupling oscillator in the lower diabatic state, here numbered 1. Apply-
ing the Landau–Zener formula, the following total probability of remaining
in the initial electronic state 1 is obtained:

PV M
1 = 1−PLZ(10 → 21)+PLZ(10 → 21) PLZ(21 → 12) = 1−e−2γ +e−3γ .

(5)
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Fig. 2. The figure shows how the CI of Fig. 1 can be visualized in one dimension as a
sequence of crossings among diabatic states, each one referring to a different vibrational
level of the coupling oscillator. The points are placed at the crossings which are relevant
for the initial condition number 1 [see Fig. 1(c)], while the arrows indicate possible paths.

Such a vibronic model (VM), which also accounts for the repopulation
of the initial diabatic state due to back-crossings, gives a good estimate
of the first-passage transition probability (FPTP) for small values of the
coupling parameter as illustrated in Fig. 3,8 showing the VM and the exact
results obtained by a Lanczos propagation . In order to check the influence
of the damping function in the interstate coupling, we have investigated
both the case of a purely linear coupling (i.e. f(Q,Qc) = 1) and that of
a gaussian damping: f(Q,Qc) = exp[−αQ2

c − β(Q − QCI)2], where QCI is
the point at which the CI occurs along the Q axis (see caption for further
details). Basically, the figure demonstrates that, for the damped case, the
VM gives a good estimate of the FPTP, at least for small values of the
coupling parameter λ. Further calculations, not reported here, show that
the agreement is excellent for the whole range of parameters when the
initial wavepacket is on the lower adiabatic state, as for the case numbered
3 in Fig. 1(c). In the case of a purely linear interstate coupling, there is
still a qualitative agreement, which is however much more sensitive to the
coupling strength. In general, one may say that, as expected, the coupling
threshold after which the one-dimensional representation looses its validity
it is much lower for the case without damping. The comparison between the
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Fig. 3. The figure shows the behavior of the probability of remaining in the initial
diabatic state (i.e. P = 1-FPTP) for the conical intersection of Fig. 1 (whose parameters
are specified in the caption). The initial condition corresponds to the case 1 of Fig. 1(c).
The exact results are compared with those obtained using the MTDM for both damped
(α = 0.33541, β = 0.590397) or purely linear interstate coupling. The VM results (see
text) are also shown.

exact calculations performed using a purely linear coupling and a damped
linear coupling clearly shows that, after a given threshold, the decay is
very sensitive to the tails of the coupling function and then, for such cases,
some additional care has to been devoted to its computation, going beyond
simple linear or quadratic expansions.

2.3. The Time-Dependent One-Dimensional Model

Going up in a hierarchy of simple approximating schemes, one may substi-
tute Q with the classical trajectory of the center of the vertically excited
wavepacket along the initial diabatic curve, Qcl(t). The following time
dependent Schrödinger equation is obtained:

i�
∂

∂t

(
χ1(Qc, t)
χ1(Qc, t)

)
= HM (t)

(
χ1(Qc, t)
χ1(Qc, t)

)
(6)

where HM (t) is obtained from the Hamiltonian [Eqs. (1) and (2)], by
dropping the kinetic energy along the tuning mode and replacing Q with
Qcl(t).9−11 Neglecting the kinetic energy of the tuning mode is not due here
to the fact that it is negligible, of course. It may be regarded as a constraint:
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the jumps from a surface to the other have to be vertical and have to con-
serve the kinetic energy along the Q coordinate. In other words, according
to this elementary model, which will be referred as the mono-dimensional
time-dependent model (MTDM), the motion along Q simply results in a
time-dependent energy gap to be taken into account when describing the
quantum mechanical mode Qc (the coupling becomes also time-dependent,
if it is damped along Q). The probability of remaining in the initial diabatic
state (1-FPTP) from the numerical solution of Eq. (6) is also reported in
Fig. 3 together with the exact quantum result. As one can see, the MTDM
gives excellent results for the case of damped coupling. When no damping
is present, the range of validity is restricted, albeit the correct behavior is
qualitatively reproduced up to a coupling strength of nearly 0.006 au. The
results of further numerical investigations, not reported here, show that
the damping along the tuning mode is more crucial than the one along
the coupling mode. This may be attributed to the fact that the damping
restricts the coordinate range where the jumps take place, thus reducing
the spreading of the wavepacket along the Q coordinate and making the
motion more classical.

3. Exact Time-Dependent Results

The numerical solution of the time-dependent Schrödinger equation opens
the way to the calculation of several time-dependent quantities which may
be utilized for analyzing the dynamics, as, for example, the mean value of
position and momenta, the average energy for each mode, the entropy pro-
duction and the coherences in reduced density matrices obtained tracing
out the electronic or the vibrational degree of freedom.2,12 The effects of
relaxing the simplifying assumption of identical frequencies in both diabatic
states have been also investigated.13 Time-dependent observables directly
related to linear and nonlinear optical experiments (e.g. pump and probe,
photon echo and photoelectron spectra) can also be evaluated, as widely
discussed in Ref. 2 and in Chapters 7 and 17 of this book. While the
short-time behavior can be often be rationalized, as before, in terms of
trajectories along the tuning modes, even when dealing with pump and
probe spectroscopy,14 the dynamics becomes very complex at longer times,
even for the simple two-mode model of Fig. 1. Figure 4, showing a few
snapshots of the excited wavepacket for the case (4) of Fig. 1(c), gives a
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Fig. 4. Contour plots showing snapshots at t = 0, t = 500 fs and t = 1000 fs, of the
evolving wavepacket for the case (4) of Fig. 1(c).

pictorial example of this complexity. The initially localized wavepacket is
strongly perturbed at any passage through the CI region and acquires a
complex nodal structure. In the remaining part of this section, for reason
of space, we limit ourselves to present a few examples of numerical results
illustrating selected aspects of the dynamics.

3.1. Diabatic vs. Adiabatic Populations

As illustrated also in other Chapters of this book (see especially
Chapters 3), the transformation from the adiabatic wavefunctions com-
puted by ab initio methods to diabatic ones, is often the first task to be
accomplished when approaching the study of the dynamics around a CI.15

The main historical reason for the preference given to the diabatic represen-
tation was the problem of the divergence of the coupling between adiabatic
surfaces, as illustrated for example in the review of Ref. 1. This computa-
tional difficulty seems to have been overcome, judging from the increasing
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popularity of adiabatic surfaces, preferred in approximate methods as the
“surface hopping”16 or the “multiple spawning” approach17 since it gives
rise to a more localized coupling.

When one deals with molecular systems exhibiting an irreversible behav-
ior, i.e. as discussed before, there is a single passage through the CI
region, the problem of the utility of adiabatic vs. diabatic populations
is not relevant, since initially (i.e. in the region containing the verti-
cally excited wavepacket) diabatic and adiabatic states coincide (hence
Pd1 = Pa1, Pd2 = Pa2), while after the passage they are simply exchanged
(Pd1 = Pa2, Pd2 = Pa1). In other cases, the two kinds of populations are not
simply related, and the emphasis given to one or the other depends then
uniquely on the possibility of relating them to observables. As discussed, for
example, in Chapter 16 of this book, the dipole matrix elements between
the ground state and the pair of crossing diabatic states are usually directed
along different axis, which means that for an oriented molecule it would be
possible to excite selectively one or the other diabatic state. Quite often,
however, the modulus of the transition moment is also very different, so
that one may consider, to a good approximation, that one is bright and
the other dark (this is certainly true if one of them is the ground state).
If, say, state 1 is bright then the total (i.e. frequency integrated) fluores-
cence emitted at a given time can be computed as a sum of probabilities of
emission from the evolving wavepacket to all the lower levels. To be more
realistic, one should however take into account that actual experimental
methods, e.g. the up-conversion technique, work opening a time window
for the revelation of emitted photons.2,18

Let us indicate with g the electronic ground state and with 1 and 2 the
two crossing diabatic states. Using as vibrational basis set the harmonic
oscillator states of the ground state, the doorway state at time t is:

|d(t)〉 =
∑

n1,n2

(c1;n1,n2(t)|1; n1, n2〉 + c2;n1,n2(t)|2; n1, n2〉) (7)

and the probability of emission to the ground electronic state at time t is:

Pe(t) ∝
∑

n1,n2

|〈g; n1, n2|µ̂|ψ(t)〉|2 = µ2
∑

n1,n2

|c1;n1,n2(t)|
2

= µ2P1(t) (8)

where µ̂ = µ(|g〉〈1| + h.c.) and µ is a constant.
The above shows that, in the Condon approximation, which is rigorously

valid in the purely diabatic basis set adopted in Eqs. (1) and (2), the total
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fluorescence monitors the population of the bright diabatic state and is
then a significant quantity, especially if one takes into account that the
recording of fluorescence is a widely used tool to get information on the
excited states. From a numerical point of view, the diabatic populations are
directly obtained from propagation, when working in the diabatic basis:

P d
1 (t) = 〈ψ(t) |1〉〈1 |ψ(t)〉 =

∑
n1,n2

|c1;n1,n2(t)|2; (9)

while the adiabatic ones must be obtained by a multidimensional numerical
integration over nuclear coordinates (which then requires working on a grid
of points), as briefly sketched below:

A1(Q,Qc, t) = 〈φa
1 | ψ(Q,Qc, t)〉r

=
∑

α,n1,n2

S1α(Q,Qc)cα;n1,n2(t)χn1(Q)ϕn2(Qc); (10)

P ad
1 (t) =

∫∫
dQdQc|A1(Q,Qc, t)|2

where the bracket with the subscript r indicates integration over elec-
tronic coordinates and S is the diabatic-adiabatic transformation 2 × 2
matrix, depending on nuclear coordinates. The amount of numerical com-
putations for obtaining adiabatic populations becomes rapidly very heavy
when including more vibrational modes, and efficient algorithms must be
used for this purpose.19−21

The previous discussion on the close relation between the population
of the bright diabatic state and the intensity of the fluorescence concerned
the case where the state reached by the radiative decay is a third one (the
ground state, in our example). As pointed out by Meyer and Köppel,22

in the case where the spontaneous emission takes place between the two
coupled states one may relate the fluorescence to the population of the
upper adiabatic state.

3.2. Some Numerical Results and their Interpretation

Figure 5 shows some computed adiabatic/diabatic populations for the two-
mode model system illustrated in Fig. 1. They are intended to illustrate
different typologies concerning the ground-state equilibrium position with
respect to the crossing surfaces,23 a point which will be further discussed
in the next section. What we do, in practice, is to select the different initial
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conditions depicted in Fig. 1(c) and report them in each of the panels. The
various cases have been also identified by Uu, Ul, Lu, Ll where the capital
letter identifies the initial diabatic state, as far as its minimum is concerned
(U = upper, L = lower), while the lower case letter is to characterize the
initial adiabatic state (u = upper, l = lower). Hence, for example, Ul means
that at t = 0 the wavepacket is on the upper lying diabatic state but on
the lower adiabatic state, which means that, initially, its vertical jump to
the other diabatic surface needs energy. Let us leave to the next section the
detailed interpretation of what happens in the first period T of the tuning
oscillator (about 150 fs). Here we notice that, as shown from the adiabatic
populations, there is a clear tendency to a trapping on the lower adiabatic
surface. If the wavepacket is placed initially on the lower adiabatic state
(case Ul or Ll) it tends to remain there, while if it starts on the upper
adiabatic state (Lu or Uu) it goes rapidly down. In this latter case, if the
wavepacket crosses the CI with high kinetic energy, as in our example, then
some pronounced (damped) oscillations may be seen, but on the average
the adiabatic population transfer is still massive.

The corresponding diabatic population of the bright state (i.e. the time-
dependent total fluorescence) exhibits always an oscillatory behavior, which
is however more pronounced for an almost purely adiabatic situation, as for
Ul and Ll.

As a demonstration of the interpretative capability of the MTDM (which
can be viewed as a time-dependent version of the VM model), let us com-
pare the behavior of the diabatic populations in cases Ul and Ll, which
correspond both to placing the initial wavepacket on the lower adiabatic
surface. Looking at the corresponding panels of Fig. 5, one may see that for
the Ul initial conditions the damping of the oscillations is slower and more
regular than for the Ll case. This effect cannot be attributed to the different
velocity of the wavepacket at the CI point, since as can be easily checked by
looking at Fig. 1(c), the corresponding classical trajectories arrive at the CI
with identical velocity. The difference between the two cases can be easily
qualitatively explained in terms of the MTDM introduced in Sec. 2.3. In
fact, looking at the time-dependent energies of the levels of the coupling
oscillator, Fig. 6, one may see that in the Ul case (3) the only active crossing
during the first passage is that between the 20 and the 11 levels (the same
notation as in Sec. 2.2 is used), giving rise to a population transfer, which
is then partially reversed during the second passage (here a second active
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Fig. 5. The computed diabatic (D) and adiabatic (A) populations for the two-mode
CI of Fig. 1. The numbering of the four panels refers to the initial conditions shown in
Fig. 1(c). The letters indicate the relative position along the energy scale of diabatic and
adiabatic surfaces at the initial point, as explained in the text.

crossing appears between 11 and 22). In the Ll case (2) there are instead
two different possibilities at the first passage, giving rise to more paths and
then to a complex dynamical pattern, which is reflected in the behavior of
the diabatic populations.

An extensive theoretical/computational study of the time-dependent
behavior of diabatic and adiabatic populations for three well-known exam-
ples of low-energy conical intersections, the C2H+

4 , pyrazine and NO2

molecules, has been performed by Köppel et al.,21,24 who used a three-
mode version of the Hamiltonian in Eqs. (1) and (2) (two tuning oscillators)
and investigated also the role of the coupling parameter λ. It is interesting
to compare their results with the general considerations illustrated above.
First of all, we notice that according to the previous classification all the
three are Uu cases (i.e. the vertically excited wavepacket starts initially on
the upper adiabatic surface, on the side originating from the upper diabatic
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Fig. 6. The time-dependent energies of the first three vibrational levels of the coupling
oscillator on the two diabatic surfaces according to the MTDM (see text). The numbering
in the two panels refers to the initial conditions of Fig. 1(c). As explained in the text,
the plotted energies are obtained considering that the motion along the tuning oscillator
is a classical trajectory on the initial diabatic surface. As in Fig. 2, the points are placed
at the crossing which are relevant for the selected initial condition, while the arrows
indicate possible paths.
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surface). The figures reported in Ref. 24 show that for all three the decay of
the population of the upper adiabatic state is rapid. Already after the first
passage the decay is almost complete, albeit some small amplitude oscilla-
tions persist. These are more pronounced for NO2, which can be explained
taking into account that this is the case in which the wavepacket trav-
els across the conical intersection with higher kinetic energy. This favors
the permanence on the initial diabatic state (hence the transition to the
lower adiabatic state) at the first passage, but does the same at the sec-
ond passage (which means that it may jump back to the excited adiabatic
states). It is also worthwhile to remind here that more recent calculations
on NO2 with improved surfaces show that the oscillations are very pro-
nounced in the adiabatic populations, while they are practically absent in
the diabatic ones.25,26

As a general trend, one observes that, when the coupling is sufficiently
strong, increasing the number of tuning oscillators increases the adiabatic-
ity, i.e. the wavepacket jumps rapidly down and then tends to get trapped
on the lower adiabatic surface. This is beautifully illustrated from the var-
ious calculations on the benchmark example of pyrazine by the Munich
and Heidelberg groups, with an increasing number of modes. If only the
coupling mode (v10a) is considered, there is practically no decay of the
population of the initial adiabatic state, while the inclusion of a tuning
mode (v6a) gives rise to a fast decay with some small amplitude persis-
tent oscillations.2 The further inclusion of an additional tuning mode (v1)
strongly suppresses the oscillations,2 while model calculations on systems
with four27 or more modes28 show that the adiabatic population relaxes to
zero. A look at the behavior of the dipole autocorrelation function obtained
via approximate computations with all the 24 modes of pyrazine (through a
path-integral29,30 or a self-consistent, time-dependent Hartree approach31)
can only give an indirect confirmation of a general trend, since the direct
evaluation of adiabatic populations cannot be attempted.

The role of the coupling strength may be better understood by look-
ing at the spreading of the wavepacket along the coupling oscillator as a
function of the coupling. After a threshold value, which can be estimated
to be λ ≥ 3�ωc,21 two well-separated minima appear in the lower adi-
abatic surface, on opposite sides of the CI. These minima, which act as
a trap for the wavepacket, are sufficiently far away from the CI, in such
a way that the effective non-adiabatic coupling is strongly reduced. The
interstate coupling then basically determines the time behavior of diabatic
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and adiabatic populations. At low values of λ (diabatic regime), the dia-
batic populations vary smoothly, while the adiabatic ones exhibit an oscil-
latory behavior, while at the opposite limit (adiabatic regime), the reverse
is observed. In the middle region, both populations have more or less pro-
nounced oscillations.

3.3. Initial Conditions and the Geometric Setup of
Surfaces

Since, as previously discussed, the population of the bright diabatic state
can be monitored by looking at the time-dependent fluorescence signal, it
is useful to check if one can extract in this way some information on the
relative position of the crossing surfaces with respect to the ground state
minimum, which may be of value when there are no reliable computations
at our disposal. What happens during the first period of the tuning oscil-
lator is particularly interesting, since it may be often analyzed in terms
of a pair of modes, the coupling mode and a single tuning mode suitably
chosen to reproduce the initial motion of the wavepacket on the bright
diabatic state (hence it may be a collective coordinate, in the case of sev-
eral tuning modes). It is also interesting to notice that, due to the short
time of propagation, it is possible to use approximate arguments as the
previously discussed MTDM, to rationalize the results of calculations. In
fact, as discussed in Ref. 23, the general behavior after the first passage is
reproduced quite well from the MTDM, while also the behavior after the
first period is reproduced in its main features. Two general rules emerge
from the perusal of the first period behavior of diabatic populations, which
applies, for λ > ωc, when the crossing between the two diabatic surfaces
occurs not far from the minimum of the upper one (in our example it is
just at the minimum) and the initial conditions are such that the vertically
excited wavepacket travels through the CI with a sufficient kinetic energy.
These rules are:

(a) after the first passage, the wavepacket is found prevalently on the lower
adiabatic surface, no matter where it was initially;

(b) after the first period of the tuning oscillator, the population of the
initial diabatic state is almost completely recovered for cases Ul and Ll

while it is distributed between the two states in the cases Uu and Lu.

The rule (a) is particularly interesting for the Ll, case, since the popula-
tion remains basically trapped on the lower adiabatic surface. This, in turn,
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implies that strong non-adiabatic effects can be observed, for example in
the absorption spectrum, without a corresponding radiationless decay. This
has been predicted by Müller and Köppel for the 1B1 → 1A2 transition in
SO2.32

Rule (b) can be useful as a guide to interpret time-dependent fluores-
cence following femtosecond excitation in system with a CI. As a first pos-
sibility, we consider that of a CI of the bright state with the (dark) ground
state. It is clear that the only relevant case is Uu, which means that already
at the end of the first period of the tuning oscillator a significant decay of the
fluorescence signal is observed. Hence, extrapolating, one expects a rapid
fluorescence decay. The case where both the crossing diabatic states are
excited is by far richer, since all the four cases of Fig. 1(c) can be realized.
By the same arguments, one can argue that a rapidly damped fluorescence
signal may be interpreted as an indication that the geometric setup is either
due to Uu or Lu (i.e. the wavepacket is initially on the excited adiabatic
surface), while a fluorescence exhibiting persistent oscillations may support
a Ul or Ll disposition (initial wavepacket on the lower adiabatic surface).
This could be the case of some triphenylmethane dyes33 and charge transfer
complexes.34

4. Model Studies of Photoisomerization Occurring via a CI

Diabatic states are smoothly dependent on nuclear coordinates, which
means that they basically refer to the same electronic structure, i.e. in
a chemical sense no bond rearrangement occurs when nuclei move. This is,
instead, what may happen when a pair of diabatic surfaces cross each other,
with a probability depending on the kinematics of the nuclear wavepacket
as well as on the diabatic coupling strength. If the latter is too strong,
then the wavepacket moves along the adiabatic surface, i.e. jumps from a
diabatic surface to the other. The above practically means that there is
not really a competition between different channels. The latter often hap-
pens, instead, at CI’s, since they are loci of points where not only the
diabatic surfaces intersect but also the diabatic coupling vanishes. In fact,
in recent years, there has been a growing amount of accurate ab initio
computations showing that CI’s are often associated with the opening
of competing photochemical channels.35,36 It is then useful to investigate
simple dynamical models of chemical reactions occurring at a CI. This can
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be accomplished by extending the previous basically harmonic model to
include a large amplitude (and then necessarily not harmonic) tuning mode.
Having in mind the cis-trans isomerization of ethylene derivatives, in which
the near degeneracy of S0 and S1 states is basically obtained by a twisting
around the double bond, Seidner and Domcke27 investigated numerically
the following model Hamiltonian (for up to four modes):

H =
(

H11 λQc

λQc H22

)
(11)

Hαα = Eα +
[
V (α)(φ) − �

2

2Iφ

∂2

∂φ2

]
+

[
ωc

2
Q2

c − �ωc
∂2

∂Q2
c

]

+
∑

j

(
1
2
ωjQ

2
j + g

(α)
j Qj − �ωj

∂2

∂Q2
j

)
(12)

where (α = 1, 2).
In the above equation, φ is the torsional angle describing twisting, Iφ

its reduced moment of inertia and V (α)(φ) is the corresponding periodic
potential for the diabatic state α. (For simplicity, frequencies have been
considered identical for the two diabatic states). The basic aspects of the
problem can be recovered by considering only the leading terms in the
Fourier expansion of V (α)(φ):

V (α) = A(α) +
1
2
B(α)[1 − cos(nφ)], (13)

where A(α) and B(α) are constants and n = 1, 2 (giving rise to a 2π/n

periodic system).
The numerical results from the wavepacket propagation2,27 illlustrate

dramatically the complete and irreversible spreading of the torsional
wavepacket in all the accessible coordinate region, which can be attributed
not only to the possibility of jumping from a diabatic surface to the other,
but also to the dephasing induced by the strong mode-mode coupling
present in the adiabatic surfaces, close to the CI region. The numerical
investigation also clearly shows that, despite the irreversible behavior, the
torsional wavepacket does not localize at the minima of the lower adiabatic
surface. This is essentially due to the fact that the irreversibility is mainly
due to vibrational dephasing, while there is no significant energy flow out
of the torsional mode. Hence the model is not useful to investigate the
problem of branching between isomers.
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4.1. How to Deal with Irreversibility?

As previously mentioned, including more and more tuning modes is a way
for introducing irreversibility. The problem is that exact quantum mechan-
ical calculations cannot be performed when the number of nuclear degrees
of freedom becomes too large, since the computational effort scales as n2,
where n is the total number of vibronic states needed. It is to remember
that, due to the fact that the basis set is built up as a tensor product, if
one adds a further oscillator, requiring m states, the total number of states
is multiplied by m. Various strategies can be elaborated to overcome this
problem through approximate calculations, as recently reviewed.2 Among
the most effective approaches, we mention that of treating exactly the two
or three most relevant modes, while making recourse to a time-dependent
Hartree approach for the other tuning oscillators, as in the two-state two-
oscillator modeling of rhodopsin by Hahn and Stock.37,38 Taking a single
configuration and considering a harmonic bath, the evolving wavepacket is
built by a product of gaussian wavepackets, expressed in terms of classical
trajectories, momenta and actions.39 This approximate approach scales as
f and then offers interesting computational opportunities, as demonstrated
by the 25-mode model of rhodopsin built up by the authors, and the further
inclusion of a bath of hundred harmonic oscillators, introduced to simulate
the coupling with the protein environment.38

A different way for dealing with dissipation in the case of the benchmark
example of pyrazine has been explored in Ref. 40. The authors consider two
relevant modes, the coupling mode Q6a and a single tuning mode, Q10a, and
project out the others, working with a multilevel Redfield master equation
for the reduced density matrix in the eigenstate basis set. Their numerical
results show that the population decay becomes bimodal. The fast com-
ponent, mainly due to the two modes included, remains quite insensitive
to the coupling with the bath of other modes. These, instead, are quite
effective in suppressing the tails of oscillations and driving towards zero the
population of the adiabatic excited state. The diabatic population of the
initially excited diabatic state, instead, never goes to zero in this example.

4.2. The Solvent Role: A Stochastic Model for CT
Associated with Large Amplitude Motions

The irreversibility may arise from the coupling to a manifold of other modes,
some of which may be intramolecular, while others may involve the solvent.
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This is typically the case for the torsional motion which can dissipate its
high initial energy to overcome the friction of solvent molecules. The purely
quantum mechanical approach considered above is not suitable for dealing
with many modes, for computational reasons. One possibility is to switch to
a stochastic model. As an example, let us consider the case of the negative
ion of a molecule obtained joining two identical moieties (as a biphenyl
or another diaryl species) in which the extra electron can jump between
the two subunits (aromatic rings)41,42 and consider the following model
with two diabatic states and two modes (which is essentially the model
introduced by Fulton and Gouterman several years ago to treat the excited
states of symmetrical dimers43):

H =
(

H11 th cos(φ)
th cos(φ) H22

)
(14)

where:

H11 = T̂ (φ, Q1, Q2) +
�ω

2
Q2

1 − λQ1 +
�ω

2
Q2

2 ,

H22 = T̂ (φ, Q1, Q2) +
�ω

2
Q2

1 +
�ω

2
Q2

2 − λQ2 ,
(15)

and:

T̂ (φ, Q1, Q2) = − �
2

2Iφ

∂2

∂φ2 − �ω
∂2

∂Q2
1

− �ω
∂2

∂Q2
2
. (16)

Here φ is the coordinate describing the torsion of one ring with respect
to the other and triggering the electron hopping, th, while Q1 and Q2 are
identical modes of the two moieties, whose equilibrium position depends on
the extra charge. Introducing the symmetric and antisymmetric coordinates
Qs,a = 1√

2
(Q1±Q2) reduces the problem to two dimensions. The symmetric

coordinate, in fact, is identically displaced in the two states and can then be
disregarded, since it does not play any role in the dynamics. The next step
consists in introducing symmetric and antisymmetric electronic (diabatic)
states to get the following transformed Hamiltonian:

H ′ =




�
ωa

2
Q2

a − �
2

2Iφ

∂2

∂φ2 + th cos(φ) λQa

λQa �
ωa

2
Q2

a − �
2

2Iφ

∂2

∂φ2 − th cos(φ)



(17)

which has now the familiar form of a conical intersection problem (the CI
point is at φ = ±π/2, Qa = 0). If λ � �ωa, one can assume that the dynam-
ics along the Qa coordinate involves only the vibrational ground state, as far
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as the diabatic ground state is concerned, and the first excited state for the
diabatic excited state. Hence, the diabatic coupling can be approximately
be taken to be a constant, which transforms the above two-dimensional
problem into a one-dimensional one involving an avoided crossing between
two adiabatic curves.

The dynamics following the vertical excitation of the vibrational ground
state wavepacket localized near φ = 0 up to the excited adiabatic curve
has been studied by a fully quantum mechanical approach.42 The result
(see Fig. 7) is that the population remains trapped in the excited state,
which can be interpreted as due to the fact that the wavepacket travels too
quickly through the region where the non adiabatic coupling is stronger (i.e.
near φ = ±90◦). This is due to the absence of nuclear degrees of freedom
capable of accepting the high energy of the torsion. This is precisely the
role of the solvent, which can be mimicked through a stochastic approach.
This can be accomplished by admitting that the process can be described
by a probability distribution for the torsional coordinate, P (φ, t), whose
time-space behavior is determinded by a Fokker–Planck equation.44 The
above means that it undergoes a diffusive motion in the presence of the
external force due to the potential energy along φ in the excited adiabatic
state E(φ). The occurrence of transitions (here assumed to be irreversible)
to the lower adiabatic state is described by a φ-dependent rate k(φ), which
can be estimated from exact quantum mechanical calculations on the initial-
time behavior of a wavepacket sharply localized at each value of φ.42 The
Fokker–Planck equation:

∂P (φ, t)
∂t

=
{

DR
∂

∂φ

[
1

kBT

∂E(φ)
∂φ

+
∂

∂φ

]
− k(φ)

}
P (φ, t) (18)

can be solved numerically by expanding the probability distribution in a
suitable basis set. The numerical results (Fig. 7) show that now the excited-
state population decays, with some time delay depending on the value
assumed for the diffusion constant (i.e. for a given molecular system, on
the solvent). This delay is clearly due to the time required to reach the
region where the non-adiabatic coupling is stronger. It is also interesting to
notice42 that if the torsion is blocked, for example by a saturated chain con-
necting the rings, the excited state does not decay appreciably. The above is
also a suggestive, albeit qualitative, explanation of the fact that apparently
similar dye anions have a fluorescence quantum yields close to unity if the
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Fig. 7. The time-dependent population of the upper adiabatic state, as computed from
the Fokker–Planck equation (see text) for two different values of the diffusion constant D
at T = 298K. The other parameters in Eq. (17) are: Iφ = 5.0154 105 a.u. (a typical value
for the reduced momentum of inertia of a substituted benzene ring); ωa = 1500 cm−1;
λ = 100 cm−1. The exact, full quantum mechanical result for the case without coupling
to the solvent is also reported.

rings are rigid, while they undergo an efficient radiationless decay if there
is the possibility of large amplitude torsions.45,46

The question concerning the adiabatic versus the diabatic picture, dis-
cussed in Sec. 3.1, can be enriched by arguments that come into play when
dealing with the problem of the interaction with the surroundings and its
role for the dynamics around a conical intersection. In some cases, it appears
that the solvent has mainly the role of a viscous medium which damps the
large-amplitude motions that would be present in the free molecule. It is
clear that in such cases the adiabatic representation is privileged, since a
large fraction of the kinetic energy is rapidly lost. In many other cases,
however, the diabatic picture is more convenient, for computational as well
as physical reasons. This happens, for example, for CIs related to charge-
transfer processes in polar solvents. The interaction, in fact, depends essen-
tially on the dipole moment (we do not consider here specific interactions
such as the hydrogen bond), which as almost every observable whose char-
acter is mainly electronic, is better described in terms of diabatic states.
So, if the system under study is one in which the jump from a diabatic
state to the other is associated with a large dipole change (as in the charge-
transfer systems having special interest in biological systems and in material
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science), one expects that the solvent results in fluctuations of the diabatic
electronic energies. It is then clear that in such cases the role of the solvent
can be better modeled in terms of diabatic states. It is interesting to notice
that, in a sense, every time the system is interrogated about its electronic
state, either by an external electromagnetic field (which may be the vac-
uum field, in the case of spontaneous emission) or by a static field (due to
a polar solvent), its response is in terms of diabatic states. This is of course
an important physical point in favor of the diabatic representation.

5. Concluding Remarks

We hope that the present contribution, albeit limited to a restricted range of
arguments and examples, may have convinced the reader of the important
role played by the investigation of simple model systems in our understand-
ing of the dynamics at a CI. There are several important points, of course,
that have been either only marginally touched or ignored, for reasons of
space. Among those that merit further attention, we want to mention the
role of the external medium, which may be crucial especially in large and
biological molecules, and the development of qualitative methods to predict
the location of CIs in organic molecules of photochemical interest,47,48

which may be of great help also for experimentalists. The general under-
standing of the role of the topological features of the CI,49 as well as of
the crossing of seams of different symmetry,50 which may deeply influence
the wavepacket propagation in high-symmetry molecular systems, are also
goals that can be pursued through model calculations.
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1. Introduction

In this chapter we survey characteristic features of time-dependent quan-
tum wave-packet dynamics on conically intersecting potential-energy (PE)
surfaces. The focus will be on the fully microscopic description of non-
trivial dynamical processes such as ultrafast internal conversion and
photoisomerization, as well as vibrational energy redistribution and dephas-
ing. The quantum dynamics calculations discussed in this chapter are

395
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partly based on generic simplified models of conically intersecting sur-
faces, and partly on ab initio surfaces for specific systems. We shall exclude
from the present discussion more or less direct photodissociation processes
on conically intersecting PE surfaces of small systems, e.g. triatomics.
Direct photodissociation dynamics on coupled surfaces is discussed in
Chapter 11.

Early attempts to treat the dynamics at conical intersections were based
on the Landau–Zener–Stückelberg approach.1−3 While the Landau–Zener–
Stückelberg model4,5 provides a transparent picture for one-dimensional
avoided-crossing situations, its generalization to multi-dimensional nuclear
motion is nontrivial, and no quantitative results for electronic popula-
tion probabilities or transition rates have been obtained in these early
studies.

In an alternative approach, exact (numerical) time-dependent quantum
wave-packet methods have been employed since the early eighties of the
last century to explore the dynamics of ab-initio-based models of conical
intersections, see Refs. 6–8 for reviews. It has been found by these calcu-
lations that the fundamental dissipative processes of population and phase
relaxation at femtosecond time scales are clearly expressed already in few-
mode systems, if a directly accessible conical intersection of the PE surfaces
is involved. The results strongly support the idea that conical intersec-
tions provide the microscopic mechanism for ultrafast relaxation processes
in polyatomic molecules.6−8 More recently, these calculations have been
extended to describe photodissociation9−11 and photoisomerization12,13

processes associated with conical intersections. The latter are particu-
larly relevant for our understanding of the elementary mechanisms of
photochemistry.14

It is suggested by these studies of representative models that ultra-
fast internal conversion through a conical intersection typically involves
only a few strongly coupled vibrational modes, even in larger molecules
with many vibrational degrees of freedom. The ultrafast internal-conversion
process thus results in a pronounced nonequilibrium distribution of the
vibrational energy. The coupling of the active modes of the conical inter-
section with the many inactive modes and possibly the environment
will cause vibrational energy redistribution, typically on a subpicosecond
time scale. Several attempts have been described in the recent litera-
ture to account for this phenomenon. One possibility is the solution of
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the time-dependent Schrödinger equation for truly multidimensional sys-
tems, employing efficient numerical techniques (see Chapter 14). Using the
MCTDH method,15 Meyer and collaborators have computed the absorp-
tion spectrum of the S1-S2 conical intersection in pyrazine for a vibronic-
coupling model which includes all 24 vibrational modes of this molecule.16

Alternatively, the Feynman path-integral formalism has been adapted for
the study of vibronic-coupling models of arbitrary dimension.17 Compu-
tationally efficient classical or semi-classical models of electronically nona-
diabatic dynamics have been developed and applied to the investigation
of the effect of vibrational energy redistribution on the electronic decay
dynamics at conical intersections (see Chapter 15). Finally, the well-known
system-bath formulation and reduced density-matrix theory18 can be used
to describe the effect of a dissipative environment on the dynamics at a con-
ical intersection.19 The latter relatively simple approach is adequate when
the relaxation effects caused by the system-bath interaction are slow rel-
ative to the ultrafast dynamics driven by the active modes of the conical
intersection and if the bath correlation time is short.

Although much progress has been made in recent years with ab ini-
tio electronic-structure theory and the efficient interpolation of multi-
dimensional potential functions, the selection of the relevant coordinates,
the construction of a diabatic representation (see Chapter 4) and the ana-
lytic modeling of potential functions of conical intersections in polyatomic
molecules (see Chapter 5) represent major bottlenecks in the theoretical
treatment of photochemical dynamics. In principle, one can try to avoid
these bottlenecks by evaluating the potentials and the derivative couplings
at every point where they are required in a classical or quantum dynam-
ical calculation. Several attempts combining this “on the fly” approach
with classical surface-hopping trajectory calculations or similar trajectory-
based methods for conical intersections have been reported in the recent
literature.20−23 Serious obstacles encountered in this type of approach are
the immense cost of these calculations, if reasonably accurate ab initio
methods are to be employed, the phase problem of electronic wave func-
tions in the presence of intersections, and the development of quantitatively
accurate surface-hopping prescriptions. Nevertheless, the development of
full-dimensional on-the-fly methods for the dynamics at conical intersec-
tions will continue to be an active area of research in the future.
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2. Time-Dependent Quantum Wave-Packet Dynamics and
Reduced Density-Matrix Dynamics

The dynamics of an isolated molecular system, prepared in a nonstation-
ary state |Ψ(0)〉 by a short laser pulse, is governed by the time-dependent
Schrödinger equation

i� ∂/∂t|Ψ(t)〉 = HM |Ψ(t)〉 (1)

where HM = TN +Hel is the molecular Hamiltonian, TN being the nuclear
kinetic-energy operator.

The most straightforward numerical technique for the solution of Eq. (1)
is based on the expansion of the state vector |Ψ(t)〉 in a complete set of
time-independent basis functions. Such a complete basis can be constructed
as the direct product of diabatic electronic basis states {|Φn〉} and suit-
able orthonormal states {|χνj〉} for each nuclear degree of freedom (see
Chapter 7)

|Ψ(t)〉 =
∑

n

∑
ν1ν2...

Cn,ν1,ν2,...(t)|Φn〉|χν1〉|χν2〉 · · · (2)

This expansion converts the time-dependent Schrödinger Eq. (1) into a set
of coupled first-order differential equations

i�Ċ(t) = HC(t), (3)

where C (t) is the vector of expansion coefficients in Eq. (2) and H is the
corresponding matrix representation of the Hamiltonian. Equation (3) can
be solved by a variety of standard or specialized numerical algorithms.24−26

There are various options concerning the choice of basis functions or
grid representations of the wave function or combinations of both (the so
called discrete-variable representation). For a discussion of these technical
aspects we refer to Chapters 7, 11, 13 and 14 and earlier literature.6,7,26,27

As mentioned in the introduction, only few vibrational degrees of free-
dom are usually actively involved in the ultrafast dynamics at the con-
ical intersection. To account for the effect of energy transfer from the
active modes to the many inactive modes of the polyatomic molecule or a
condensed-phase environment, the reduced-density-matrix formalism may



April 27, 2004 13:21 Conical Intersections: Electronic Structure, Dynamics and Spectroscopy chap09

Generic Aspects of the Dynamics at Conical Intersections 399

be employed. The molecular Hamiltonian is written as

HM = HS + HB + HSB , (4)

where HS represents a few-mode model of a conical intersection, HB

stands for a harmonic vibrational bath, and HSB is the (usually bilinear)
system-bath coupling. The standard approximations of quantum relaxation
theory18 yield an effective equation of motion for the reduced density oper-
ator, defined as

σ(t) = trB{ρ(t)}, (5)

where ρ(t) is the full time-dependent density operator and trB denotes the
trace over the bath variables. In the eigenstate representation of the system
Hamiltonian

Hs|Ψν〉 = Eν |Ψν〉, (6)

the resulting equation of motion reads18
•
σµν(t) = −iωµνσµν(t) +

∑
κλ

Rµνκλσκλ(t) (7)

with ωµν = (Eµ − Eν)/�. The first term of the rhs of Eq. (7) describes the
time evolution of the isolated system, while the Redfield tensor R accounts
for the effects of the environment. The elements of R are determined by
matrix elements of the system-bath coupling operator and Laplace trans-
forms of the bath correlation functions.18 The procedure of the numerical
solution of Eq. (7) is analogous to the solution of Eq. (3) (see Ref. 19 for
more details).

3. Electronic Decay Dynamics

The quantity of primary interest for the description of radiationless elec-
tronic transitions is the time-dependent population probability of excited
electronic states. The population P d

n(t) of the nth diabatic electronic state
is defined as the expectation value of the projection operator

P̂ d
n =

∣∣Φd
n

〉〈
Φd

n

∣∣, (8)

i.e.

P d
n(t) = 〈Ψ(t)|P̂ d

n |Ψ(t)〉. (9)

The superscript “d” refers to the fact that the projector (8) is defined in
the diabatic electronic representation. Alternatively, we may consider the
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time-dependent population of adiabatic electronic states, i.e.

P a
n (t) = 〈Ψ(t)|P̂ a

n |Ψ(t)〉, (10)

P̂ a
n = |Φa

n〉〈Φa
n|. (11)

Equivalently, these electronic population probabilities may be expressed as
the integral of the nuclear probability density over all nuclear degrees of
freedom, i.e.

P d
n(t) =

∫
dR1

∫
dR2

∫
dR3 · · · |Ψd

n(R1, R2, R3, . . . , t)|2, (12)

P a
n (t) =

∫
dR1

∫
dR2

∫
dR3 · · · |Ψa

n(R1, R2, R3, . . . , t)|2, (13)

where

Ψd
n(t) = 〈Φd

n |Ψ(t)〉 and Ψa
n(t) = 〈Φa

n |Ψ(t)〉.
From Eqs. (12) and (13) it is obvious that the electronic populations are
just the diagonal elements of the electronic reduced density matrix, defined
as the trace of the complete density matrix over the nuclear degrees of
freedom.

Since P̂ d
n commutes with the molecular Hamiltonian in the absence of

electronic inter-state couplings, P d
n(t) becomes a constant of motion in this

limit. Correspondingly, P a
n (t) becomes a constant of motion if the nona-

diabatic coupling operators are neglected. The populations Pn(t) are thus
a direct measure of nonadiabatic transitions in either the diabatic or the
adiabatic representation.6

In the case of open-system dynamics, assuming weak coupling of the
conical intersection with an environment, the time evolution of the system
is determined by the Redfield Eq. (7) for the reduced density matrix. In this
case, the time-dependent population probabilities of diabatic and adiabatic
states are given by

P d
n(t) = tr

{
P̂ d

nσ(t)
}

, (14)

P a
n (t) = tr

{
P̂ a

nσ(t)
}

. (15)

Given either the coefficient vector C (t) [representing the time-dependent
wave function in the direct-product basis according to Eq. (2)] or the
reduced density matrix σ(t) (representing the reduced density operator in
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the system eigenstate basis), the population probabilities of adiabatic or
diabatic electronic states can straightforwardly be calculated.

The transition rate out of the electronic state n (in either the diabatic
or adiabatic representation) is given by

kn(t) = − •
Pn(t)/Pn(t). (16)

In a nonperturbative treatment of radiationless decay, Pn(t) is generally
not simply an exponential function; the nonperturbative rate kn(t) is thus
time-dependent. It should be stressed that Pn(t) and thus kn(t) can be
measured explicitly, at least in principle, in a femtosecond time-resolved
experiment. There is thus no need to invoke a long-time limit or to perform
an average over time to obtain time-independent rates.

The population probabilities Pn(t) defined in Eqs. (8)–(13) should not
be confused with the population probabilities which have been considered
in the extensive earlier literature on radiationless transitions in polyatomic
molecules, see Refs. 28 and 29 for reviews. There the population of a single
“bright” (i.e. optically accessible from the electronic ground state) zero-
order Born–Oppenheimer (BO) level is considered. Here, in contrast, we
define the electronic population as the sum of all vibrational level popula-
tions within a given (diabatic or adiabatic) electronic state. These different
definitions are adapted to different regimes of time scales of the system
dynamics. If nonadiabatic interactions are relatively weak, and radiation-
less transitions relatively slow, the concept of zero-order BO levels is useful;
the populations of these levels can be prepared and probed using suitable
laser pulses (typically of nanosecond duration). If the nonadiabatic transi-
tions occur on femtosecond time scales, the preparation of individual zero-
order BO levels is no longer possible. The total population of an electronic
state then becomes the appropriate concept for the interpretation of time-
resolved experiments.30,31

A particularly well studied example of radiationless decay through a
conical intersection is the intersection of the S1(nπ∗) and S2(ππ∗) excited-
state PE surfaces of pyrazine. In this molecule of high symmetry (D2h),
the out-of-plane mode of B1g symmetry is the single normal mode which
can couple the 1B3u(nπ∗) and 1B2u(ππ∗) electronic states in first order.
This one-dimensional vibronic-coupling problem32 is converted into a coni-
cal intersection by the totally symmetric tuning modes ν1 (ring stretching)
and ν6a (ring bending), which induce symmetry-allowed intersections of
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the S1(nπ∗) and S2(ππ∗) PE surfaces.33,34 In this particular case the dia-
batic PE surfaces can be modeled rather accurately by a three-dimensional
vibronic-coupling model, employing low-order Taylor expansions in terms
of ground-state normal coordinates6 as discussed in Chapter 7.

Improved and extended versions of this conical intersection model
involving four or seven nuclear degrees of freedom have been
developed.35−37 Raab et al. extended these vibronic-coupling models to
include all 24 normal modes of pyrazine.16 These models have served as
testbeds for the development and application of novel techniques for the
treatment of multi-dimensional nonadiabatic dynamics.38−43

Figure 1 shows two alternative two-dimensional perspective views of the
adiabatic PE surfaces of this intersection, calculated at the CASSCF level.36

The PEs as functions of the coupling coordinate Q10a and the tuning coor-
dinate Q1 are shown in Fig. 1(a). Figure 1(b) gives the PEs as a function
of Q10a and the second tuning coordinate Q6a. The intersection space is
a line in this three-dimensional model; it becomes an (N -2)-dimensional
hypersurface in N -dimensional models. The S1-S2 conical intersection in
pyrazine can be classified as a nonreactive conical intersection, since the
nuclear motion remains bounded in the vicinity of the initially prepared
geometry (the equilibrium geometry of the electronic ground state). Exci-
tation of the S2(ππ∗) state thus induces photophysical dynamics (internal
conversion to the S1(nπ∗) surface), but not photochemical dynamics. Con-
ical intersections of this type have been identified and characterized in the
ethylene cation,44 the butatriene cation,45 the ozone cation,46 the pyrazine
cation,47 and in NO2.48−51

We assume preparation of the S2(ππ∗) diabatic state at t = 0 by an
ideally short laser pulse. The ground-state vibrational wave packet is thus
placed vertically on the S2 surface. The time-dependent population prob-
ability of the thus prepared diabatic S2 state in the three-mode model is
given by the full curve in Fig. 2. It exhibits an initial decay on a time scale
of ≈ 20 fs, followed by quasi-periodic recurrences of the population, which
are damped on a time scale of a few hundred femtoseconds. Beyond ≈500 fs
the S2 population probability becomes quasi-stationary, fluctuating statis-
tically around its long-time limit of ≈0.33. The dotted curve in Fig. 2 shows
the time-dependent population of the adiabatic S2 state. P a

2 (t) is seen to
decay even faster than P d

2 (t) and to attain an asymptotic value of ≈0.1. 90%
of the population thus relax to the S1 state, and this happens essentially



April 27, 2004 13:21 Conical Intersections: Electronic Structure, Dynamics and Spectroscopy chap09

Generic Aspects of the Dynamics at Conical Intersections 403

(a)

(b)

Fig. 1. (a) Conical intersection of the adiabatic S1 and S2 PE surfaces of pyrazine in
the two-dimensional space spanned by the totally symmetric tuning coordinate Q1 and
the coupling coordinate Q10a. (b) Conical intersection of the adiabatic S1 and S2 PE
surfaces in the two-dimensional space spanned by Q6a and the coupling coordinate Q10a.
The surfaces have been calculated at the CASSCF level.36

within a single vibrational period of the system. The higher asymptotic
value of P d

2 can qualitatively be interpreted as representing the admixture
or the upper diabatic state in the wave packet which has relaxed to the
minimum of the lower adiabatic surface.74 Note that the difference between
adiabatic and diabatic population probabilities is significant, underscoring
the necessity of a precise definition of the electronic population probabil-
ity and transition rate in cases of ultrafast electronic decay. The question
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Fig. 2. Diabatic (solid line) and adiabatic (dotted line) population probability of the
S2 state for the three-mode S1-S2 conical intersection model of pyrazine.

of the detectability of electronic populations by femtosecond pump-probe
spectroscopy is discussed in Chapter 17.

It is instructive to consider the development of the electronic decay
dynamics with increasing number of nuclear degrees of freedom for this
representative model. Figure 3 compares the adiabatic S2 population prob-
ability of a one-dimensional model (coupling mode ν10a only, upper panel),
a two-dimensional model (ν10a and tuning mode ν6a, middle panel) and
a three-dimensional model (ν10a and two tuning modes, ν6a and ν1, lower
panel). Inclusion of the coupling mode alone does not lead to any signifi-
cant electronic population dynamics because of the relatively large vertical
energy gap of the S1 and S2 states (0.9 eV). The tuning mode ν6a induces
a low-lying crossing of the S1 and S2 potentials and thus leads, together
with ν10a, to the formation of a conical intersection (cf. Fig. 1). It is seen
that the two-dimensional conical intersection causes an ultrafast (∼30 fs)
initial decay of the S2 population, followed by large irregular fluctuations.
Inclusion of the second tuning mode ν1 leads to even faster initial decay
and a strong suppression of the population fluctuations. Very similar results
have been obtained for a variety of systems with conical intersections, e.g.
C2H+

4 ,44 C6H+
6

52 and NO2.50,51 In all cases that have been studied in detail,
it has been found that a minimum of three strongly coupled nuclear degrees
of freedom is required to obtain ultrafast irreversible decay of the electronic
population.
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(a)

(b)

(c)

Fig. 3. Adiabatic S2 population probability for (a) the one-dimensional (ν10a), (b)
the two-dimensional (ν10a, ν6a), and (c) the three-dimensional (ν10a, ν6a, ν1) models of
S1-S2 vibronic coupling in pyrazine.
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It should be stressed that we are discussing here numerically exact
results obtained by the solution of the time-dependent Schrödinger equa-
tion for an isolated system. No assumptions or approximations leading to
decay or dissipation have been introduced. The time evolution of the wave
function Ψ(t) is thus fully reversible. The obviously irreversible time evolu-
tion of the electronic population probabilities in Figs. 2 and 3 arises from
the reduction process, that is, the integration over part of the system [in
this case, the nuclear degrees of freedom, cf. Eqs. (12) and (13)].

As a second example, we consider a model of a conical intersection which
involves large-amplitude motion along a reaction coordinate. Examples of
considerable interest in organic photochemistry and in biophysical chem-
istry are photoreactions triggered by the twisting of C=C double bonds,
e.g. in polyenes and in chromophores involved in the process of vision. It
has often been conjectured that such ultrafast photoreactions should pro-
ceed through conical intersections.14 A few attempts have been undertaken
to construct PE models for such processes.12,13 A generic model of a photo-
chemical funnel induced by a torsional reaction coordinate ϕ and a coupling
coordinate Qc is displayed in Fig. 4. It is clear that this type of intersection
governs simultaneously internal-conversion dynamics to the ground state
as well as photochemical dynamics (cis-trans isomerization). The applica-
tion of such models for the simulation of the photochemical dynamics of
the retinal chromophore in Rhodopsin has recently been discussed by Hahn
and Stock.53

Figure 5 shows, in analogy to Fig. 3, the development of the electronic
decay dynamics of such a reactive conical-intersection model with increasing
number of degrees of freedom (the detailed specification of the model can
be found in Ref. 12). The time-dependent population P a

1 (t) of the upper
adiabatic surface is shown, assuming instantaneous electronic excitation
from the lower to the upper surface at t = 0. As in the pyrazine model, no
electronic decay occurs when only the coupling mode νc is included (not
shown in Fig. 5). Figure 5a gives the result when the torsional mode is
included in addition to νc, and thus the conical intersection shown in Fig.
4 is formed. A fast (≈50 fs) initial decay of P a

1 (t) is observed, followed by
large irregular fluctuations of the electronic population. In the three-mode
model, an additional harmonic tuning mode has been included.12 The result
is a significant qualitative change of the electronic population dynamics
(Fig. 5b). The irregular fluctuations of P a

1 (t) have virtually disappeared
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Fig. 4. Adiabatic PE surfaces of the photoisomerization model in the two-dimensional
space spanned by the torsional angle ϕ (reaction coordinate) and the coupling coordi-
nate Qc.

in the three-dimensional model. P a
1 (t) exhibits an ultrafast initial decay

(≈50 fs), followed by a slower transient decay (≈200 fs) and small statistical
fluctuations around a long-time limit of ≈0.3. In the four-dimensional model
[Fig. 5(c)] an additional low-frequency tuning mode has been included.12

The statistical fluctuations are now completely suppressed and P a
1 (t) drops

to a long-time limit below 0.2. Within the first 500 fs, in particular, the
electronic population dynamics of the four-mode model is nearly identical
with that of the three-mode model, indicating a fast convergence of the
ultrafast electronic decay dynamics with respect to the number of nuclear
degrees of freedom.

Although the conical intersection illustrated in Fig. 4 is hardly more
than a toy model, it exhibits some of the features which are believed
to be essential in the photochemistry of polyenes according to ab initio
investigations of the singlet PE surfaces of ethylene, cis and trans buta-
diene and hexatriene.54–61 The situation in real systems is more complex,
since at least three electronic states and additional large-amplitude motions
(e.g. pyramidization and H atom migration) are involved.54–60 Despite the
oversimplification of the model, Fig. 5 highlights the possibility of a fully
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(a)

(b)

(c)

Fig. 5. Time evolution of the population probability of the upper (S1) adiabatic elec-
tronic state of the photoisomerization model with (a) two degrees of freedom (torsion,
coupling mode), (b) three degrees of freedom (torsion, coupling mode, tuning mode),
and (c) four degrees of freedom (torsion, coupling mode, two tuning modes).

microscopic explanation of the ultrashort excited-state lifetimes of ethylene
and butadiene.62–65

As a third characteristic example of a conical intersection, we con-
sider the intersection of the PE surfaces of the Ã2Σ+

g and X̃2Πu states
of the acetylene cation. In this case, the cis and trans bending modes
have been found to induce the intersection and to govern the electronic
decay dynamics.66 The most relevant cuts of the ab initio calculated PE
surfaces of C2H+

2 (CASSCF/CASPT2 level) are shown in Fig. 6. Despite
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(a)

(b)

Fig. 6. (a) Trans-bending PE functions of the X̃2Πu and Ã2Σ+
g electronic states of

C2H+
2 , calculated at the CASPT2 level66 with fixed C–H and C–C bond lengths. Dots

represent CASPT2 energies, the lines are analytic fits.66 (b) Cis-bending PE functions of
C2H+

2 , for fixed C–H and C–C distances and a trans-bending angle of 82◦, corresponding
to the point of intersection of the 2Ag and 2Bu PE functions in (a).

the unusually large vertical energy gap of nearly 6 eV, the extremely flat
PE of the Ã2Σ+

g state as a function of the trans-bending mode leads to an
energetically accessible crossing with the lower-lying X̃2Πu state [Fig. 6(a)].
The accidental degeneracy of the 2Ag and 2Bu states at the crossing is lifted
by the cis-bending mode, see Fig. 6(b). The degenerate trans-bending and
cis-bending modes are the dominant tuning and coupling modes, respec-
tively, in this system.66
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The Ã2Σ+
g diabatic electronic population probability obtained for a six-

dimensional model (only the antisymmetric C–H stretching mode has been
excluded)66 is shown in Fig. 7 for C2H+

2 (a) and C2D+
2 (b). Figure 7 rep-

resents a nice example of “ballistic” wave-packet motion and electronic
decay. PΣ(t) remains essentially equal to unity until wave packet motion
in the trans-bending mode reaches the conical intersection, which happens
at ≈20 fs for C2H+

2 and ≈30 fs for C2D+
2 . Then an ultrafast decay of the

2Σ+
g population occurs within about 20 fs. After about 40 (50) fs the decay

process is finished in C2H+
2 (C2D+

2 ). The weak oscillations of the population
surviving at longer times reflect oscillations of the symmetric CH stretching
mode. The incompleteness of the electronic decay in this example as well as
the previous examples reflects a lack of vibrational energy redistribution on
the lower adiabatic PE surfaces as a consequence of the harmonic modeling
of the diabatic PE surfaces. Vibrational energy redistribution processes are
inefficient in these models once the wave packet has left the vicinity of the
conical intersection.

A possibility to overcome this limitation of the above conical-
intersection models, at least in a qualitative manner, is to consider anhar-
monic couplings of the active degrees of freedom of the conical intersection
with a large manifold of spectroscopically inactive vibrational modes. The
effect of such a coupling with an environment has been investigated for
the pyrazine model in the weak-coupling limit (Redfield theory) in Ref. 19.
The simplest ansatz for the system-bath interaction, which is widely
employed in quantum relaxation theory67 assumes a coupling term which
is bilinear in the system and bath operators

HSB = H
(c)
SB + H

(t)
SB (17a)

H
(c)
SB =

∑
j

g
(c)
j (b†

caj + bca
†
j) (17b)

H
(t)
SB =

∑
j

g
(t)
j (b†

taj + bta
†
j). (17c)

Here aj(a
†
j) are creation and annihilation operators of the bath mode of

frequency ωj and bc(bt) are annihilation operators of a coupling and a tuning
mode, respectively. The so-called rotating-wave approximation (RWA) has
been invoked in Eq. (17), neglecting terms of the type ba and b†a†. The
effect of the bath on the system dynamics is completely determined by the
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(a)

(b)

Fig. 7. Calculated time-dependent population probability of the diabatic Ã2Σ+
g state

of (a) C2H+
2 and (b) C2D+

2 .

spectral function

Jn(ω) = 2π
∑

j

(
g
(n)
j

)2
δ
(
ω − ωj

)
, n = c, t (18)

for each mode. In the numerical studies, Jn(ω) has been modeled by a
so-called Ohmic spectral function67

Jn(ω) = ηnωe−ω/ω
(n)
0 . (19)
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Here ηn is a dimensionless parameter representing the system-bath coupling
strength for mode n and ω

(n)
0 is a cut-off frequency which determines the

bath relaxation time (see Ref. 19 for more details).
The effect of environmental vibrational damping on the electronic decay

dynamics of the three-mode pyrazine model (cf. Fig. 2) is shown in Fig. 8.
Diabatic (a) and adiabatic (b) S2 population probabilities are shown for
η = 0 (isolated system), η = 0.01 and η = 0.05. In all cases the coupling
with the environment is rather weak, as required for the application of
Redfield theory. The temperature of the bath has been set to zero; thermal
effects play no significant role because of the large excess energy becom-
ing available in the internal-conversion process. It is seen that vibrational
damping lowers, as expected, the long-time limit of the population of the
upper electronic state. Inspection of Fig. 8b reveals that moderate damping
(η = 0.05) is sufficient to induce a complete decay of P a

2 (t) to zero within
about 200 fs. The result is a typical bimodal decay of the excited-state
population, consisting of an ultrafast (≈ 10 fs) initial decay driven by the
active modes of the conical intersection, followed by a slower (≈1 ps) decay,
reflecting vibrational energy relaxation on the lower adiabatic surface.

4. Vibrational Energy Redistribution and Dephasing

Ultrafast internal-conversion processes involve a complex interplay of elec-
tronic and nuclear motions. The visualization of time-dependent wave pack-
ets (see below) is a possible way of revealing this interplay. Alternatively, we
may consider time-dependent expectation values of appropriate operators
which reflect the most relevant properties of the nuclear dynamics.

As is well known in nonequilibrium statistical mechanics, it is neces-
sary to distinguish between energy-transfer processes and phase-relaxation
processes in the description of the dynamics of complex systems. To mon-
itor the coherence of vibrational motion, we may consider the expectation
values of the position and momentum operators

〈Ri〉t = 〈Ψ(t)|Ri|Ψ(t)〉 (20)

〈Pi〉t = 〈Ψ(t)|Pi|Ψ(t)〉. (21)

Here Ri is the vibrational coordinate and Pi the conjugate momentum of the
ith mode. Note that the definition [Eqs. (20) and (21)] implies the trace over
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(a)

(b)

Fig. 8. Diabatic (a) and adiabatic (b) population probability of the S2 state of the
pyrazine model coupled to a harmonic bath, for three values of the system-bath coupling
strength. Full line: isolated conical intersection (η = 0); dotted line: weak system-bath
coupling (η = 0.01); dashed line: moderate system-bath coupling (η = 0.05).

the electronic subsystem. We thus do not differentiate the nuclear dynam-
ics with respect to individual electronic surfaces. For uncoupled harmonic
systems in the absence of environmental dissipation, the expectation values
〈Qi〉t, 〈Pi〉t of normal coordinates and momenta evolve periodically in time,
corresponding to undamped coherent vibrational motion. In vibronically
coupled systems, on the other hand, the oscillation of 〈Qi〉t and 〈Pi〉t is typi-
cally damped on femtosecond time scales. Figure 9 shows this phenomenon
for the tuning modes ν1 and ν6a of the three-mode pyrazine model. The
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(a)

(b)

Fig. 9. Time evolution of the expectation values of (a) position and (b) momentum of
the tuning modes ν1 (solid line) and ν6a(dotted line) of the three-mode pyrazine model.

same phenomenon has been found for the harmonic tuning modes of three-
and four-dimensional photoisomerization models.12 It should be pointed
out that the decay of the amplitude of 〈Qi〉t and 〈Pi〉t is not related to the
dissipation of vibrational energy (in fact the energy of the tuning modes
increases during the internal-conversion process owing to the interconver-
sion of electronic energy into vibrational energy, see below). The damping of
the amplitude seen in Fig. 8 rather reflects a vibrational dephasing process,
that is, the loss of phase coherence of the initially prepared vibrational wave
packet. This femtosecond vibrational dephasing process, which is faster than
typical vibrational relaxation processes in isolated electronic states of poly-
atomic molecules,68 is another manifestation of the pronounced mode-mode
coupling effects in systems with conically intersecting PE surfaces.
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As discussed in detail in Ref. 34, the vibrational dephasing process rep-
resents the origin of the irreversible time evolution of the electronic pop-
ulation (Fig. 2). The initial quasi-periodic recurrences of P d

2 (t) reflect the
driving of electronic population by initially coherent vibrational motion in
the tuning modes ν1 and ν6a. The vibrational dephasing process destroys
the coherence of vibrational motion and thus irreversibly traps the elec-
tronic populations.

Let us next consider vibrational energy relaxation. To characterize these
processes, we shall consider the energy content of individual nuclear degrees
of freedom. The definition of individual mode energies is to some extent
arbitrary, since there exists, in general, no unique decomposition of the total
vibrational energy into single-mode contributions. The concept of time-
dependent vibrational energy expectation values for individual modes can
nevertheless be very useful for a qualitative analysis of ultrafast internal-
conversion processes.34,69 For the precise definition of the energy content
of tuning and coupling modes of conical-intersection models constructed
by Taylor expansions in normal modes, including photochemically reactive
modes, we refer to Sec. IV.C of Ref. 7.

Figure 10 shows the expectation values of the vibrational energy for
the three modes ν1, ν6a, and ν10a of the pyrazine model. The rapid ini-
tial increase of 〈Ei〉t, in particular for the modes ν6a and ν10a, shows that
the interconversion of electronic to vibrational energy occurs essentially
on the time scale of a single vibrational period. After about 500 fs the
mode energies become stationary. In this model, as well as in other few-
mode vibronic-coupling models, we do not find equipartition of vibrational
energy in the long-time limit. It can be expected that additional coupling
mechanisms not included in the model will ultimately lead to complete equi-
libration of the vibrational energy in real systems. The model calculations
nevertheless provide a hint that vibrational energy equilibration may be
incomplete in internal-conversion processes at subpicosecond time scales.
Recent experimental observations for several systems support this idea, see
e.g. Refs. 70–72.

The vibrational energy expectation values for the three-mode nonadi-
abatic photoisomerization model12 are shown in Fig. 11. In this case the
large electronic excess energy (5.0 eV) is initially stored in the torsional
mode. It is seen that energy is transferred from the highly excited tor-
sional mode to the other modes on a 100 fs time scale. Again, the energy
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Fig. 10. Time evolution of the expectation values of vibrational energies of the three
modes ν1 (solid line), ν6a (dotted line), and ν10a (dash-dotted line) of the pyrazine model.

Fig. 11. Time-dependent energy content of the torsional mode (solid line), the cou-
pling mode (dashed line), and the tuning mode (dotted line) of the three-dimensional
photoisomerization model.

equilibration remains incomplete in this model. It would be interesting to
investigate these energy redistribution processes for more realistic three- or
four-dimensional photoisomerization models to see the effect of additional
anharmonic as well as kinematic couplings.
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5. Wave Packets and Vibrational Probability Densities

The numerical techniques briefly described in Sec. 2 yield the time-
dependent coefficient vector C (t). Given C (t), the component of the wave
packet on the nth diabatic surface

Ψd
n(R1, R2, R3, . . . , t) = 〈R1|〈R2|〈R3| · · ·

〈
Φd

n

∣∣ Ψ(t)
〉

(22)

can immediately be constructed

Ψd
n(R1, R2, R3, . . . , t) =

∑
ν1ν2ν3...

Cn,ν1ν2ν3···(t)

χν1(R1)χν2(R2)χν3(R3) · · · . (23)

For interpretative purposes, we shall also be interested in the projections
of the wave packet on adiabatic electronic states, that is

Ψa
n(R1, R2, R3, . . . , t) = 〈R1|〈R2|〈R3| · · · 〈Φa

n | Ψ(t)〉. (24)

Since

|Φa
n〉 =

∑
i

Xni(R1, R2, R3, . . .)
∣∣Φd

i

〉
, (25)

where X is the diabatic-to-adiabatic transformation matrix, it is possi-
ble to calculate the adiabatically projected wave packets from the diabatic
projections. To effect the transformation, one needs the representation of
Xni(R1, R2, R3. . .) in the direct-product basis. Exploiting the fact that the
necessary transformations can be performed sequentially for each mode, the
construction of adiabatically projected wave packets is feasible for systems
with up to four modes, see Refs. 12, 73 and 74 for details.

For systems with just one or two degrees of freedom, the explicit consid-
eration of time-dependent wave packets as defined in Eqs. (22) and (24) can
be illuminating. The book by Schinke on photodissociation dynamics, for
example, contains nice examples.10 If the problem involves three or more
nuclear degrees of freedom, on the other hand, a reduced description, which
condenses the information carried by the wave packet, is desirable. Such
reduced descriptions are obtained by integrating the probability density
over part of the degrees of freedom. The relevance of reduced descriptions
for complex systems is based on the fact that an experimental measurement
will not yield the complete quantum mechanical wave function, but rather
partially integrated information, e.g. the population of an electronic state or
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the population of a particular isomer. The very concept of an isomerization
reaction of a complex molecule, for example, implies a reduced description.

Let, for example, R1 denote the reaction coordinate of interest in a
multi-dimensional system. The corresponding reduced probability density
is defined as

Pn(R1, t) =
∫

dR2

∫
dR3 · · · |Ψn(R1, R2, R3, . . . , t)|2. (26)

Pn(R1, t) carries the information on the spatial distribution of the wave
packet with respect to R1 on the nth electronic surface.

In the case of a reduced density-matrix description of the system
dynamics,19 the reduced probability density of coordinate R1 is given by

Pn(R1, t) =
∫

dR2

∫
dR3 · · ·σnn(R1, R2, . . . ; R1, R2, . . . ; t), (27)

where σ(R1, R2, . . . ; R
′
1, R

′
2, . . . ; t) is the vibrational coordinate representa-

tion of the reduced density matrix, defined via

σnn′(R1, R2, . . . ; R
′
1, R

′
2, . . . ; t)

=
∑
νµ

〈R1|〈R2| · · · 〈Φn | µ〉σµν(t)〈ν |Φ′
n〉|R′

1〉|R
′
2〉 · · · . (28)

Pn(R1, t) of Eq. (27) gives the probability density of vibrational coordinate
R1 in the nth electronic state, averaged both over the degrees of freedom
of the bath as well as the remaining vibrational modes of the conical inter-
section.

Figure 12 shows the projected vibrational probability density P a
n (Q6a, t)

of the tuning mode ν6a of the pyrazine model (cf. Fig. 1) for the first 200 fs.
It is seen that the wave packet prepared on the upper (S2) surface at t = 0
hardly has time to respond to the gradient of the S2 surface after its prepa-
ration. Within a fraction of a vibrational period, the wave packet is quan-
titatively transferred to the S1 surface. There it experiences a significant
gradient in the opposite direction, resulting in large coherent oscillations
in the mode ν6a. A similar result is obtained for the second tuning mode
ν1.19 The coherence of the wave-packet motion in the tuning modes is thus
not destroyed by the initial ultrafast internal-conversion process. The effect
of weak environmental damping on the wave-packet dynamics has been
investigated in Ref. 19.
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Fig. 12. Projected probability density of the tuning mode ν6a in the S2 (upper frame)
and S1 (lower frame) adiabatic electronic states for the three-dimensional pyrazine model.
The normal coordinate axis extends from –7.0 to 7.0, the time axis from zero to 200 fs
(from front to back).

The wave-packet dynamics of the coupling mode is very different, as can
seen in Fig. 13. In this case the initially prepared wave packet experiences
no gradient on the S2 surface. It is rather squeezed (that is, it becomes
more localized) as the conical intersection is approached by motion in the
tuning modes. When the conical intersection is reached, the wave packet
instantaneously appears on the lower surface, where it spreads rapidly as a
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Fig. 13. Projected probability density of the coupling mode ν10a in the S2 (upper
frame) and S1 (lower frame) adiabatic electronic states for the three-dimensional pyrazine
model. The normal coordinate axis extends from –7.0 to 7.0, the time axis from zero to
200 fs (from front to back).

consequence of the flatness of this surface. After reflection from the outer
walls, a complicated interference pattern results.

It should be noted that P a
k (Q10a, t) exhibits a maximum at Q10a = 0 on

the S2 surface, but a zero (a node of the wave function) on the S1 surface.
In the present model this is a consequence of symmetry (the nontotally
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symmetric character of ν10a). In a qualitative sense the phenomenon is
generic, however, reflecting the topography of the adiabatic PE surfaces.
The wave packet is focused into the conical intersection when moving on the
upper part of the cone, while it is pushed away from the intersection when
moving on the lower part of the cone.75 This explains the unidirectionality
of the internal-conversion process on the femtosecond time scale.

From this analysis of the wave-packet dynamics of the S1-S2 coni-
cal intersection of pyrazine as well as similar studies for other conical
intersections12,75 the following qualitative picture of the mechanism of a
conical intersection emerges. As schematically shown in Fig. 14, the relevant
dynamical phenomena are (i) focusing of the initial wave packet towards the
apex of the cone due to the convex shape of the upper (S1) adiabatic surface,
(ii) first transition through the intersection which leads to the lower (S0)
surface with high probability, (iii) deflection of the recurring wave packet by
the concave shape of lower (S0) adiabatic surface, which prevents return of
the wave packet to the upper surface, and (iv) vibrational energy relaxation
involving one or more additional (accepting) modes or a dissipative environ-
ment, which lowers the energy content of the active modes below the energy
of the point of intersection and ensures the irreversibility of the process.

6. Photochemical Dynamics

Finally, we consider the characterization of chemically reactive dynam-
ics. To define reactant/product population probabilities and corresponding

Fig. 14. Qualitative picture of the mechanism of a conical intersection.



April 27, 2004 13:21 Conical Intersections: Electronic Structure, Dynamics and Spectroscopy chap09

422 Conical Intersections: Electronic Structure, Dynamics and Spectroscopy

transition rates, we have to introduce imaginary hypersurfaces separating
the configuration spaces of reactants and products. As an example, consider
the photoisomerization model repeatedly referred to above, which involves
a single “reactive” torsional degree of freedom with minima of the S0 PE
surface at ϕ = 0 and ϕ = π, which may be defined as the “trans” and “cis”
conformations of the molecule (see Fig. 4). Projection operators defining
the “trans” (−π/2 < ϕ < π/2) and “cis” (π/2 < ϕ < 3π/2) conformations
are thus

P̂trans = θ(π/2 − ϕ)θ(ϕ + π/2), (29)

P̂cis = θ(3π/2 − ϕ)θ(ϕ − π/2). (30)

The time-dependent “trans” and “cis” population probabilities are then
given by

Ptrans(t) = 〈Ψ(t)|P̂trans|Ψ(t)〉, (31)

Pcis(t) = 〈Ψ(t)|P̂cis|Ψ(t)〉. (32)

Nonperturbative time-dependent transition rates can be defined analo-
gously to Eq. (14). To characterize a photochemical process in more detail,
we may furthermore consider the joint probability of populating a given
electronic state as well as a given conformer, for example,

P d
n,trans(t) = 〈Ψ(t)|P̂ d

n P̂trans|Ψ(t)〉. (33)

Figure 15(a) shows, as an illustration, the time-dependent trans population
probability for the three-dimensional photoisomerization model, assuming
excitation of the trans conformer at t = 0 to the inverted S1 surface
(cf. Fig. 4). Figure 15(b) shows, for comparison, Ptrans(t) for the one-
dimensional model (torsion only). In the one-dimensional case, the wave
packet relocalizes periodically at the trans conformation and Ptrans(t)
oscillates quasi-periodically. In the three-dimensional case, the torsional
quasi-periodicity is destroyed already during the first passage through the
conical intersection and Ptrans(t) quickly becomes stationary (the tran-
sient oscillations in Fig. 15 arise from the harmonic tuning mode). As
expected for this completely symmetric system, asymptotically we have
Ptrans = Pcis = 0.5. Although this model is somewhat academic, it clearly
reveals the fundamental difference between reversible torsional motion in
the one-dimensional case and irreversible photoisomerization in the three-
dimensional case. A model with more interesting cis/trans population
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Fig. 15. (a) Time-dependent population probability of the trans conformer, obtained
for the three-dimensional photoisomerization model. (b) The trans population probabil-
ity of the one-dimensional model (torsional mode only).

dynamics has been considered in Refs. 13 and 76 in the context of real-
time detection of photoisomerization dynamics.

7. Conclusions

The examples collected for this survey of femtosecond nonadiabatic dynam-
ics at conical intersections illustrate the interesting interplay of coherent
vibrational motion, vibrational energy relaxation and electronic transitions
within a fully microscopic quantum mechanical description. It is remarkable
that irreversible population and phase relaxation processes are so clearly
developed in systems with just three or four nuclear degrees of freedom.
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This makes first-principles quantum dynamical studies of ultrafast elec-
tronic decay processes possible and thus opens the perspective of unrav-
eling in detail the most elementary steps of photochemical dynamics in
polyatomic molecules.

It should be stressed that the wave-packet picture of photophysical
relaxation and photochemical reaction dynamics described in this chap-
ter is substantially different from the traditional concepts in this area. In
contrast to the established picture of radiationless transitions in terms of
interacting tiers of zero-order molecular eigenstates,28,29 the dynamics is
rationalized in terms of local properties of PE surfaces such as slopes, bar-
riers and surface intersections, a view which now becomes widely accepted
in photochemistry.14 This picture is firmly based on ab initio electronic-
structure theory, and the molecular relaxation dynamics is described on
the basis of quantum mechanics, replacing previously prevailing kinetic
models77,78 of electronic decay processes. Such a more detailed and rig-
orous description of elementary photochemical processes appears timely in
view of the rich and specific information on ultrafast chemical processes
which is provided by modern time-resolved spectroscopy.79−81
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1. Introduction

In 1934 L. Landau and E. Teller had a scientific discussion about the role
which degeneracy of electronic energy levels plays for the coupling with
the nuclear vibrations of a polyatomic molecule. Landau argued that “in
a degenerate electronic state the symmetry on which the degeneracy is
based . . . will in general be destroyed”.1,2 Teller managed to convince Lan-
dau that, at least for the particular case of linear molecules, his doubts
were unfounded. (This was just the case treated before by Teller’s student
R. Renner3). Nevertheless, the discussion with Landau prompted subse-
quent work by Teller with H. A. Jahn which showed that in virtually all
other cases L. Landau was right, and lead to the formulation of the now-
famous Jahn–Teller theorem: a molecule in an orbitally degenerate state is
unstable unless the degeneracy is accidental or the nuclei lie on a straight
line.4

The essence of the proof consists in the demonstration that, for any
realization of any molecular point group, there exist asymmetric vibrational
modes that lift the degeneracy in first order and cause the stationary point
to occur at a configuration of reduced symmetry. Since there are always
at least two of these “Jahn–Teller active” vibrational degrees of freedom,
the potential energy surfaces take the shape of a double cone at the sym-
metric configuration and thus constitute there a conical intersection. To
the knowledge of the author, this is the first time that this topology has
been treated in the literature, even if only implicitly (but see Ref. 5). From
a modern perspective, it therefore constitutes a prototype example of a
conical intersection, also termed Jahn–Teller (JT) intersection.

It is the purpose of this article to survey some key aspects of JT theory
and its extensions, as they relate to the focus of this book and to the
title of this chapter, namely, the quantum dynamics at JT intersections. A
comprehensive review of general JT theory and its applications is far beyond
the scope of this chapter, and we refer the interested reader to a number of
monographs1,6,7 and review articles8–11 on the field. Suffice it to say that
much of the theory deals with structural aspects of the JT distortion, that is,
with the topology of the adiabatic potential energy surfaces, the stationary
points occurring at a reduced symmetry and their manifestation, e.g. in
ESR and NMR spectroscopy. Also, many of the applications are concerned
with impurities or cooperative effects occurring in the solid state. For the
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vast amount of literature on these topics we collectively refer to the above
books and review articles and references cited therein (especially in Refs. 6
and 10).

In the present survey, we focus instead on dynamical aspects of the JT
effect and their manifestations in electronic spectra of polyatomic molecules.
More specifically, we will deal with electronic transitions from a nondegen-
erate (initial) electronic state into a degenerate (final) electronic state in
which the JT effect is operative. When the nondegenerate state has its mini-
mum at the symmetric conformation (as is usually the case), the center of
the Franck–Condon (FC) zone coincides with the locus of the JT intersec-
tion, where the two potential energy surfaces are degenerate by symmetry.
In agreement with general reasoning (see Chapters 1, 7 and 9 of this book)
this is just the locus of strong nonadiabatic coupling effects, which are thus
explored most directly by this type of spectral transitions. The comparison
with other situations, where the FC zone center is displaced from the inter-
section, can thus give insight into the importance which this factor has on
the vibronic dynamics. In addition to nonadiabatic coupling effects we will
also touch upon aspects of the geometric phase which has found interest
within JT theory as well (see also Chapter 12).

A natural extension of the theory applies to systems where the elec-
tronic states are not degenerate, but sufficiently close in energy so that
similar interactions may play a role. This has been termed pseudo-Jahn–
Teller effect in the literature7,10 and in the widest sense would comprise any
vibronic coupling system as treated, for example, in Chapter 7. To keep the
nomenclature more specific, we prefer here (as in our earlier work11–13)
to restrict the term pseudo-Jahn–Teller (PJT) to systems where a dou-
bly degenerate state is energetically close and coupled to another (often
nondegenerate) electronic state. In either case, the PJT induced distortion
is not “spontaneous”, i.e. a threshold for the coupling strength is to be
exceeded in order that the energetic minimum of the lower surface occurs
at a configuration of lower symmetry. From the point of view of surface
intersections the more specific nomenclature adopted here implies three
interacting potential energy surfaces which may lead to triple intersections
and intersecting seams of conical intersections. These interesting features
will also be covered below, from the general point of view as well as in rela-
tion to individual examples. We thus hope to provide a coherent overview
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of different system types, and also emphasize the importance of simultane-
ous JT + PJT interactions in actual molecular systems. Likewise, we will
consider older and more recent applications in order to provide a (partial)
historical perspective, although in the examples we will focus on work done
by the Heidelberg group.

2. Vibronic Model Systems for E States

2.1. General

The derivation of JT Hamiltonians follows general principles of vibronic
coupling theory, several of which have, in fact, first been formulated
within JT theory.1,14 Generally, the concept of diabatic electronic states
is employed, where the nuclear kinetic energy can be taken diagonal to
a sufficiently good approximation and the pertinent off-diagonal coupling
terms arise from the potential energy operator (for a more detailed expo-
sition of the concept of diabatic states, see Chapter 4). More specifically,
the components of the degenerate electronic states at the high-symmetry
reference configuration are used as an electronic basis also for displaced,
lower-symmetry nuclear configurations. The JT Hamiltonian is then repre-
sented as a matrix with respect to this basis, and the matrix elements are
usually expanded in a Taylor series for small displacements Qi (i = 1, . . . , n)
from the reference configuration:1,7

Hαα′JT = H0δαα′ +
∑

i

∂Vαα′

∂Qi
Qi +

∑
i,j

∂2Vαα′

∂Qi∂Qj
QiQj + O (

Q3) . (1)

Here Vαα′ (α, α′ = 1, . . . , m) denote the matrix elements of the potential
energy operator in the electronic basis chosen, and the derivatives are to
be taken at the symmetric conformation Qi = Qj = 0 (i, j = 1, . . . , n). The
term H0 includes the zero-order element of the expansion, i.e. the degener-
ate electronic energy at the high-symmetry nuclear configuration, and the
“JT-unperturbed” vibrational Hamiltonian. The latter is usually written in
the harmonic approximation, comprising all relevant vibrational degrees of
freedom. It represents vibrational motion on the arithmetic mean of the JT
split potential energy surfaces. In practice, this part of the Hamiltonian is
often equated with the vibrational Hamiltonian of the initial, nondegenerate
electronic state of the electronic transition under investigation.
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The similarity of the Hamiltonian (1) and the vibronic coupling Hamil-
tonian discussed in Chapter 7 will be noted and reflects the virtually iden-
tical underlying concepts. The only essential difference is that the relative
sizes and signs of the derivatives of Vαα′ within a degenerate electronic
manifold are fixed by symmetry in the JT case. Also, the degeneracy itself,
being a conical intersection for finite first derivatives ∂Vαα′/∂Qi, occurs for
Qi = Qj = 0, i.e. it is not accidental, but again fixed by symmetry. Finally,
the symmetries of the linearly JT-active normal modes are determined by
the requirement that their irreducible representations Γvib are contained
in the decomposition of the symmetrized direct product of the irreducible
representation Γel of the electronic state according to1,4,7

(Γel)2 ⊃ Γvib . (2)

Equation (2) is the analogue of related selections rules discussed in Chapter
7. In the following, these general statements will be exemplifed for various
prototype cases involving twofold degenerate electronic states. While exten-
sions to include additional (nondegenerate) states will also be discussed,
the reader is referred to the literature for symmetry-induced threefold (and
higher) electronic degeneracies.

2.2. The Single-Mode E ⊗ e Jahn–Teller Effect

Let us consider a system with a doubly degenerate electronic state and a
threefold principal rotation axis. Then there are always doubly degener-
ate vibrational modes that are (linearly) JT-active, that is, the derivatives
∂Vαα′/∂Qi do not vanish for their (Cartesian) displacement components Qx

and Qy. By elementary symmetry considerations the corresponding 2 × 2
JT matrix Hamiltonian in first order is found to be1,14,15

HE⊗e = H01 + k

(
Qx Qy

Qy −Qx

)
. (3)

Putting the electronic energy at the origin Qx = Qy = 0 to be zero, the term
H0 reduces to the Hamiltonian of the isotropic two-dimensional harmonic
oscillator (with frequency ω). 1 denotes the 2 × 2 unit matrix.

Equation (3) is the well-known Hamiltonian of the (linear) E ⊗ e JT
effect which has been amply studied in the literature (see, for example,
Refs. 1, 7 and 11 and references therein). Diagonalization of the potential



May 26, 2004 15:27 Conical Intersections: Electronic Structure, Dynamics and Spectroscopy chap10

434 Conical Intersections: Electronic Structure, Dynamics and Spectroscopy

energy part leads to the famous “Mexican hat” potential energy surfaces

V± =
ω

2
ρ2 ± kρ , (4)

ρ2 = Q2
x + Q2

y . (5)

These rotationally symmetric surfaces are depicted schematically in Fig. 1
and characterized there by the JT stabilization energy

EJT =
k2

2ω
, (6)

occurring at the optimum distortion

ρ0 = k/ω . (7)

The so-called pseudorotational angle φ is defined as

φ = arctan (Qy/Qx) . (8)

The corresponding eigenvector matrix reads

S =
(

cos (φ/2) − sin (φ/2)
sin (φ/2) cos (φ/2)

)
, (9)

where the two columns represent the expansion coefficients of the adiabatic
wave functions in the diabatic electronic basis. Transforming the complete

Fig. 1. Perspective drawing of the E ⊗ e JT intersection arising for linear coupling
(Mexican hat). The rotationally symmetric double cone is located in the figure centre.
Also indicated in the figure are the Cartesian displacement coordinates Qx and Qy of
the JT active mode, the pseudorotational angle φ and the energy gain EJT occurring
for the optimum distortion ρ0.
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Hamiltonian (3) to the adiabatic basis leads to

HE⊗e
ad = S†HE⊗eS = H01 +

(
V+ 0
0 V−

)
+ Λ, (10)

with the nonadiabatic coupling operator

Λ =
ω

2ρ2

( 1
4 i ∂

∂φ

i ∂
∂φ

1
4

)
, (11)

which is seen to diverge at the origin ρ = 0, where the two adiabatic poten-
tial energy surfaces exhibit the JT intersection.

The singularity of the nonadiabatic couplings at the locus of intersec-
tion derives from general principles discussed in other places in this book
(see, for example, Chapters 1 and 7). The vibronic secular problem corre-
sponding to the Hamiltonian (3) has been solved, and electronic absorption
spectra for an optical transition from a nondegenerate state into the coupled
surfaces of Fig. 1 been computed numerically by Longuet-Higgins et al.15

This represents the first study of its kind in the literature.
For weak-coupling systems, characterized by k � ω, the JT stabiliza-

tion energy is too small to support vibrational motion below the conical
intersection at E = 0, and the vibronic motion is nonadiabatic throughout,
i.e. it proceeds on both potential energy surfaces simultaneously, owing to
the operator Λ in Eq. (10). For strong-coupling cases, characterized by
k � ω, there is a profound difference in the vibronic motion and spectral
line structure between E < 0 and E > 0. This is illustrated in Fig. 2 for
A → E electronic transitions for two values of EJT (ω = 1). For E < 0, i.e.
energies below the conical intersection, there is a single vibrational progres-
sion which can be ascribed to FC transitions to the lower adiabatic surface
V− of Eq. (4). For E > 0, there is a series of quasi-resonances (so-called
“Slonczewski-resonances”16–19) each manifesting itself as a peak in the spec-
tral envelope, although the individual lines are sharp and represent the —
necessarily discrete — vibronic eigenstates of the Hamiltonian (3). Each of
these quasi-resonances corresponds to a single vibrational level of the upper
adiabatic surface V+ of Eq. (4), as is schematically indicated in the lowest
panel of Fig. 2. The formation of the broad resonances and the redistri-
bution of the spectral strength over the participating vibronic eigenstates
represents the strong nonadiabatic coupling effects caused by the operator
Λ in Eq. (10) (recall the singular strength of the elements of Λ at ρ = 0,
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Fig. 2. Vibronic E ⊗ e JT spectra for two different values of EJT , Eq. (6). The elec-
tronic transition is from a nondegenerate, JT-undistorted state to the JT-distorted final
state as indicated schematically in the lowest panel of the figure. Here the Mexican hat
potential energy surfaces are represented roughly by the double cone, with the upper-
cone vibrational levels indicated by the three straight lines (for EJT = 400ω).

already pointed out above.) The regular structure of the individual lines,
on the other hand, is accidental and reflects the rotational symmetry of
the potential surfaces, Eq. (4). The accidental symmetry is mathematically
expressed by the existence of a vibronic angular momentum operator

J = lvib1 +
(

1/2 0
0 −1/2

)
, (12)



May 26, 2004 15:27 Conical Intersections: Electronic Structure, Dynamics and Spectroscopy chap10

Jahn–Teller and Pseudo-Jahn–Teller Intersections 437

which commutes with H, [
HE⊗e,J

]
= 0 . (13)

Here, lvib is the vibrational angular momentum operator associated with
the two-dimensional harmonic oscillator H0 of Eq. (3). The eigenvalues j

of the operator J are half-odd integers (� = 1). The spectra of Fig. 2 are
characterized by j = ±1/2, because the initial vibrational level is the ground
state with lvib = 0. We mention in passing that the width of the Slonczewski
resonances — and thus the strength of the nonadiabatic interaction — is
greatly reduced for j > 1/2.20 This is easily understood in terms of an
increased centrifugal barrier for finite lvib, which reduces the probability
density of the system near ρ = 0 where the elements of Λ in Eq. (11)
diverge.

When the quadratic coupling terms in Eq. (3) are included, the rota-
tional symmetry of the potential surfaces in Eq. (4) is lost and replaced by
a threefold symmetry inherent to systems with a threefold rotation axis.
Consequently, j ceases to be a good quantum number and the spectra of
the linear E ⊗ e JT system for individual j become “mixed”. This inher-
ently two-dimensional vibronic motion leads to a complicated, erratic line
structure (see, for example, Ref. 21) as is typical for other, less symmetric
conical intersections discussed throughout this book. The above statements
about adiabatic and nonadiabatic behavior for E < 0 and E > 0, and the
formation of broad quasi-resonances arising from the upper cone vibrational
levels, are not affected by the inclusion of quadratic coupling terms.

For sufficiently large coupling strength, k/ω > 1, the vibronic motion
near the bottom of the lower adiabatic potential energy surface of the E ⊗e

JT system can be described in the Born-Oppenheimer approximation, but
the so-called geometric phase22–24 comes into play as an unusual feature
influencing the vibronic motion. Its origin is embodied in the trigonometric
functions appearing in the adiabatic eigenvector matrix S, Eq. (9), and
leading to

S(φ + 2π) = −S(φ) . (14)

The adiabatic electronic wave functions thus change sign when encircling
the conical intersection in Fig. 1 in a closed loop. To compensate this double-
valued behavior of the electronic wave functions, Longuet-Higgins et al.
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required also the nuclear wave functions to show the same behavior and
thus make the total wave function single-valued.15 This results in half-
odd integer values of the vibrational angular momentum in the adiabatic
basis and thus to a different eigenvalue spectrum than usual. (It should be
mentioned that this is consistent with the vibronic angular momentum J,
Eq. (12), becoming a purely vibrational angular momentum in the adiabatic
basis.12) In later work, Mead and Truhlar pointed out the possibility of
multiplying the adiabatic eigenvectors with suitable complex phase factors
to make them single-valued functions of the nuclear coordinates.25,26 This
leads again to integer vibrational angular momentum quantum numbers,
but at the expense of introducing an additional vector potential term in
the nuclear equation of motion. While the latter procedure is more general
from a systematic point of view, in the E ⊗ e JT case it yields the same
eigenvalue spectrum as obtained with double-valued, real electronic wave
functions.25,26

The geometric phase is an important feature of general conical intersec-
tions. While originally formulated as a sign change of the adiabatic elec-
tronic wave functions when encircling the intersection in a closed loop27 it
was later put on a more general footing by M. Berry23 as a consequence of
adiabatic traversal of a hermitean Hamiltonian in some external parameter
space. A more detailed treatment of these geometric phase effects is given
in Chapter 12. We conclude by mentioning that the geometric phase plays
an important role also for quadratic JT coupling systems, where it leads to
a reversed ordering of the tunnelling-induced singlets and doublets, i.e. of
the delocalized nuclear wave functions deriving from the tunnelling between
the three equivalent minima of V−.28 For extremely strong quadratic cou-
pling, on the other hand, three additional conical intersections affect the
low-energy vibronic motion and cancel the geometric phase effects.29,30

2.3. Influence of Additional Modes

The above rather comprehensive presentation of the single-mode E ⊗ e JT
effect serves as a reference for the discussion of related and more general
systems. These will be discussed more briefly, focussing on their similari-
ties and differences with respect to the prototype case. We start with the
inclusion of additional vibrational modes.
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2.3.1. Additional e Vibrational Modes

Additional e modes are included in the Hamiltonian (3) by replacing the
corresponding single-mode terms by summations over all relevant vibra-
tions, e.g.

kQx →
∑

i

kiQ
i
x , kQy →

∑
i

kiQ
i
y , (15)

in a self-explanatory notation (and an analogous extension in the zero-
order Hamiltonian H0). Since virtually all molecules exhibiting the E ⊗ e

JT effect possess several e modes (except for equilateral X3 systems) this
generalization is of immediate relevance. Although the total JT stabilization
energy EJT is additive, i.e.

EJT =
∑

i

k2
i

2ωi
≡

∑
i

E
(i)
JT , (16)

the Hamiltonians HE⊗e
i for the various modes do not commute (i �= j):[

HE⊗e
i ,HE⊗e

j

] �= 0 . (17)

Thus, the eigenvalue problems of the individual Hamiltonians cannot be
solved separately. Rather, the multi-mode vibronic secular matrix has to
be diagonalized as a whole11 (see Chapter 7 for a discussion of the corre-
sponding numerical techniques).

The non-separability of the vibrational modes is illustrated in Fig. 3
through the strong dependence of the JT potential energy surfaces for one
of the interacting modes on the coordinates of the other mode (taken as a
parameter). Whereas in Fig. 3(a) (zero displacement of the second mode)
the potential surface for mode 1 exhibits the familiar Mexican-hat shape,
for increasing displacements as in Figs. 3(b) and 3(c) there is an increasing
distortion and the rotational symmetry is lost.31

To account for the low-energy vibronic structure of multi-mode E ⊗ e

systems, a cluster model has been introduced by O’Brien et al.32 This is
an effective one-mode description which correctly reproduces the multi-
mode stabilization energy, Eq. (16). For the description of multi-mode JT
band shapes, on the other hand, another effective one-mode model is more
appropriate, which may be called “effective single-mode” Hamiltonian.33

The idea consists in performing a rotation in normal-coordinate space such
that the coupling terms, Eq. (15), are represented by a single mode in
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(a)

(b)

(c)

Fig. 3. Perspective drawing of potential energy surfaces for the two-mode E ⊗ e JT
effect. The coordinates of one mode represent the variables, while the coordinates of the
other mode are taken as parameters, increasing from (a) (where they are zero) to (c).
Adapted from Ref. 31.

the new vibrational basis.34 This leads to the following effective coupling
constant and frequency for this mode33,35

keff =

{∑
i

k2
i

}1/2

, (18)

ωeff =

{∑
i

k2
i ωi

}/ {∑
i

k2
i

}
. (19)
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The other modes are coupled only by bilinear terms resulting from the trans-
formation of the unperturbed Hamiltonian H0, and they become decoupled
in the limiting case of equal frequencies. The spectral moments are cor-
rectly reproduced up to third order by this approach and the bandshapes
of multi-mode JT systems are accurately reproduced in this way for a large
range of system parameters.33

2.3.2. Influence of a1Vibrational Modes

Totally symmetric (or a1) vibrational modes are included in first order by
adding a term

kgQg1 (20)

to the Hamiltonian (3) and similarly augmenting H0 (the subscript g indi-
cates the “gerade” property for all symmetry operations). By virtue of
the unit matrix 1, this term commutes with the e-mode coupling terms in
Eq. (3) and both types of modes are thus separable. For this reason, a1

modes are usually omitted from JT treatments and included in the compu-
tation of optical spectra, if needed at all, by convolution.

The situation may change, however, when second-order coupling terms
are included.36 Then there exist also bilinear coupling terms, involving
the products QxQg or QyQg in the Hamiltonian (3). Formally these are
obtained by the substitution

k → k + bQg (21)

in Eq. (3), where b denotes the bilinear coupling constant. These terms
should be included in a complete second-order treatment, and b may be
expected to be of a similar order of magnitude as the quadratic JT coupling
constant. Their inclusion leads to a modification of the various stationary
points and the JT barrier heights by the a1 mode(s). Moreover, the various
conical intersections of the quadratic E ⊗ e JT model system exhibit a
different dependence on Qg and turn into a set of intersecting seams of
conical intersections.36

For finite values of b, the E ⊗ (e+a) JT spectrum is generally no longer
given by convolution of the individual-mode spectra. For sufficiently differ-
ent values of the vibrational frequencies, a vibrationally adiabatic decou-
pling procedure has been formulated and investigated, where the coupling
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constant of the lower-frequency mode takes an effective value, obtained
by averaging over the higher-frequency motion.36 This improves the agree-
ment with the full calculation drastically and can reproduce the results of
the latter very accurately36 — an application to a real molecular system
(the methoxy radical) will be mentioned in Sec. 3.1.

2.4. The E ⊗ b Jahn–Teller Effect

In systems with two- and fourfold rotation axes, the E ⊗ e JT effect, dis-
cussed so far, is not operative. In the corresponding (sometimes called
tetragonal) point groups, the decomposition of the symmetrized direct
product (E)2 of an irreducible representation E with itself reads

(E)2 = A1 + B1 + B2 , for C4v, D4, D2d, D4h ;

= A + 2B , for C4, C4h, S4 .
(22)

According to the symmetry selection rule, Eq. (2), the irreducible represen-
tations of the JT active modes have to be contained in the decomposition
of (E)2. In the above point groups these are therefore vibrational modes of
B (B1,2), rather than E, symmetry. We emphasize that such molecules will
often have E vibrational modes and that these may be pseudo-Jahn–Teller
(rather than Jahn–Teller) active, see below.

In first order, totally symmetric modes are again separable from the JT
problem. The generic E ⊗ b JT Hamiltonian is set up by including only a
single B1 and B2 vibrational mode:7,37–39

HE⊗b = H01 +
(

k1Q1 k2Q2

k2Q2 −k1Q1

)
. (23)

Here, the vibrational normal coordinate Q1 (Q2) transforms according to
the B1 (B2) irreducible representation, with the corresponding coupling
constant denoted k1 (k2), and H0 collects the pertinent harmonic oscillator
Hamiltonians. The adiabatic potential energy surfaces V± read as follows

V± =
ω1

2
Q2

1 +
ω2

2
Q2

2 ±
√

k2
1Q

2
1 + k2

2Q
2
2 , (24)

where the energy at Q1 = Q2 = 0 has again been put to be zero. Equa-
tion (24) describes a conical intersection which has now an elliptical (rather
than circular) shape and is thus more similar to general (i.e. non-JT) inter-
sections discussed, for example, in Chapter 7. The stationary points of the
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lower surface V− occur at

Q
(0)
1 = ± k1

ω1
; Q

(0)
2 = 0 (25)

and

Q
(0)
1 = 0 ; Q

(0)
2 = ± k2

ω2
. (26)

It depends on the relative magnitude of the respective JT stabilization
energies

EJT
1 = − k2

1

2ω1
, (27)

EJT
2 = − k2

2

2ω2
, (28)

which pair of stationary points represent the global minima and which rep-
resents the saddle points of V−. The overall appearance of V± is reminiscent
of the potential surfaces of the linear-plus-quadratic E ⊗ e JT effect, but
with a twofold, rather than threefold, symmetry. On the other hand, in
the special case of equal frequencies and coupling constants, ω1 = ω2 and
k1 = k2, the Hamiltonian of the linear E ⊗ e JT effect and its rotationally
symmetric potential energy surfaces are recovered from Eqs. (23) and (24).

The vibronic problem of the Hamiltonian (23) is easily solved in closed
form if either k1 = 0 or k2 = 0; in this case the potential surfaces (24), taken
as diabatic surfaces, represent displaced harmonic oscillators and lead to a
Poisson distribution for the vibronic line structure of electronic spectra.1,7

In the general case, k1. k2 �= 0, numerical techniques are required to solve
the vibronic secular problem (see Chapter 7). The resulting vibronic line
strucure shows similar features as discussed above for the E ⊗ e JT effect.
Since there is no constant of the motion like the vibronic angular momentum
J, Eq. (12), the motion is genuinely two-dimensional and thus more similar
to the quadratic, rather than linear, E⊗e coupling case of Sec. 2.1. Thus, it
displays the generic behavior also found for other, less symmetric (non-JT)
systems discussed in Chapter 7. We conclude by pointing out that in many
examples like the allene radical cation, discussed in Sec. 3.1, there will be
more than a single B1 and B2 vibrational mode. These additional modes
are all nonseparable, thus rendering the vibronic dynamics inherently more
complex.
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2.5. The Pseudo-Jahn–Teller Effect

The discussion so far has been confined to an isolated doubly degenerate
(E) electronic state. This idealization will not always be applicable to a real
molecular system, where couplings to other electronic states may play a role.
As a simple generalization we will therefore consider now the interaction
of an E electronic state with a nondegenerate state, characterized by the
symmetry label A. The intra-state (JT) interaction within the E state will
initially be suppressed for clarity.

The general principles for the construction of the vibronic Hamiltonian
and the symmetry selection rules are the same as indicated above and
discussed in more detail in Chapter 7. The previous distinction between
trigonal and tetragonal point groups does not play a role, and the first-
order coupling is always accomplished by doubly degenerate (e) vibrational
modes. In an analogous notation as in Eq. (3), the Hamiltonian for the
linear (E + A) ⊗ e pseudo-Jahn–Teller effect is found to be11,40,41

H = H01 +

 EE 0 λQx

0 EE λQy

λQx λQy EA

 . (29)

Here EE and EA denote the E and A state energies for the undistorted
nuclear configuration (Qx = Qy = 0) and 1 represents the 3 × 3 unit
matrix.

The Hamiltonian (29) shares many features with the general vibronic
coupling problem for two nondegenerate electronic states, discussed in
Chapter 7. We note that the notion “pseudo-Jahn–Teller” interaction has
also been used in the chemical, rather than spectroscopic literature, for
this latter situation. We adhere to the more precise definitions of the spec-
troscopic literature and reserve the term “pseudo-Jahn–Teller” (PJT) for
systems where one of the interacting states as well as the coupling mode
are degenerate. We also note that, as for general vibronic coupling systems,
the totally symmetric modes are nonseparable from the PJT problem and
play an important role already in first order. They are neglected in Eq. (29)
for simplicity but are included in most of the examples discussed in Sec. 3.

The adiabatic eigenvectors corresponding to Eq. (29) involve either the
asymmetric (potential surface V0) or symmetric (potential surfaces V+ and
V−) linear combinations of the E component basis states. The eigenvalues
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are

V0 =
ω

2
(
Q2

x + Q2
y

)
+ EE ,

V± =
ω

2
(
Q2

x + Q2
y

)
+

EE + EA

2
(30)

±
√(

EE − EA

2

)2

+ λ2
(
Q2

x + Q2
y

)
.

It depends on the sign of EE − EA whether V+ or V− correlates with the
E state for Qx = Qy = 0 and becomes degenerate there with the “unper-
turbed” surface V0. For small ρ2 = Q2

x + Q2
y and EE �= EA the rotationally

symmetric surfaces (30) depend quadratically on the displacement ampli-
tude. The intersection of the E-type potential energy surfaces (V0 and either
V+ or V−) is therefore not of the conical type and also called a glancing
intersection27,42 A glancing intersection is characteristic of the Renner–
Teller effect in linear molecules.3,50,51 There is no geometric phase effect
for glancing intersections29,43 and there is not necessarily an instability of
the high-symmetry configuration Qx = Qy = 0. Rather, the lower surface
V− may have its minimum at a distorted structure ρ0 �= 0 with

ρ2
0 = λ2/ω2 − ∆2/λ2 , (31)

provided that λ2 > ω∆, ∆ = |EE −EA|/2.11 In other words, since a thresh-
old coupling is to be exceeded, there is, unlike the JT case, no spontaneous
distortion.

The potential energy surfaces (30) may exhibit the interesting topology
of a triple conical intersection41,43,44 displayed in Fig. 4. This occurs for
EE = EA, when all surfaces are degenerate at ρ = 0, and the degeneracies
are all lifted in first order in ρ. The equality EA = EE will not be a
rare exception, because of the existence of totally symmetric modes which
modulate the E −A energy gap and often cause an E −A surface crossing.
In the Qx − Qy subspace depicted in Fig. 4, the JT-type geometric phase
is absent, because the angular dependence of the adiabatic eigenvectors
of Eq. (29) does not depend on the E − A energy gap.11,43 Pictorially
speaking, the geometric phase of the two conical intersections, which each
of the surfaces undergoes with the other two, may be imagined to cancel
each other.

Figure 5 demonstrates the profound impact which the presence or the
absence of the geometric phase may have on the time-dependent wave
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Fig. 4. Perspective drawing of a triple conical intersection arising for the PJT poten-
tial energy surfaces of Eq. (30). While the upper and lower surfaces (V+ and V−) are
identical to the Mexican hat surfaces of Fig. 1, the additional surface (V0) represents the
unperturbed harmonic oscillator potential. For more details see text.

packet dynamics on intersecting surfaces: whereas the left-hand panels are
for the triple intersection (or PJT) case without geometric phase effects,
the right-hand panels depict results for the conical intersection (or JT) case
exhibiting the geometric phase effect. The system parameters are chosen
such that the lower surfaces V− are identical and that nonadiabatic cou-
pling effects to the higher-energy surface(s) are negligible in both systems45

(see Ref. 46 and Sec. 3.3 below for more information on the system chosen).
The initial wave packets are identical Gaussians located on the lower sur-
face and on the positive Qy axis for initial time t = 0. At later times they
are seen to broaden and gradually enircle the intersection at Qx = Qy = 0.
In the lower half-plane there is constructive/destructive interference as the
two parts of either wave packet start to overlap on the lower Qy axis. For
longer times (lowest panels) this causes a completely different interference
structure of the two wave packets due to geometric phase effects.

The anomalous symmetry effects caused by the geometric phase are
generic to the quantum dynamics at conical intersections and are further
discussed in Chapter 12. The probably most intuitive way to rationalize
these effects consists in noting that the two electronic states in the upper
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Fig. 5. 2D contour line diagrams of snapshots of time-dependent wave packets sur-
rounding an intersection (occurring at Qx = Qy = 0). The latter is a two-state JT
intersection in the right hand column and a triple, or PJT, intersection in the left-hand
column of panels. The presence or absence of the geometric phase causes a different nodal
pattern of the wave packets near the negative Qy axis, and a globally different behavior
of the wave packets for long times (see lowest panels, from Ref. 46).

and lower half-planes of Fig. 5 (Qy > 0 and Qy < 0) have opposite symme-
try behavior with respect to the reflection Qx → −Qx (in case of E states
for equilateral X3 systems, for example, these have A1 and B2 symmetries
in the C2v subgroup relevant to Qy �= 0). The corresponding nuclear wave
functions must also have the same (e.g. A1 and B2) symmetries as the
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electronic wave functions, thus differing in the two half-planes Qy > 0 and
Qy < 0. This explains the phenomenon observed in Fig. 5.

In real applications, the Hamiltonian (29) generally has to be extended
to account for the intra-state (JT) couplings within the E state. Three
different cases can be distinguished. In trigonal point groups with a single E

irreducible representation, the same set of modes will be JT and PJT active.
Then the extension of Eq. (29) will consist in adding the coupling terms
of Eq. (3) for the same mode(s). In trigonal point groups with different E

irreducible representations (say, E1 and E2), the E2 vibrational modes are
JT active and, depending on the system under study, either E2 or E1 modes
are PJT active. In the latter case, the Hamiltonians (3) and (29) for both
sets of modes have to be added. Finally, in tetragonal point groups, the JT
active (B1/B2) vibrational modes are always different from the PJT active
(E) modes. Then, Eq. (29) is to be augmented by the Hamiltonian (23) for
the E ⊗ b JT effect. In all cases there will arise a complex set of seams of
conical intersections comprising different pairs of potential energy surfaces,
and possible intersections of these seams may also occur.

As an illustration, Fig. 6 depicts a set of three intersections occurring in
the benzene radical cation. One is of the conical type, whereas at the other
two crossings no interaction occurs, at least not in the subset of coordinates
chosen for the drawing. The situation changes, however, in different vibra-
tional subspaces, which underlines the complex topology of the surfaces in
the pertinent higher-dimensional coordinate space.12

Finally, we add that the Hamiltonian (29) also describes Σ-Π vibronic
coupling in linear molecules,48 for example in HCN+47 and C2H+

2 .49 Its
generalization to include purely intra-state vibronic coupling consists in
adding the so-called Renner–Teller coupling terms.50,51

3. Representative Examples

3.1. Brief General Overview

In this subsection, we give a very condensed overview over molecular JT
and PJT systems, ordered with increasing size (and, partly, complexity)
of the system. This is primarily intended as a guide to the considerable
amount of literature in the field.

The probably simplest class of JT systems are regular (equilateral tri-
angular) X3 systems. Focussing on cases with a single active, or valence,
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Fig. 6. Perspective drawing of three different (JT and PJT) intersections occurring
in the benzene cation (from Ref. 12). The x(y)-coordinate represents a JT(PJT)-active
mode. The right-hand intersection is conical in the drawing, while for the other two
crossings the coordinate space is to be augmented to reveal the conical intersection. See
Ref. 12 for more details.

electron, we have X = H, Li – Rb, and the electronic ground state at the
D3h configuration is of 2E symmetry and thus JT unstable. The smallest
metal trimers (X = Li – K) have been studied theoretically as regards their
electronic and geometrical structure.52–55 The dynamical JT effect has been
identified in the two-photon ionization and stimulated emission spectra of
Li356 and Na3,57,58 also in excited electronic states.59,60 The issue of the
geometric phase played a major role43,44,61,123 and led to its first unam-
biguous identification in the A-state of Na3.62 For a higher excited elec-
tronic manifold of Na3, see a later subsection in this chapter. In a similar
vein, ultraviolet absorption, dispersed fluorescence and two-photon ioniza-
tion spectra of Al3, Cu3,63,64 Ag3,65 and Au3

66 have been reported and
analysed in terms of JT models, and pertinent potential energy surfaces
have been computed ab initio.67–69

As next larger systems with a threefold symmetry axis, we mention
NH3, BF3, NO3, and their radical cations. The first excited state of NH+

3
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is a prominent example of a strong two-mode JT effect, which has been
analysed using ab initio calculated coupling constants;70 recently this work
has been extended to take also the PJT coupling to the ground state into
account71 which modifies the 2E spectral envelope and leads to intensity
borrowing effects in the ground state as well as absence of detectable emis-
sion in NH+

3 . Two-mode JT and PJT calculations have also been reported
for BF+

3 in relation to the vibronic line structure of the photoelectron
spectrum.31 Apart from “standard” JT spectra, also intensity borrowing
effects and a two-mode-driven PJT instability of the ground state of BF+

3
have been identified. The latter is very small in the ground state of NO3,72

but significant JT coupling effects have been established for electronically
excited, as well as ionic, states of this species.73,74

A natural extension is provided by regular XY3Z systems, with X and
Z lying on the threefold symmetry axis of the (equilateral) Y3 moiety. This
comprises, in particular, the methoxy family of radicals (CH3O, CD3O,
CH3S, CF3O, CF3S) and metal monomethyl radicals MCH3 (M = Mg,
Ca, Zn, Cd), which are all covered comprehensively in the review article
by Barckholtz and Miller.9 Suffice it to say that the methoxy radical and
its derivatives are among the best-studied JT-active radicals; we confine
ourselves to mentioning some key experimental75–77 and theoretical78,79

studies. A complete second-order analysis of the three-mode JT effect in
CH3O, based on large-scale ab initio computations, has been performed by
Höper et al.79 This has recently been extended to demonstrate the impor-
tance of bilinear JT coupling terms, mixing a1 and e vibrational modes, on
photoelectron spectral intensities as well as spin-orbit splittings80 (see also
Sec. 2.3.2). As a closely related system we mention CH3F+.127

Examples of the less common tetragonal point groups (see Sec. 2.4) are
the “odd-numbered” cumulenes C3H4 and C5H4 and their radical cations.
Here the terminal CH2-groups lie in perpendicular planes, giving rise to
the E ⊗ b JT effect. The latter has been established for the ground states
of the radical cations81 and been reconsidered and extended to excited
electronic states82 of C3H+

4 . Simultaneous PJT interaction with a higher
excited state of C3H+

4 has also been analysed theoretically.83,84 For more
details, see Chapters 7 and 14.

Further examples for tetragonal point groups are the cyclic molecules
cyclobutane (CB), cyclobutadiene (CBD), and their radical cations.
Depending on whether CB is planar or puckered, the pertinent point group
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is D4h or D2d,85 while CBD is a classic example for a PJT distorted square,
leading to a rectangular shape (point group D2h, see, for example, Ref. 86).
Both radical cations are characterized by an 2E ground state at the square
planar (D4h) configuration, which is thus JT unstable.85,87 The JT effect
manifests itself in the PE spectral envelope88,89 and in the (highly anhar-
monic) potential energy surfaces, which have been explored in a number of
ab initio calculations.85,90

The smaller related species cyclopropane (point group D3h) represents
a well-known case of the E ⊗ e JT effect in the radical cation. It displays
the characteristic double-peaked PE spectral profile91 and has been charac-
terized ab initio in terms of its JT distorted structures92,93 and in terms of
its spectral profile.155 Similarly well studied is the next larger analogue, the
cyclopentadienyl radical,94,95 especially since the recent, combined experi-
mental and theoretical analysis of T. Miller and coworkers.96,97

As a final prominent class of molecules we emphasize benzene and ben-
zenoid cations. There has been a large amount of work on halogenated sys-
tems, especially C6H3F+

3 and C6F+
6 , where the multi-mode JT effect in the

electronic ground state could be measured through emission spectra in the
radical cation (see, for example, Refs. 98–100). A wealth of detailed infor-
mation emerged on the JT and related coupling parameters, also on related
systems101,102 and aided by ab initio calculations.103 More recently, also the
parent ion, C6H+

6 , has been measured through high-resolution spectroscopic
techniques104 which have been combined very recently with ab initio cal-
culations to arrive at a nearly quantitative characterization of the system
parameters.105 For a more detailed discussion of C6H+

6 , comprising also
PJT interactions and excited electronic states, we refer to Sec. 3.4 below.

Although the above list is far from complete, it gives nevertheless a rep-
resentative selection of JT-active molecular systems with doubly degener-
ate electronic states. Concerning triply degenerate states, which are beyond
the scope of this survey, we mention the ground state of the methane rad-
ical cation106,107 and the tetrahedral systems P4, As4, and Sb4, where JT
activity has been documented in ground and excited states of the radical
cations (of E and T symmetry).108,109 A combined JT-plus-PJT approach
has also been applied to P+

4 , involving five coupled potential energy surfaces
(interacting E + T states).110 We conclude by pointing to the upsurge of
interest in the JT effect in icosahedral systems caused by the discovery of
the fullerenes and documented, for example, in Refs. 10 and 111.



May 26, 2004 15:27 Conical Intersections: Electronic Structure, Dynamics and Spectroscopy chap10

452 Conical Intersections: Electronic Structure, Dynamics and Spectroscopy

3.2. Triatomic Hydrogen

Formally, triatomic hydrogen represents the smallest member of the series of
X3 systems mentioned above, with X possessing a single active (or valence)
electron. H3 obviously constitutes the smallest JT-active system at all. How-
ever, as an important difference to the examples of Li3 and Na3, the ground
state potential energy surface of H3 is repulsive and H3 therefore does not
occur as a stable molecule. Nevertheless, at the equilateral triangular con-
figuration the electronic ground state is of 2E′ symmetry, JT-unstable, and
the ground state surface therefore correlates with the lower sheet of the E⊗e

Mexican-hat double cone discussed in Sec. 2.2. The details of this topol-
ogy have first been investigated in the pioneering work of Porter Stevens,
and Karplus.112 The impact of the geometric phase, associated with this
JT intersection, on the H + H2 reactive scattering process (which proceeds
on the electronic ground state surface of H3) has first been investigated
by Kuppermann and coworkers.113,114 For a general survey of this proto-
type reactive scattering process see, for example, Refs. 115 and 116. For a
detailed discussion of the geometric phase issue we refer to Chapter 12.

A direct way of probing the conical intersection of H3 (X̃2E′) are
Rydberg emission spectra.117,118 Here the initial electronic state has
(approximately) D3h geometry. The conical intersection in the final
(ground) electronic state thus falls into the FC zone of the electronic tran-
sition. The situation is depicted in the upper panel of Fig. 7 which shows
the potential energy surfaces of initial and final electronic states as a func-
tion of the distance between one H-atom and the centre of the H2 moiety
(for perpendicular approach and fixed rH−H distance as indicated in the
panel). The conical intersection is represented by the curve crossing at
R =

√
3r/2 ≈ 1.42 au and seen to coincide with the maximum of the initial

state wave function which is also included in the drawing.
In order to simulate the experimental emission spectrum (panel c) we

have performed 3D wave-packet dynamical calculations119,120 using Jacobi
coordinates and the so-called DMBE potential energy surfaces of Varan-
das et al.121 The result (for J = 0) is displayed in panel b and seen to
match the experiment117,118 quite well. It should be noted that the weak
lines superimposed on the double-hump structure are not significant; they
arise from impurities (in experiment) or from convergence problems (in the
theoretical result). There is thus a continuous, nearly structureless spec-
trum, both for the short- and long-wavelength hump. The two humps can
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Fig. 7. Potential energy curves (panel a) and theoretical and experimental spectral
profiles (panels b, c) for the Rydberg emission spectra of D3. As revealed by panel a,
the initial, upper electronic state is characterized by a near-equilateral triangular shape
and the transition directly probes the curve crossing (conical intersection) in the ground
state occurring for R = r

√
3/2 (see the arrow). The experimental and theoretical spectra

are from Refs. 117 and 120, respectively.

be associated with the lower and upper sheet of the JT-split potential
energy surfaces, respectively. While for the lower surface this behavior is
not surprising in view of its repulsive nature, it is remarkable for the upper
surface, since the latter is probed near its minimum and well below its dis-
sociation limit of 4.74 eV (three-particle breakup121). Indeed, companion
calculations performed for the uncoupled adiabatic surfaces reproduce the



May 26, 2004 15:27 Conical Intersections: Electronic Structure, Dynamics and Spectroscopy chap10

454 Conical Intersections: Electronic Structure, Dynamics and Spectroscopy

smooth, short-wavelength hump corresponding to the repulsive lower sur-
face, but give a series of discrete lines (instead of the long-wavelength hump)
corresponding to the bound upper surface.122 These lines represent mostly
excitation of the breathing mode owing to the different bond lengths of H3

in the initial and final states.120 Remember that for the standard E ⊗ e

JT model the nonadiabatic coupling effects lead to the formation of reso-
nances (Slonczewski resonances) as discussed in relation to Fig. 2 above.
In the case of H3 (X̃2E′), this broadening is so strong and the resonances
are overlapping so heavily that none can be identified in the spectrum of
Fig. 7(b). Therefore this prototype JT system also serves as a representa-
tive example of the thorough redistribution of spectral intensity due to JT
nonadiabatic interactions.

In order to obtain additional insight into the effects of these interactions,
we have also studied the electronic population dynamics in this coupled
electronic manifold. The case of broadband excitation has been consid-
ered (similar to the FC transition of the emission spectrum) as well as
state-specific properties.119 In the latter case the upper uncoupled-surface
vibrational levels have been computed first and then been used as initial
wavepackets in coupled-surface calculations. The resulting electronic popu-
lations of the upper adiabatic state are collected in Fig. 8; the inset gives the
quantum numbers of the different initial vibrational levels. One recognizes
the extremely short timescale of only ≈ 3 − 6 fs on which the population
decay (i.e. the internal conversion process from the upper to the lower JT-
split surface) takes place. Upon closer inspection there is a mode-specificity
which can be explained in terms of the nodal properties of the initial wave-
function: the vibrational levels with the (somewhat) slower decay have a
nodal line along the seam of conical intersections which reduces the nonadi-
abatic coupling effects slightly.119 A similar, extremely fast decay has been
deduced from the (more phenomenological) analysis of the experimental
spectrum.118 These decay times are among the fastest known for internal
conversion processes. We conclude that this smallest JT system highlights
the profound impact which conical intersections can have on the system
dynamics.

3.3. The Sodium Trimer in the B-State

As mentioned earlier, the sodium trimer represents a well-known example
for the E ⊗ e JT effect in the ground as well as in several excited electronic
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Fig. 8. Adiabatic electronic populations of the higher JT sheet of the ground state
manifold of H3, as obtained from 3D wavepacket dynamical calculations.119 Five different
upper-cone vibrational states are employed in the calculation as initial states, which
are indicated through the different line types (see legend for their assignment). The
extremely fast decay, with lifetimes of only 3–6 fs, demonstrates the exceedingly strong
nonadiabatic coupling effects in this system. This amounts to a very large homogeneous
(lifetime) broadening of these levels which causes them to be “absent” in the spectra of
Fig. 7. Note the mode-specificity of the lifetimes (see text).

states. It is, therefore, not surprising that an electronic excitation spec-
trum of Na3 (so-called B-band of the two-photon-ionization spectrum) has
been interpreted in terms of JT activity in the final electronic state.61 More
specifically, the excited state has been anticipated to possess 2E′ symmetry
at the D3h configuration and the vibronic motion has been interpreted as
large amplitude pseudorotational motion, i.e. as a concerted near-circular
motion of the 3 atoms around the D3h reference point. This is illustrated
by the central panel of Fig. 9, which shows a high-frequency progression
corresponding to the bending mode of Na3 in the C2v configuration (radial
motion in Fig. 1) and a low-frequency, non-equidistant series of lines corre-
sponding to the pseudorotational motion (angular motion in Fig. 1). Assum-
ing low-energy motion around a JT intersection at the origin like in Fig. 1,
the latter motion would be adiabatic, but subject to the geometric phase
effect.

This is indeed the result of the original analysis of the experimental
spectrum which was based on the linear + quadratic E ⊗ e JT model.61
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(a)

(b)

(c)

Fig. 9. Comparison of experimental and calculated vibronic structures for the B-band
of Na3. Upper and lower panel: computed vibronic structures employing a JT (a) and a
pure PJT (c) approach. Central panel (b): experimental recording from Ref. 61.

Subsequent ab initio calculations by Cocchini et al., however, laid the
ground for a different scenario which consists of accidentally small linear JT
couplings and a significant PJT interaction with a nearby nondegenerate
(at the D3h configuration) electronic state.44 Remember that according to
Sec. 2.4 there is no geometric phase effect in such a situation.

This question provided the motivation for a simple 2D model description
of the B-band, focussing exclusively on the PJT interaction; for compar-
ison, also the earlier JT-type approach was reconsidered.43 The vibronic
Hamiltonians are given by Eqs. (3) and (29), respectively, augmented by
the appropriate quadratic coupling constants. The two coupling constants
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were adjusted in either approach within a realistic range (the E −A energy
gap was constrained to be zero in the PJT case to avoid a bias in the com-
parison, and because the E−A energy gap is small and changes sign within
the relevant range of the breathing mode coordinate44). The resulting JT
and PJT spectra are included and compared to the experimental recording
in Fig. 9. By and large, the agreement with experiment is similarly good in
either case: both the high-frequency and the low-frequency progressions are
qualitatively reproduced. A closer inspection reveals that the details of the
PJT line-structure reproduce the experimental findings better than do the
JT results. Although this evidence alone may not be conclusive, the PJT
approach is clearly supported by the ab initio calculation44 and later high-
resolution spectra of Ernst and Rakowski.123 Thus, the Na3(B) system is
not an example of the geometric phase effect.

The absence of the geometric phase allows a FC type description and the
use of standard wavepacket propagation on a single potential energy sur-
face. The Berlin groups have performed 3D ab initio quantum dynamical
treatments of cw spectra and (low intensity) fs pump-probe signals.124–126

Valuable additional insight into the system dynamics could be obtained
by these calculations. We have presented here Na3(B) as a PJT system
since the above comparison (Fig. 9) shows that generally care is needed in
deducing the system dynamics from experiment alone in the case of complex
spectra, without guidance from ab initio data. In particular, vibronic energy
levels, and even spectral intensities (see Fig. 9), can be quite insensitive
to the differences in the system dynamics. The results of time-dependent
wavepacket calculations, using the same parameters as in the theoretical
JT and PJT spectra of Fig. 9, have been contrasted in the earlier Fig. 5.
Here, for longer times the JT and PJT wavepackets look entirely differ-
ent, although the corresponding spectra of Fig. 9 are rather similar. Of
course, this difference is related to the well-known fact that low-resolution
cw spectra probe primarily the short-time system dynamics. It has indeed
been shown that fs pump-probe signals are more sensitive to the difference
between JT and PJT couplings,46 and a possible strategy to detect this
difference in a three-pulse-experiment has been proposed.128 We also men-
tion related work by Cina and coworkers on a direct detection of geometric
phase effects by femtosecond pump-probe interferometry.129

More information on the PJT nonadiabatic interactions is encoded in
the higher-energy B′-band of Na3 which probes a higher-energy surface of



May 26, 2004 15:27 Conical Intersections: Electronic Structure, Dynamics and Spectroscopy chap10

458 Conical Intersections: Electronic Structure, Dynamics and Spectroscopy

the PJT-coupled manifold.61 This system also has been studied recently by
us using the same approach, and good agreement with available experimen-
tal data has been achieved.130 A higher-resolution experimental spectrum
would be desirable to shed more light on the various mode-mode and non-
adiabatic coupling mechanisms operative in this band.

3.4. The Benzene Radical Cation

The benzene radical cation (Bz+) represents a prototype organic rad-
ical cation and has been studied extensively in the literature, both
theoretically and experimentally. We mention early and more recent
studies of its electronic structure,131–135 the photoelectron spectrum of
benzene,136–140 including its vibrational structure and the high-resolution
ZEKE spectra,104 dissociation and MATI spectra,141,142 as well as studies
on fluorescence143,144 and fragmentation145,146 dynamics. Many of these are
dominated by vibronic effects which occur in a rich variety in this species.

Benzene has D6h symmetry in its electronic ground state and the dou-
bly degenerate ionic states are thus subject to the E ⊗ e JT effect. Since
Koopman’s theorem is valid for the lower electronic states of Bz+, their
ordering is given by that of the orbital energies of neutral benzene, which
reads

(core)(2a1g)2(2e1u)4(2e2g)4(3a1g)2(2b1u)2(1b2u)2(3e1u)4(1a2u)2(3e2g)4(1e1g)4

Besides the 2E1g ground state of Bz+, the JT effect is thus operative
also in low-lying excited states such as the 2E2g and 2E1u states of Bz+. In
addition, PJT coupling effects and related vibronic interactions may occur
between different (degenerate or nondegenerate) electronic states. In the
following we give an outline of the resulting vibronic dynamics, including
our (as of this writing) recent studies of multi-state vibronic coupling effects.
Unless otherwise stated, the work will refer to the undeuterated species,
C6H

+
6 .

Benzene has four e2g vibrational modes (ν15 − ν18 in Herzberg num-
bering) which are linearly JT active according to the decomposition of the
symmetrized direct products

(E1g)2 = (E2g)2 = (E1u)2 = (E2u)2 = A1g + E2g (32)

The pertinent coupling constants have been determined with ab initio
methods in a number of papers.105,132,133,147,148 Unequivocally, the C–H
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stretching mode ν15 has been found to have negligible JT activity in the
X̃2E1g ground state, while the other three degenerate modes are found to
be moderately JT active. Also, the ordering D18 > D16 > D17 for the linear
coupling parameters Di = k2

i /2ω2
i (i =16–18) is in mutual agreement in the

literature.
In Fig. 10 we depict the vibronic structure of the X̃ band of the PE

spectrum as obtained with the coupling constants of Ref. 148 (upper panel).
The 3-mode JT problem has been solved with the Lanczos algorithm and
the resulting line spectrum been convoluted with Lorentzians of width
FWHM = 20 meV to account for finite resolution. The experimental result
of Ref. 140 is included in the figure for comparison (lower panel) and is
seen to agree nicely with the calculation. Very similar agreement has been
obtained before,147 based on similar ab initio methods and comparing with
the earlier experimental recording of Ref. 138. The low-energy vibronic
structure in Fig. 10 can be assigned to the CCC-bending mode ν18, while
beyond ∼9.4 eV there are strong mode-mixing effects. We note that also the
symmetric CC-stretching mode ν2 (we use Herzberg numbering through-
out) is excited, leading to the line at ∼9.37 eV.

The above conclusions are corroborated by similar results for C6D
+
6 .147

We note that all coupling parameters Di (i = 16–18) are of order unity,
implying nonadiabatic nuclear motion proceeding on both JT-split poten-
tial energy surfaces simultaneously. Since the studies of Refs. 147 and 148
are confined to the linear coupling approximation, there exists a (collec-
tive) rotational symmetry of the potential energy surfaces around the D6h

configuration. Including quadratic coupling terms leads to two sets of sta-
tionary points of D2h symmetry, corresponding to an either compressed
or elongated shape, and it depends on the sign of the quadratic coupling
constant which set represents the equivalent minima or saddle points. Such
an analysis has been initiated based on high-resolution ZEKE spectra104

(see also Ref. 103) and been extended recently in the careful work of Ref.
105. While the earlier analysis has been performed in terms of a single JT
active mode, leading to a barrier height of only ∼8 cm−1,104 all JT active
modes have been included by Applegate and Miller105 and an even smaller
barrier height been obtained (by calculation of contributions from differ-
ent modes). Similar results have been obtained by Ref. 156. Therefore, it
can be concluded that the vibronic motion in the X̃2E1g state of Bz+ is
nonadiabatic and highly fluxional.104
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(a)

(b)

(c)

Fig. 10. Comparison of theoretical (panels (a,b)) and experimental (panel (c)) first
bands of the photoelectron spectrum of benzene. The final state is the X̃ 2E1g ground
state of the cation. The JT activity of the modes ν16, ν17 and ν18 is displayed by panel
(a), the excitation of the symmetric CC-stretching mode ν2 is included in panel (b). The
experiment140 is characterized, in addition, by hot bands near 9.2 eV and (probably)
9.3 eV, which are not accounted for in the calculation, performed for T = 0.

A JT-plus-PJT vibronic coupling approach has been applied to describe
the close-lying B̃−C̃ bands corresponding to the 2E2g −2A2u states of Bz+,
respectively.12,149 Here, the three-mode JT Hamiltonian of Eqs. (3) and (15)
has been augmented by the two-mode extension of the PJT Hamiltonian,
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Eq. (29). The PJT couplings are provided by the modes ν19 and ν20. The
PJT coupling constants have been determined by ab initio methods.12,148

The results are shown in Fig. 11 and compared to the experimental record-
ing of Baltzer et al. (see insert). The two different contributions are drawn
separately to reveal the different sources of spectral intensity in the lower
and higher-energy ranges. The former, being dominated by E2g vibronic
symmetry, is characterized mainly by a 3-mode JT effect quite similar to
the X̃2E1g ground state (see Refs. 12 and 149 for details). The energy range
around 12.1–12.7 eV, deriving its spectral intensity mostly from the 2A2u

state, is characterized by a very dense level structure with highly irregular
line positions and intensities. The peaks of the envelope do not represent
zero-order vibrational levels but rather accidental agglomerations of spec-
tral intensity.

In a time-domain description, the dense and erratic line structure of
the 2A2u state corresponds to an ultrafast electronic population decay, that
is, a femtosecond C̃ 2A2u → B̃ 2E2g internal conversion process of an ini-
tial wavepacket which has been placed on the C̃ state potential energy
surface by a FC-type transition.12 Both phenomena reflect the strong non-
adiabatic coupling effects triggered by a conical intersection between the B̃

and C̃ state potential energy surfaces. The situation is illustrated by the
earlier Fig. 6 which shows the “additional” conical intersection in its cen-
ter right hand part. Remember that this conical intersection, which may
be called PJT-induced, complements the JT intersection at the origin in
Fig. 6. Both lead to intersecting seams of conical intersections and to non-
adiabatic coupling effects between different pairs of (component) electronic
states: whereas in the low-energy region of Fig. 11 the vibronic dynamics
is nonadiabatic only in the JT-coupled (i.e. E2g) electronic function space,
the high-energy vibronic motion is also subject to strong E2g − A2u non-
adiabatic interactions. This highlights the additional complexity which is
caused by the interplay between JT and PJT coupling mechanisms.

There is further evidence pointing to an even richer variety of vibronic
phenomena in Bz+. From the experimental side, no Bz+ fluorescence could
be detected although the transition C̃ 2A2u → X̃ 2E1g is dipole-allowed
(and the C̃ state is below the threshold for fragmentation).143,144 This has
been interpreted in terms of a sub-picosecond nonradiative transition of the
B̃ − C̃ excited state manifold to the X̃ ground state of Bz+.150 Of course,
this phenomenon is not accounted for by the aforementioned IC processes
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Fig. 11. Calculated vibronic structure of the B̃ 2E2g −C̃ 2A2u band of the PE spectrum
of benzene. The two contributing vibronic symmetries are drawn separately to reveal
the different sources of spectral intensity. The insert shows the experimental recording
of Ref. 140.

which take place within the B̃ − C̃ electronic manifold. Also, the authors
of Ref. 144 estimated the dependence of the pertinent potential energy
surfaces on the totally symmetric coordinates (the latter being the domi-
nant “accepting modes” in standard non-radiative decay theory151,152). No
low-energy curve crossing or conical intersection was found which would
have provided a mechanism for the fast C̃ − B̃ → X̃ non-radiative transi-
tion. Finally we mention indirect evidence that the fragmentation of highly
excited Bz+, with an internal energy of ∼5 eV, proceeds through the X̃ 2E1g

state.145,146 This points to efficient coupling mechanisms involving also the
higher-energy D̃ 2E1u and Ẽ 2B2u electronic states.
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We have investigated the potential energy surfaces of Bz+ in an enlarged
nuclear configuration space and indeed found a whole variety of additional
conical intersections.148,149 These comprise also upper and lower JT-split
potential energy surfaces of different (at the D6h geometry) degenerate
electronic states of Bz+, i.e. they are triggered by the multimode JT effect
in these states. This is a novel finding (see also Ref. 150) which is indi-
cated schematically in Fig. 12. The effective coordinate Qeff chosen here
represents a linear combination of all linearly active vibrational modes (e2g

and a1g) and is meant to give an overall impression of the conical inter-
sections in the X̃ 2E1g − Ẽ 2B2u electronic manifold. Although the potential
energy curves rely on the linear coupling model, the additional intersections
have been confirmed by various single-point coupled-cluster calculations in
the ν16 and ν18 normal coordinate subspaces. Of course, also the perti-
nent coupling constants entering Fig. 12 have been determined by ab initio
calculations, partly with the use of analytical gradient methods.148

Fig. 12. Representative cut through the potential energy surfaces of the X̃ 2E1g −
Ẽ 2B2u states of the benzene radical cation. An effective coordinate has been used, which
is a linear combination of all linearly active normal modes and has been chosen so
as to reveal the various low-energy curve crossings (conical intersections) qualitatively
correctly. These are indicated by the open circles and comprise JT intersections (at
Qeff = 0) as well as PJT intersections (at Qeff �= 0).
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Figure 12 opens the fascinating perspective of a whole sequence of ultra-
fast IC processes for highly excited Bz+. We have undertaken extensive
wavepacket-dynamical calculations for this system, comprising (so far) up
to five coupled potential energy surfaces and eight vibrational degrees of
freedom.149 From the electronic structure point of view, the calculations
are based on the extensive ab initio calculations mentioned above and on
a careful group-theoretical analysis of the underlying multi-state vibronic
coupling terms.148 This includes, in particular, the relative signs of the var-
ious JT coupling constants in the different electronic states. The actual
wavepacket propagation has been performed with the powerful MCTDH
method153 which is described, in relation to vibronic coupling problems, in
Chapter 14.

As two representative results from Ref. 149 we present in Fig. 13 the
time-dependent electronic populations for the coupled X̃ − B̃ − C̃ states
of Bz+. In the full calculation of Fig. 13(a) the degeneracies of all vibra-
tional modes and electronic states are treated correctly, amounting to five
strongly coupled potential surfaces and eight nonseparable nuclear degrees
of freedom. The number of underlying “primitive” time-independent basis
functions is ∼1011 and is reduced to ∼106 time-dependent single-particle
basis functions by the MCTDH contraction effect (see Chapter 14). The B̃

and C̃ state populations exhibit a similar short-time behavior as described
above on account of the B̃−C̃ conical intersection, namely, a C̃ state popula-
tion decay in ∼20 fs followed by damped recurrences with a period of ∼33 fs
(corresponding to the CC-stretching mode ν2). At longer times, however,
the combined C̃ + B̃ population drops considerably below unity in favor of
that of the X̃ state of Bz+. This finding, and the associated timescale of
∼200 fs, provides a natural explanation for the absence of detectable emis-
sion from the C̃ − B̃ states. From the theoretical point of view, the gradual,
kinetic-type increase of the X̃ state population is remarkable, since the cal-
culation is fully microscopic, without any phenomenological damping. The
effective damping obtained here even surpasses related phenomena observed
earlier for two state-three mode vibronic coupling systems (see Chapter 7).

A similar modelling has been performed for the coupled higher-energy
B̃−D̃−Ẽ manifold of states.13,149 An intriguing combination of ∼20 fs and
∼200 fs IC processes has been obtained which can be traced to an overall
similar behavior of the potential energy surfaces (see Fig. 12). For both sets
of states the influence of the lower-energy state (X̃ and B̃, respectively) on
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Fig. 13. Time-dependent electronic populations of the X̃, B̃ and C̃ states of Bz+

obtained from wavepacket dynamical calculations. The ab initio parameters of Ref. 148
and the MCTDH wavepacket propagation method153 have been employed in the study.
The initial wavepacket is defined by a FC transition to the C̃ state potential energy
surface; it is seen to undergo a stepwise transition to the B̃ and then to the X̃ state of the
cation. The respective time constants are approximately 20 fs and 200 fs. (a) Calculation
with degenerate vibrational modes and electronic states. (b) Analogous calculation, but
suppressing these degeneracies. Apparently, this simpler calculation reproduces the full
result of panel (a) quite well. For more details see text.

the spectral profile of the higher-energy electronic manifold has been quan-
titatively assessed.149 All these results are novel findings in view of the com-
plexity and number of conical intersections treated quantum-dynamically.
They also provide a route to understanding the fragmentation dynamics
of highly excited Bz+. In that vein, Fig. 13(b) shows the results of com-
panion calculations similar to Fig. 13(a), but suppressing the vibrational
and electronic degeneracies. The result of this much simpler calculation is
seen to reproduce the full result of Fig. 13(a) quite well. Such a simplified
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treatment could be employed to model the dynamics for the entire X̃ − Ẽ

sequence of intersections displayed in Fig. 12.
Summarizing, we hope to have demonstrated that Bz+ represents a

fascinating example of combined JT and PJT coupling effects leading to a
genuinely complex, multi-mode and multi-state vibronic dynamics.

4. Concluding Remarks

In this Chapter, I have attempted to provide a brief overview over JT the-
ory and its applications to molecular problems. Particular emphasis has
been put on the relation of the JT effect to the focus of this book, namely,
conical intersections and the associated vibronic dynamics. A variety of sys-
tems has been treated involving a doubly degenerate (E) state, mostly in
trigonal, but also in tetragonal symmetry, and possibly interacting with a
nondegenerate (A) state. Besides a very condensed survey of applications in
molecular spectroscopy, three representative examples have been discussed
in more detail, involving 2, 3 or up to 5 coupled surfaces in the quantum-
dynamical treatment (H3, Na3(B) and C6H+

6 ). The strong nonadiabatic
coupling effects above the minimum energy of the conical intersection man-
ifest themselves as an irregular line structure and as a femtosecond elec-
tronic population decay, as is typical also for other systems treated in this
book.

As pointed out in the introduction, the JT theorem constitutes one
of the first developments in the literature relating to conical intersections
(even if only implicitly). On the other hand, JT systems like Bz+ play a
key role in modern work extending the frontiers of vibronic coupling theory.
In this sense, the JT effect is of continuous importance in the field. From
a systematic point of view, JT intersections represent one of three basic
symmetry types of conical intersections (symmetry-enforced, symmetry-
allowed and fully accidental). While in the last case, discussed especially in
Chapters 2, 3 and 6, the locus of degeneracy of potential energy surfaces
is truely accidental (determined by the specific system), the symmetry-
allowed intersections, treated e.g. in Chapters 7–9, are characterized by
the vanishing of one symmetry-lowering coordinate, so that the crossing
is again symmetry-allowed in the remaining sub-space (owing to different
symmetries of the electronic states). The JT intersections, on the other
hand, are enforced to occur by the vanishing of two symmetry-lowering
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coordinates, namely those of the JT-active mode(s). In the language of
Ref. 154, the intersection space is thus predetermined to be located in the
high-symmetry molecular point group, with the branching space given as
its orthogonal complement. Note, however, that the latter holds only for a
single JT-active, or e, vibrational mode. For several JT-active modes, linear
combinations of their coordinates will generally exist such that the off-
diagonal coupling terms like in Eq. (1) may vanish, although the individual
displacements are nonzero. This observation, which is formulated here as a
general prediction without further discussion, may lead to other interesting,
though complicated seams of JT intersections. It is thus to be expected that
the JT and PJT effects will provide fruitful areas of research also in the
future, both from the point of view of basic theory as well as regarding
specific examples.
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82. C. Woywod and W. Domcke, Chem. Phys. 162, 349 (1992).
83. S. Mahapatra, L. S. Cederbaum and H. Köppel, J. Chem. Phys. 111, 10452
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130. I. Bâldea and H. Köppel, to be published.
131. W. von Niessen, L. S. Cederbaum and W. P. Kraemer, J. Chem. Phys. 65,

1378 (1976).
132. N. O. Lipari, C. B. Duke and L. Pietronero, J. Chem. Phys. 65, 1165 (1976).
133. P. Pulay, G. Fogarasi and J. E. Boggs, J. Chem. Phys. 74, 3999 (1981).
134. H.-G. Weikert, H.-D. Meyer, L. S. Cederbaum and F. Tarantelli, J. Chem.

Phys. 104, 7122 (1996).
135. M. S. Deleuze, A. B. Trofimov and L. S. Cederbaum, J. Chem. Phys. 115,

5859 (2001).
136. L. Asbrink, E. Lindholm and O. Edquist, Chem. Phys. Lett. 5, 609 (1970).
137. A. W. Potts, W. C. Price, D. G. Streets and T. A. Williams, Farad. Discuss.

Chem. Soc. 54, 168 (1972).
138. L. Karlsson, L. Mattsson, R. Jadrny, T. Bergmark and K. Siegbahn, Phys.

Scr. 14, 230 (1976).
139. L. Mattson, L. Karlsson, R. Jadrny and K. Siegbahn, Phys. Scr. 16, 221

(1977).
140. P. Baltzer, L. Karlsson, B. Wannberg, G. Öhrwall, D. M. P. Holland, M. A.
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1. Introduction

In a typical photodissociation experiment, a molecule is excited with a laser
from the ground electronic state, X̃, to an excited electronic state, for exam-
ple Ã, as illustrated in Fig. 1.1,2 For molecules consisting of more than two
atoms, the potential curves in Fig. 1 represent one-dimensional cuts through
potential energy surfaces (PES), which depend on as many coordinates,
Qi, as there are internal degrees of freedom, e.g. three for a triatom. The
observables are the absorption cross section, σabs(E), and the distribution
of the internal product states, Pα(E), where α is an abbreviation for the

473
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Fig. 1. Illustration of a photodissociation process (X̃ → Ã) including a non-adiabatic
transition from a bound excited state to a repulsive excited state. ω′ indicates the emis-
sion frequency and σabs(E) is the absorption cross section.

possible quantum states of the products like vibrational states (n), rota-
tional states (j) or electronic states. The absorption cross section provides
information about the dynamics in the upper state primarily in the region
around the Franck–Condon (FC) point. The product state distributions,
on the other hand, depend also on the dynamics in the exit channel. Even
though the time the molecule spends in the inner region of the upper-state
PES may be very short, light can be spontaneously emitted.3 The dispersed
fluorescence intensity defines the third observable, the Raman cross section
σ

(i)
R (E), where i denotes the particular vibrational state in the ground elec-

tronic state. σ
(i)
R (E) depends on the dynamics between the FC region and

the exit channel and, loosely speaking, reflects the route along which the
molecule breaks apart.4 All observables depend on the energy E = E0+�ω.
Measuring these quantities for many photon energies �ω, yields a complete
picture of the dissociation process. Alternatively, one can perform measure-
ments in the time domain by first exciting the molecule with a short laser
and then probing the status of the dissociating molecule with a second short
pulse after a well defined delay time.5–8

In many situations, the molecule cannot dissociate in the initially
excited electronic state because the energy is not sufficient. However, if
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this state is coupled to a repulsive state, the molecule can “hop” over
to this repulsive state and dissociate on its PES as illustrated in Fig. 1.
The coupling between the two states is provided by those terms which
are neglected in the Born–Oppenheimer (BO) electronic Hamiltonian, e.g.
spin-orbit interaction, or neglected in the expression for the kinetic energy
operator of the nuclei, that is the coupling elements Fi,j = 〈Φi|∂/∂Q|Φj〉
and Gi,j = 〈Φi|∂2/∂Q2|Φj〉. In the first case one speaks about “intersys-
tem crossing” and transitions induced by the second possibility are termed
“internal conversion”. Non-Born–Oppenheimer transitions often occur at
conical intersections. The strength of the coupling strongly influences the
lifetime of the excited complex and therefore, according to the time-energy
uncertainty relation, the resolution of features in the absorption spectrum.
Nonadiabatic transitions also leave hallmarks in the product state distri-
butions as well as the Raman cross section. Figure 1 represents only one
particular case. It is, of course, also possible that two or more states are
initially excited by the photon or that all states are repulsive.

Nonadiabatic transitions, in general, and conical intersections, in par-
ticular, are very important in photochemistry and photophysics.9 Dissocia-
tion on a single PES is more the exception rather than the rule. Generally
speaking, couplings between different BO states become increasingly more
important at higher energies, when the density of electronic states increases.
Rigorous quantum mechanical treatments of nonadiabatic effects in pho-
todissociation are quite demanding. They require, in the diabatic represen-
tation, knowledge of three functions, i.e. the two diagonal potentials W11

and W22 and the off-diagonal coupling potential W12. In addition, the two
transition dipole functions are needed, which adds up to five functions, each
depending on all internal coordinates.

In this chapter we will describe some examples of nonadiabatic transi-
tions during the breakup of a small molecule. We will consider only investi-
gations in which reasonably realistic PES and coupling elements are used.
The many calculations in which model potentials have been employed will
not be considered here; they may be covered in other chapters of this book,
e.g. Chapters 8 and 9.

The present contribution is structured in the following way: In Sec. 2
the basic equations are summarized and numerical methods will be briefly
mentioned. The processes are distinguished according to whether the dis-
sociation is direct or delayed; in the latter case the absorption spectrum
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shows structures, which can be narrow as well as diffuse. Direct processes
are described in Sec. 3. Delayed processes with the spectral features in
σabs mainly representing symmetric stretch or mainly bending motion will
be reviewed in Secs. 4 and 5, respectively. Molecules dissociating due to
Renner–Teller coupling, a special kind of non-BO effect which is somehow
related to conical intersections, are discussed in Sec. 6. An outlook to future
work, Sec. 7, will end this chapter.

2. Basic Equations and Numerical Aspects

In this chapter it is assumed that the pulse by which the molecule is
excited is long, i.e. of the order of nanoseconds, and weak, so that the
light/molecule interaction can be treated by first-order perturbation theory
(Fermi’s Golden Rule).1,10 These are the conditions under which photodis-
sociation experiments commonly are performed. The dynamical modeling of
experiments with short and strong pulses is more complicated and requires
different tools8,11 (see the Chapters 17 and 18 in this book).

Photodissociation processes can be studied in the time-independent as
well as the time-dependent picture.1 In the first approach, one solves the
time-independent Schrödinger equation for the nuclear motion at a fixed
energy E. The correct boundary conditions for large separations between
the products are fulfilled and different wave functions are obtained for
each quantum state α of the products.12 In the second approach, the time-
dependent Schrödinger equation for the nuclear motion is solved for a wave
packet χ(t) with the appropriate initial condition for time t = 0. Both
approaches are equivalent, provided the Hamiltonian is time-independent.

The most rigorous description of nonadiabatic effects in molecules is
provided by the adiabatic representation. However, that requires knowledge
of all derivative coupling matrix elements,

F
(i)
12 =

〈
Φ(a)

1

∣∣∣∣ ∂

∂Qi

∣∣∣∣ Φ(a)
2

〉
and G

(i)
12 =

〈
Φ(a)

1

∣∣∣∣ ∂2

∂Qi∂Qi′

∣∣∣∣ Φ(a)
2

〉
, (1)

where Φ(a)
1 and Φ(a)

2 are the two coupled adiabatic electronic wave functions
and the Qi denote the various internal coordinates. These elements are dif-
ficult to calculate and difficult to represent by analytical functions. For this
reason, to our knowledge, all of the computational studies of nonadiabatic
transitions in real molecules with more than one internal degree of free-
dom use the diabatic representation described in detail in Chapter 4. The
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diabatic electronic wave functions, Φ(d)
1 and Φ(d)

2 , are obtained from the
adiabatic ones by a unitary transformation, such that the derivative cou-
pling matrix elements — in the new representation — are negligibly small.
In contrast to the adiabatic wave functions, the diabatic ones are not eigen-
functions of the electronic Hamiltonian He, i.e. the matrix 〈Φ(d)

k |He|Φ(d)
k′ 〉 is

not diagonal. In the adiabatic representation the different electronic states
are coupled through the derivative coupling matrix elements, Eq. (1), while
the diabatic states are coupled through the off-diagonal matrix elements of
He, i.e. W12 and W21. In this chapter we will only discuss the diabatic repre-
sentation. Moreover, we will concentrate on the time-dependent approach,
because this is the approach employed in most applications.

Let us assume that the molecule is promoted from the ground electronic
state, with initial wave function χ̃0 and energy E0, to two coupled excited
states. The corresponding wave packets are denoted by χ1(t) and χ2(t). For
simplicity of the notation, the dependence on the coordinates is omitted.
The wave packets describing the motion in the excited states are solutions
of the two-state time-dependent Schrödinger equation

i�
∂

∂t
χ1(t) = [Tn + W11] χ1(t) + W12 χ2(t) ,

i�
∂

∂t
χ2(t) = [Tn + W22] χ2(t) + W21 χ1(t) , (2)

where Tn is the kinetic energy operator of the nuclear degrees of freedom
and Wij are the diabatic matrix elements; the superscript referring to the
diabatic representation is also omitted in what follows. Equations (2) must
be solved subject to the initial conditions

χi(0) = µi χ̃0 , (3)

with µi being the transition dipole moment function between the ground
electronic state and the ith diabatic excited electronic state. Transitions
between the two states are due to the off-diagonal elements W12 and W21.
Methods for propagating wave packets have been amply described in the
literature1,7,8,13–15 and therefore they are not discussed here.

During the propagation of the wave packets one calculates the autocor-
relation function S(t) defined as

S(t) =
∑

i=1,2

〈χi(0)|χi(t)〉 . (4)
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The autocorrelation function is a very useful quantity, because it reflects
the dynamics of the wave packets, that is how fast they depart from the
region, where they were launched, how often they recur to the place of
birth, for how long the wave packets remain compact and localized and on
which timescale the bonds are broken.1,4,16 Eventually, when the entire wave
packet has left the interaction region, i.e. when all molecules are dissociated,
S(t) becomes zero. Even though the initial wave packet is a real function,
it becomes complex, because the time evolution operator is complex. Thus,
S(t) is a complex function and fulfills the symmetry relation

S(−t) = S(t)∗ , (5)

where the star indicates the complex conjugate of S(t). According to the
time-energy uncertainty relation, the absorption spectrum is obtained by
Fourier transformation of the autocorrelation function, i.e.1

σabs(E) ∝ Ephoton

∫ +∞

−∞
dt eiEt/� S(t) . (6)

Here, Ephoton is the photon energy and E = E0 + Ephoton.
With the help of the basic properties of the Fourier transformation, the

behavior of the absorption spectrum can be interpreted in terms of the
time-dependence of the autocorrelation function. For example, the overall
width of σabs(E) is related to the width of |S(t)| around t = 0. Periodic
structures in the autocorrelation function with period ∆T , so-called “recur-
rences”, which occur whenever a part of the evolving wave packet returns
back to the FC region, lead to structures in the spectrum with energy spac-
ing ∆E = 2π�/∆T .4 These structures can be interpreted as “resonances”,
quasi-bound states embedded in the continuum.1,17 They reflect the inter-
nal vibrational excitation of the molecule. The longer the lifetime of the
molecule in the inner region of the PES, the more recurrences appear and
therefore the narrower are the resonances. If there is no recurrence, the
spectrum is structureless. Resonances are characterized by their position
on the energy axis and by their full width at half maximum, Γ, with the
lifetime of the resonance given by τ = �/Γ. In order to determine the life-
times of very long lived resonance states by Fourier transformation of the
autocorrelation function, the wave packet has to be propagated for a time at
least ∆t ≈ h/Γ = 2πτ . Significantly shorter propagation times are needed
when the widths are directly extracted from the autocorrelation function by
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using harmonic inversion techniques.18,19 In the time-dependent approach
the entire spectrum can be obtained from a single wave packet propagation.

Raman emission spectra can be calculated in a manner similar to Eq. (6)
for the absorption spectrum.3,20,21 The main difference is the replacement
of the autocorrelation function by the so-called cross-correlation function,
which also can be obtained from the propagation of a single wave packet,
respectively two when two interacting states are involved. Finally, also the
partial dissociation cross sections for producing the fragments in a particu-
lar set of quantum states, denoted by α, can be calculated from the evolving
wave packet according to1

σα(E) ∝ Ephoton
m

�kα
lim

t→∞
∣∣〈eikαRφα|χ(t)〉∣∣2 , (7)

where m is the reduced mass appropriate for the dissociation of ABC →
A+BC and R is the intermolecular A−BC distance, kα is the corresponding
wave number, and the φα are the wave functions describing the quantum
states of the products. Several practical and efficient ways for calculating the
partial cross sections have been derived.22,23 The product state distributions
are defined by

Pα(E) =
σα(E)
σabs(E)

. (8)

Product state distributions are routinely measured.1,2 They often reveal
details of the dissociation mechanism, which is particularly true when the
fragmentation proceeds through a conical intersection.

3. Direct Dissociation

If the upper-state PESs are purely repulsive, the dissociation process is
direct and the excited molecule breaks apart on a very short timescale.
No barrier hinders the fragmentation and the wave packet does not recur
to the location where it originally started at t = 0. The autocorrelation
function shows no recurrences and, consequently, the absorption spectrum
is featureless.1

The photodissociation of ICN in the Ã band is an illustrative example
of fast dissociation, which has been studied thoroughly; see Refs. 24 and 25
for reviews of the many theoretical and experimental studies. Despite the
short fragmentation time, the dissociation of ICN is a very complicated pro-
cess, because five different electronic states are involved. The gross features
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Fig. 2. Potential energy curves relevant for excitation of ICN in the Ã continuum.
Reprinted, with permission of the American Institute of Physics, from Ref. 33.

are reasonably well understood, while details are still waiting for rigorous
theoretical descriptions and explanations.25

The ground state is linear and has 1Σ+
0+ symmetry in the linear con-

figuration. There are three electronic states that are excited by photons in
the range of 210 to 320 nm (Fig. 2): 3Π1, 3Π0+ and 1Π1. In Cs symmetry
the two Π1 states split into A′ and A′′ Renner–Teller components, so that
five electronic states are involved. At I–CN distances near the FC region all
the five excited states are strongly bent with minima around 50◦–60◦.24 In
terms of increasing energy the states are labeled 2A′′, 3A′, 4A′, 4A′′, and
5A′, respectively. In linear geometry, the 3Π0+ and the 1Π1 states cross at
large internuclear separations, far away from the FC point. For bent geome-
tries, this crossing becomes an avoided crossing between the 4A′ and the
5A′ PESs as seen in Fig. 3. The dissociation products are CN(X2Σ+) and
iodine atoms either in the ground state, I(2P3/2), or in the excited state,
I∗(2P1/2). The products can be reached on several adiabatic and nonadi-
abatic dissociation routes, which may give rise to interesting interference
effects.

The quantities of interest are the absorption cross section,26 the I/I∗

ratio,25,26 the rotational distribution of the CN diatoms,27,28 the vibrational
excitation of CN, and various vector properties like angular anisotropy and
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Fig. 3. Three-dimensional plot of the adiabatic PESs of the states 4A′ and 5A′ of ICN,
which emerge from the states 3Π0+ and 1Π1, respectively, when ICN is bent. Reprinted,
with permission of the American Institute of Physics, from Ref. 33.

rotational alignment parameters.29,30 The absorption spectrum is the sum
of three contributions, each being structureless as anticipated for a fast dis-
sociation process.31 The I/I∗ ratio goes through a maximum value near the
center of the Ã band. Because the CN minimum distance does not change
significantly along the dissociation path, CN is preferentially produced in
the lowest vibrational state. The excited electronic states are bent and
thus CN experiences a more or less strong torque while ICN breaks apart,
with the result that the CN molecules are produced in high rotational
states. The CN rotational distribution corresponding to the I channel is
highly inverted with a maximum at around j ≈ 50. CN produced in the I∗

channel is less inverted with the maximum occurring at smaller rotational
states.

The photodissociation of ICN had been investigated in numerous theo-
retical studies in order to explain the experimental findings. For a collection
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of relevant publications see Ref. 24. However, as pointed out by Amatatsu
et al.,24 although particular aspects of the measurements were reproduced,
these studies did not lead to a fully consistent picture of the dissociation
process. The failures were very likely due to the limitation to only two
electronic states and/or the inaccuracy of the empirical PESs used in the
calculations. A new era in the study of the photodissociation of ICN fol-
lowed the calculation of all five excited-state PESs by ab initio electronic
structure (spin-orbit configuration interaction) calculations by Morokuma
and coworkers.24,32 For example, these calculations predicted for the first
time, in contrast to earlier assumptions, that all five PESs are bent. Dia-
batic PESs were also determined.

Amatatsu et al.24 employed the five PES and the transition dipole
moment functions in classical trajectory calculations. The transition
between the 4A′ and 5A′ surfaces was treated by the surface hopping
technique. In view of the complexity of the dissociation process, remark-
able agreement with many of the experimental data was achieved, at least
qualitatively. Wang and Qian33 slightly modified the PESs of Amatatsu
et al.24 and performed similar classical trajectory calculations including
nonadiabatic processes. They obtained even better agreement with exper-
iment. Figure 4 shows the comparison of the measured and the calculated
rotational state distributions for the I and the I∗ channel for two pho-
tolysis wavelengths. Following the pioneering work of Amatatsu et al.,
their surfaces were subsequently used by several authors in fully quan-
tum mechanical time-dependent31,34 and time-independent35,36 calcula-
tions. However, the overall agreement with experimental data did not seem
to improve much.

As mentioned above, the most interesting question concerns the contri-
butions of different paths leading to one particular product channel. For
example, a high rotational state of CN formed in coincidence with I∗ may
have followed a diabatic path from the 4A′ (3Π0+) state or an adiabatic
path from the 5A′ (1Π1) state. The diabatic path originates from a parallel
transition and the adiabatic one begins with a perpendicular transition,
i.e. they start in different electronic states. On the other hand, CN in the
I channel can be formed in three different ways, the two already mentioned
and the uncoupled path from the A′′ component of the 1Π1 state. In a pio-
neering experiment, Costen et al.25 determined the various contributions by
using different polarizations for exciting ICN and carefully measuring the
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(a)

(b)

Fig. 4. (a) The 249 nm experimental CN rotational distributions for both I (open
circles) and I∗ (filled circles) channels in comparison with the calculated distributions.
(b) The same as in (a), but for 266 nm. The experimental data are from Refs. 27 and
28. Reprinted, with permission of the American Institute of Physics, from Ref. 33.

bipolar moments which characterize the CN velocity and angular momen-
tum anisotropy. These measurements have been performed for several CN
rotational states and different wavelengths. It is seen how the contribu-
tions gradually vary with CN rotational state and excitation energy and
this yields a very detailed picture of the dissociation dynamics. A satisfac-
tory theoretical description of this “map” is a great challenge for dynamical
theory.

The photodissociation of methyl iodide, CH3I → CH3 + I, in the Ã

band with iodine produced either in its ground state 2P3/2 or the excited
state 2P1/2 is a prototypical system for molecular photodissociation.37 Brief
overviews of the many experimental and theoretical studies are found in
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Refs. 38–40. It is very similar to the photodissociation of ICN in that the rel-
evant PESs are steeply repulsive and a conical interaction localized between
the FC region and the exit channel largely influences the outcome of the
fragmentation process. In principle, three excited states are involved; they
are, in order of increasing energy, 3Q1, 3Q0, and 1Q1. All the three PESs
are repulsive, with the consequence that the absorption spectra are struc-
tureless. However, the cross sections for 3Q1 and 1Q1 are almost negligibly
small compared to the 3Q0 absorption cross section and therefore it is rea-
sonable to assume, in contrast to ICN, that only one electronic state is
originally populated.

The 3Q0 state correlates with I∗, whereas the other two states corre-
late with I in its ground state. Thus, if non-adiabatic coupling were absent,
only excited iodine atoms would be produced. That is, however, not what
is observed experimentally:41 With increasing photolysis energy more and
more ground-state iodine atoms are produced. The quantum yield for I∗

is about 0.5 at long wavelengths and nearly one at the blue end of the
absorption spectrum. The transition occurs in the region of a conical inter-
section between the 1Q1 and 3Q0 states. The influence of the nonadiabatic
transition is also intriguingly manifested by the emission spectrum of the
dissociating CH3I molecule.42 The fraction of photons emitted via a per-
pendicular transition moment, i.e. which originate from the 1Q1 state, con-
tinually increases with the number of quanta in the C–I stretch mode. This
indicates that the probability for the non-adiabatic transition from 3Q0 to
1Q1 increases with the separation from the FC point towards the fragment
channel.

In early theoretical studies the photodissociation of CH3I was treated
as an effective two-mode system with CH3 considered as one particle.43–46

As with ICN, a new era began with ab initio calculations performed by
Morokuma and coworkers39,47 on a reasonably high level of electronic struc-
ture theory. These authors determined six- and nine-dimensional adiabatic
and diabatic PESs, which were used in classical surface hopping trajectory
calculations. Hammerich et al.38 performed large-scale five-dimensional
wave packet calculations using these PESs. As concluded by Eppink and
Parker:40 “One caveat of the ab initio surfaces is that they do not success-
fully reproduce the experimental absorption spectrum, which peaks to the
red side of and is broader than the spectrum predicted by the theoretical
treatments. . . . Furthermore, the predicted I∗ quantum yields of the most
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advanced (9D) study are significantly higher than those determined exper-
imentally . . . A quantitative prediction from theory is thus not expected
from these studies, but the general trends should still be valid.” The most
recent (three-mode) calculations only partly correct these shortcomings.48

Indeed, the general dissociation dynamics is qualitatively well described.
For example, the product state distributions of the CH3 umbrella mode
are quite different in the I∗ and the I channels (Fig. 5). While the

Fig. 5. CH3 umbrella vibrational distribution for the I∗ (black boxes) and I (white
boxes) channels following the photodissociation of CH3I in the Ã continuum for three
different wavelengths. Reprinted, with permission of the American Institute of Physics,
from Ref. 38.
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distribution for the I∗ channel is maximal for the lowest vibrational state
and quickly falls off with increasing excitation, the distribution for the
I channel is inverted. This difference, which is in accord with the most recent
measurements,40 has been attributed to an abrupt change of the methyl
group from pyramidal to planar at the seam of the conical intersection.39

On the other hand, the excitation of the symmetric C–H stretch found
experimentally40 is not reproduced in any of the calculations. Thus, as
for the dissociation of ICN, there is still need for high-level theoretical
investigations.

4. Delayed Dissociation — Symmetric Stretch Excitation

Because of the C2v symmetry, conical intersections are typical for ABA
type molecules like H2O. Here, we will discuss in detail two examples, the
photodissociation of H2S in the first absorption band and the photodis-
sociation of O3 in the Chappuis band, which both have been studied in
numerous experimental and theoretical investigations. If the two HS dis-
tances, RH1S and RH2S, are varied symmetrically, the ground electronic
state has 1A1 symmetry and the first two excited electronic singlet states
are of 1A2 and 1B1 symmetry. With photons only the 1B1 state can be
accessed — in C2v symmetry. The excited states are close in energy as
shown in Fig. 6. Because these states have different symmetries, the cor-
responding one-dimensional potential curves (or two-dimensional potential
surfaces if also the HSH bending angle, α, is included) are allowed to cross
and actually cross twice, at small and at large HS distances. The general
behavior of the crossings depends markedly on the angle. The inner cross-
ing for the ground-state equilibrium angle, αe ≈ 92◦, occurs right in the
FC region, that is, the photon promotes H2S to the region, where the two
electronic states cross in C2v symmetry.

In Cs symmetry, i.e. when the two HS distances are not equal, the two
excited electronic states have the same symmetry, namely 1A′′, and the two
PESs are not allowed to cross any longer. Thus, the crossing points on the
C2v line RH1S = RH2S are indeed conical intersections. The lower adiabatic
state, 11A′′, is dissociative, whereas the upper one, 21A′′, is bound at the
photon energies of interest. The special feature of H2S is that the motion
in the excited states starts close to one of the conical intersections, where
the coupling between the two states is, for obvious reasons, largest, with
the result that the population transfer is very rapid.

Three-dimensional studies of the photodissociation of H2S in the first
absorption band using ab initio PESs have been first performed by



April 27, 2004 13:30 Conical Intersections: Electronic Structure, Dynamics and Spectroscopy chap11

Quantum Mechanical Studies of Photodissociation Dynamics 487

Fig. 6. One-dimensional potential energy curves for the two excited states, 1A2 and
1B1, of H2S. The two HS separations, RHS, are varied symmetrically. Note the different
vertical axes for the different HSH bond angles α. The wave function in the ground
electronic state is indicated on the horizontal axis and the circles for α = 92◦ mark
the two conical intersections. Reprinted, with permission of the American Institute of
Physics, from Ref. 49.

Heumann et al.49,50 Later, Hartke, Werner and coworkers51,52 performed
similar studies with improved PESs. Both studies have been performed in
the diabatic representation and the nuclear dynamics has been treated in
the time-dependent picture. Because the potentials and couplings deter-
mined in the later study are more accurate, we will present mainly results
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from Hartke, Werner, and coworkers. However, the basic picture emerging
from both studies is very similar.

One-dimensional cuts of the adiabatic and diabatic potentials along the
dissociation coordinate are depicted in Fig. 7 together with the mixing
angle θ and the nonadiabatic derivative coupling matrix element F12. The
latter should be approximately equal to the derivative of θ and the results in
Fig. 7 confirm this. The nonadiabatic derivative coupling element is strongly
localized near the conical intersection. On the other hand, the mixing angle
near the avoided crossing is approximately zero, i.e. the mixing of the two
diabatic states is minimal in the vicinity of the C2v line. Asymptotically,
θ does not approach zero nor ±90◦ but some constant value in between.
That means that the diabatic potentials do not approach the adiabatic
ones as the molecule dissociates. At first glance, this behavior appears to be
unphysical. However, the diabatic states are not eigenstates of the electronic
Hamiltonian and one also must take into account the coupling W12 between
them; though it becomes constant as one HS distance becomes large, it
is not zero. In the adiabatic picture, the coupling between the adiabatic
states is localized at the region of the avoided crossing (maximum of the
derivative coupling element) and zero asymptotically. On the other hand,
in the diabatic picture the coupling is small near the C2v symmetry line
(θ ≈ 0) but large asymptotically (θ �= 0). The consequence for the wave
packet propagation is that the probability amplitude of being in the one or
the other diabatic state rapidly oscillates in the exit channel. This may be
numerically inconvenient, but it does not pose any real problem. In order
to determine the product state distributions, it is necessary to transform
to the adiabatic states.

Three-dimensional plots of the diabatic potentials as functions of either
two distances and fixed bending angle, or one distance and the angle with
the other distance being fixed, are depicted in Fig. 8. The diabatic potentials
are allowed to cross and that is clearly seen in Fig. 8. In what follows we
will denote by A (B) the state, which in C2v corresponds to the 1A2 (1B1)
state. State B is the binding state and A is the dissociative one. Within
the diabatic representation the absorption and dissociation processes can
be viewed in the following way: In C2v symmetry, the transition dipole
moment with the ground electronic state is finite for state B and exactly
zero for state A. Therefore, initially mainly (≈90%) the B state is populated
and the A state is only marginally excited. However, the coupling between



April 27, 2004 13:30 Conical Intersections: Electronic Structure, Dynamics and Spectroscopy chap11

Quantum Mechanical Studies of Photodissociation Dynamics 489

Fig. 7. Upper panel: Diabatic mixing angle θ (full circles, left-hand axis) for H2S and
the derivative of the mixing angle with respect to one of the HS distances, RH1S (open
circles, right-hand axis). The HSH angle is 92◦ and the other HS distance is 2.7 Bohr. The
line going through the open circles is the corresponding nonadiabatic coupling matrix
element calculated by finite differences from the adiabatic electronic wave functions.
Lower panel: Adiabatic energies (full circles, V1 and V2) and diabatic diagonal potential
energies (open triangles, W11 and W22). The other coordinates are the same as in (a).
Redrawn, with permission of the American Institute of Physics, from Ref. 51.



April 27, 2004 13:30 Conical Intersections: Electronic Structure, Dynamics and Spectroscopy chap11

490 Conical Intersections: Electronic Structure, Dynamics and Spectroscopy

Fig. 8. Diabatic potential energy surfaces for the A (dashed lines) and B (solid lines)
states of H2S as functions of the two HS bond distances for fixed angle α = 92◦ (left-
hand panel) and as functions of one HS bond distance and α with the other HS bond
distance fixed at 2.5a0 (right-hand panel). The black circles indicate the position of the
Franck–Condon point where the motion on the upper-state potential energy surfaces
starts. Redrawn, with permission of the American Institute of Physics, from Ref. 51.

the two states is strong when the molecule moves away from the symmetry
line and the probability is very quickly redistributed. After about 20 fs
most of the molecules are in the repulsive A state and dissociate and after
50 fs, or so, the fragmentation process is over. The autocorrelation function
exhibits only a single recurrence at ∼28 fs with an amplitude of about 0.01
(compared to 1 at t = 0). This recurrence reflects vibrational motion along
the symmetric stretch coordinate. A small part of the wave packet in the
binding B state is “trapped” for one symmetric stretch period. Because the
coupling to the A state is strong, the lifetime in the binding state is very
small, the recurrence is tiny, and only a single recurrence occurs.

Nevertheless, the small recurrence causes structures on top of a broad
absorption spectrum (Fig. 9). These very diffuse structures with spacings
∆E ≈ 2π�/∆T reflect the initial motion of the wave packet along the
symmetric stretch coordinate.4,16,53 The first structure at long wavelengths
corresponds to the lowest symmetric stretch level of the binding state, vss =
0, the second one to vss = 1, etc. The experimental spectrum54 is compared
to two calculated spectra. In both cases the theoretical spectrum is shifted
by 2.02 nm to smaller wavelengths in order to account for a small error of
the vertical excitation energy. In the second calculation, the FC point is
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(a) (b)

Fig. 9. Comparison of the experimental (solid line, Ref. 54) and calculated (dashed
line) absorption spectrum for H2S. In the right-hand panel (b) the initial wave packet is
shifted by 0.05a0 along the symmetric stretch coordinate to smaller RHS values in order
to artificially modify the intensities of the diffuse structures. Redrawn, with permission
of the American Institute of Physics, from Ref. 51.

additionally shifted to smaller HS separations. This artificial modification
also affects the relative amplitudes of the diffuse structures. On the whole,
the agreement is satisfactory — if one takes into account that two three-
dimensional PESs, a three-dimensional coupling element, and two transition
dipole moment functions are involved. In particular, the overall shape and
the diffuseness of the structures are reasonably reproduced.

The distribution of the HS vibrational states has been measured by sev-
eral groups.55–57 The probability is largest for vHS = 0, for all wavelengths.
However, as the wavelength increases a broad tail with relatively small
probabilities grows in, both in the experimental and in the calculated dis-
tributions. As discussed by Heumann et al.,49 this tail is the consequence of
the particular dissociation mechanism with two states being involved. Tra-
jectories, if we think classically, which “hop” very early from the binding to
the repulsive state lead primarily to the lowest HS vibrational state. The
later the trajectories “hop” to the lower PES, the more elongated are the
two HS distances and the more is the HS fragment vibrationally excited. An
interesting relationship between the fraction, fvib, of the available energy
partitioned into HS product vibration and the first diffuse resonance max-
imum has been observed by Wilson et al.:57 With decreasing wavelength
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fvib first increases, reaches a maximum at the first peak in the absorption
spectrum and then decreases again.

The rotational product state distributions of HS, depicted in Fig. 10,
can be described in terms of the FC mapping model.1 Along the dissocia-
tion path the two PESs do not depend much on the bending angle so that
the torque exerted on the HS fragment is weak. As a consequence, the HS
rotational distribution can be viewed as the angular momentum represen-
tation of the angular part of the initial H2S wave function in the ground
electronic state, which is essentially a Gaussian in α. Fourier transformation
of a Gaussian yields a Gaussian in the j space centered around j ∼ 0 and
that is exactly what is seen in Fig. 10. The angular function for D2S in the

Fig. 10. Comparison of calculated and measured (Ref. 58) rotational state distribu-
tions in the dissociations of H2S and D2S. Reproduced, with permission of the American
Institute of Physics, from Ref. 49.
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ground state is narrower than for H2S and consequently, the rotational dis-
tribution for DS is significantly broader. The calculated distributions agree
well with the measured ones.58,59

Finally, the emission spectrum of the dissociating H2S molecule has
been studied, both experimentally60,61 and theoretically,50,52 for several
wavelengths in the region of the maximum of the absorption spectrum.
The Raman intensities reflect the motion of the dissociating molecule in
the excited electronic states and therefore the main goal of emission stud-
ies is to infer from the intensity pattern information about this motion.3

As already discussed above, the predominant motion in the first few fem-
toseconds after excitation is symmetric stretching and therefore it is not
surprising to find excitation of high symmetric stretch states in the ground
electronic state, with up to seven quanta. The bending mode is also excited
in a short progression. Most striking, however, is the pronounced wavelength
dependence of the Raman spectrum,61 which is qualitatively ascribed to the
coupled motion on two PESs. Since the motion in the upper states begins
in the region of the conical intersection, where the coupling is naturally
strong, it is not unexpected to find that small changes in λ can lead to
significant changes in the intensity pattern. In contrast to the absorption
process, which is of first order in the light/matter interaction, the Raman
process is of second order1 and “phases” are more important, especially
when two coupled wave packets evolving in different states are involved,
and the “phases” depend on the total energy. This is one possible explana-
tion why the calculations, both the older ones of Heumann and Schinke50

and the more refined ones by Skouteris et al.,52 do not describe all details
in full satisfaction. In the photodissociation of water in the first absorption
band, on the other hand, a process which evolves only on a single PES
but otherwise is similar to H2S, the variation of the emission intensity with
wavelength is much less spectacular — and experiment and theory agree
nicely.62

The dissociation of ozone following excitation in the Chappuis band
is in many respects similar to the photodissociation of H2S. Although all
three atoms are identical, O3 in the ground as well as the two excited
states has C2v symmetry. When the separations between the two end atoms,
on the one hand, and the central atom, on the other, are symmetrically
varied, the two lowest excited singlet states, 1A2 and 1B1, are very close in
energy with two crossings, one close to the FC point and one at larger O–O
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separations. The corresponding potential diagram (cf. Fig. 2 of Ref. 63) is
similar to Fig. 6 for H2S. In Cs symmetry, the two states are the first and the
second singlet state with A′′ symmetry, 11A′′ and 21A′′. The adiabatic PESs
and transition dipole moment functions have been calculated by ab initio
methods by Woywod et al.64 These authors also determined the diabatic
potentials and couplings in a way similar to H2S.51 Time-dependent wave
packet calculations have been performed by Flöthmann et al.63

As for H2S, the excitation and dissociation process can be described in
the following way: excitation of the binding state, fast probability transfer
to the dissociative state and dissociation on the repulsive PES. However,
compared to H2S, the lifetime in the excited state is longer, leading to
several recurrences in the autocorrelation function, shown in Fig. 11, and
therefore to a more complicated absorption spectrum, depicted in Fig. 12.
The main recurrence around 40 fs is, like in H2S, caused by symmetric
stretch motion in the binding state. Because the lifetime of O3 in the binding
state is longer than for H2S, there are two additional recurrences in the
symmetric stretch mode, at 80 and at 120 fs, respectively. A second period
of about 6–7 fs is clearly seen on top of the first recurrence at 40 fs. It is
due to excitation of the anti-symmetric stretch motion.63 For two reasons,
this period is so much smaller than the symmetric stretch period. First,
the corresponding force constant in this degree of freedom is considerably
larger and, second, because of symmetry, only the states with even quantum
numbers, vas = 0, 2, . . ., are excited, whereas this symmetry constraint
does not apply for the symmetric stretch mode. There is a third period
somehow hidden in the autocorrelation function, the one corresponding to
the bending degree of freedom. However, this period is roughly twice the
symmetric stretch period and therefore not clearly discernible “by eye”,
although the Fourier transformation to the energy domain makes it visible.
By the time the recurrences due to bending motion were to leave a hallmark
in the autocorrelation function, |S(t)| has already deceased to zero.

The diffuse structures in the absorption spectrum of ozone in the
Chappuis band, shown in Figs. 12 (b) and (c), has likewise puzzled experi-
mentalists and theorists for a long time.65 The recurrence structures of the
autocorrelation function provide a reasonable explanation, although not
all details are perfectly reproduced by the calculations. The main struc-
tures reflect excitation of the symmetric stretch motion, just like for H2S.
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Fig. 11. Modulus of the autocorrelation function for ozone excited in the Chappuis
band. The results of two different calculations are presented. In the first calculation (solid
curve) the original potential energy surfaces are used, whereas in the second calculation
one of the diabatic potentials is shifted by −0.1 eV in order to modify the coupling
strength (dashed curve). Reprinted, with permission of the American Institute of Physics,
from Ref. 63.

A difference with respect to H2S is that the spectrum is actually a super-
position of two spectra, one with vas = 0, located around 17 000 cm−1,
and a second one with vas = 2 centered around 22 000 cm−1. This is more
clearly revealed by the second derivative of σ(E) with respect to E in the
lower trace in Fig. 12 (a). In the region from 18 000–20 000 cm−1 the two
spectra overlap, which makes the diffuse structures in this energy region
even more diffuse and difficult to interpret. The structures caused by the
bending motion are hardly seen in the calculated spectrum, although they
show up in σ′′(E) at higher excitation energies. They are, however, quite
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Fig. 12. (a) Calculated absorption spectrum for ozone in the Chappuis band. The
lower trace, σ′′, is the second derivative with respect to energy. (b) Measured absorption
spectrum, Ref. 65. (c) Logarithm of the experimental spectrum. (d) Theoretical spectrum
calculated with a slightly different potential and FC point. Reprinted, with permission
of the American Institute of Physics, from Ref. 63.
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clearly seen in the high-energy part of the experimental spectrum when
plotted on a logarithmic scale [Fig. 12(c)]. The theoretical explanation was
confirmed by new measurements.66 All structures would become more pro-
nounced and therefore more easily assignable, if the lifetime in the excited
state were longer, that is, if the nonadiabatic coupling were weaker.

The final vibrational distributions of the O2 fragments are similar to
those for HS in the dissociation of H2S. They are maximal for n = 0 and
then rapidly fall off.67 A broader maximum with very small probability
exists at higher vibrational numbers. The agreement with the experimental
data68 is satisfactory. In contrast to H2S, the diatomic fragments are pro-
duced in high rotational states.67,68 When O2 and O separate the repulsive
force acts mainly along the bond between the two nearest oxygen atoms
(repulsive model1), which generates a strong torque around the center-of-
mass of O2. In H2S, on the other hand, the center-of-mass of HS is almost
identical with the S atom and therefore the torque is very small.

5. Delayed Dissociation — Bending Excitation

While in the previous section the bending motion plays only a minor role,
in the present section we will discuss systems for which excitation of the
angular mode is essential. A common situation in triatomic molecules is
a conical intersection for linear geometries as the result of the crossing of
a Σ and a Π state along the dissociation coordinate. If the motion in the
excited state originates in a bent geometry, then bending motion is required
to reach this conical intersection. An illustrative example, which has been
extensively studied over the past two decades, both experimentally and
theoretically, is the photodissociation of water in the second (B̃) band.
Because of lack of space, we will discuss only the most essential features of
this dynamically interesting process involving three electronic states.

The electronic states involved can be briefly described in the following
way. At linear H–O–H geometry there is a binding Σ state, 11Σ+, which
leads to electronically excited OH(A2Σ), and a repulsive Π state, 11Π, which
correlates with OH(X2Π). The two potential curves cross around an O–H
separation of about 3.2 a0, when the other O–H bond distance is in the range
of 1.8 a0. When water bends, the 11Σ+ becomes the ground electronic state,
X̃1A′, with an equilibrium angle of 104◦, and the Π state splits into the
states Ã1A′′ and B̃1A′, which form a Renner–Teller (RT) pair. The lower
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RT state, Ã1A′′, is also bent, with an equilibrium angle similar to the one in
the ground state. Because it has A′′ symmetry, there is no avoided crossing
with the other two states, which have A′ symmetry, and the corresponding
PES is purely repulsive. The upper RT state, B̃1A′, is linear and due to
the conical intersection, respectively avoided crossing, with the ground elec-
tronic state, it has a deep potential well at linear geometries and relatively
large O–H separations. The topology of the three PES’s is schematically
illustrated in Fig. 13. Photoexcitation of the Ã1A′′ state gives rise to the
first absorption band with a maximum around 165–170 nm. The fragmen-
tation in this state is direct and fast and evolves on a single PES. For a
summary of the many experimental and theoretical investigations, see the
overview by Engel et al.62

Fig. 13. Schematic illustration of the three potential energy surfaces, X̃, B̃, and Ã,
involved in the photodissociation of water in the Ã and the B̃ band. The shaded area
(F.C.) marks the Franck–Condon region where the motion on the B̃-state potential
energy surface starts. The arrows labelled B, A, and X indicate the routes of the clas-
sical trajectories or the corresponding wave packets. Reprinted, with permission of the
American Institute of Physics, from Ref. 75.
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The dissociation in the second absorption band, following excitation
of the B̃1A′ state with a maximum around 125–130 nm, is more involved.
Briefly, excitation promotes H2O to the B̃-state PES far away from the equi-
librium of this state; the angular displacement, 104◦ compared to 180◦, is
particularly large. Thus, after being released, the wave packet immediately
slides down the steep slope toward the potential minimum and reaches the
linear configuration. Here, the molecule can follow three different routes: (1)
It stays on the B̃-state PES, climes up the other side of the well and even-
tually dissociates leading to excited OH(A2Σ). (2) It “hops” to the ground-
state PES and dissociates there to yield OH in the X2Π ground state. (3)
The molecule can also make a transition to the Ã state, which is the other
state of the RT pair, and dissociate on its repulsive PES to yield ground-
state OH. In the first case, the high rotational excitation of OH gained in
the first part of the fragmentation process is partly lost when the molecule
leaves the deep potential well and reaches the H + OH(A) plateau;69 nev-
ertheless, the OH products are created in relatively high rotational states.
The final state distributions of OH(A2Σ) can be obtained from A − X flu-
orescence spectra.70 When the molecule makes a transition to the ground
electronic state, the rotational excitation of OH is continued beyond the
linear configuration69 and the OH(X2Π) fragment is produced in very high
rotational states with a sharply inverted distribution peaking near the ener-
getic cutoff.71–73 The vibrational-rotational distribution of OH(X2Π) has
been measured by the H-atom Rydberg “tagging” time-of-flight technique,
which was pioneered by Welge and co-workers.71

Theoretical descriptions of the dissociation of water in the second
absorption band have gradually improved over the past two decades. In the
earliest calculations, merely the B̃-state PES was taken into account,74–77

and the potential surfaces were not of high quality. Weide and Schinke75 pre-
sented an ultra-simple model to include the B̃ → X̃ transition near collinear
geometries: When the trajectory reached linearity, it was continued either
on the upper or on the lower state. Although this surface hopping model was
very crude, it could rationalize the rotational state distributions of OH(A)
as well as OH(X), in qualitative agreement with the experimental results
available at that time.71 Later, the theoretical descriptions were refined by
taking two states into account.72 Finally, the three relevant adiabatic poten-
tials, X̃, Ã and B̃, were determined by high-level electronic structure cal-
culations by two groups and diabatic potentials were also constructed.78,79
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With these accurate PESs available, rigorous quantum mechanical dynam-
ics calculations have been performed, taking simultaneously into account
all three states and the couplings between them and all nuclear degrees of
freedom.80 These calculations, for the first time, allowed detailed compar-
isons with the many experimental data and provided valuable insight into
the complex dissociation dynamics. In the following we discuss some of the
highlights of the comparisons between experiment and theory.

Figure 14 depicts the measured absorption spectrum81 in comparison
with the calculated80 one. The experimental spectrum consists of a broad
background, which is indicative of fast dissociation, and a rather regular
progression of diffuse structures superimposed to the background. The gen-
eral shape of the calculated spectrum is similar, with the exception that it
shows more narrower structures, especially near the maximum. It has been
argued that averaging of all rotational states of water populated at room
temperature, rather than using only J = 0 and 1 as was done in the calcula-
tions, may wash out the narrower structures and so yield better agreement
with experiment. The structures are relatively broad resonances above the
dissociation threshold of the B̃ state.17 In the time-dependent picture of
photodissociation they are caused by a long progression of small-amplitude
recurrences in the autocorrelation function. These recurrences are due to
a small part of the wave packet, which remains in the well of the B̃-state

Fig. 14. Comparison of the measured (solid line) and the calculated (dashed line)
absorption spectrum of H2O in the second absorption band. Redrawn, with permission
of the American Institute of Physics, from Ref. 80.
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PES for a long time, i.e. which does not dissociate either on the upper or on
the lower PES. As discussed by Weide et al.,76 the short-time dynamics of
the wavepacket which does not quickly dissociate is governed by a periodic
classical orbit that basically performs bending motion in the deep potential
well. For a more detailed discussion of diffuse structures and periodic clas-
sical orbits, see Ref. 1. Thus, in contrast to H2S and the excitation of ozone
in the Chappuis band, the diffuse structures are due to bending excitation
rather than due to excitation of the symmetric stretch mode. Because the
equilibrium angles in the two electronic states are so drastically different,
the progression is long.

The branching ratios for forming OH in the excited state, A, or in the
ground state, X, depend, apart from resonance-like structures as also seen
in the absorption spectrum, smoothly on the excitation energy.80 For low
energies above the OH(A) threshold, the branching ratio is small for OH(A)
and almost unity for OH(X). However, as the excess energy increases, the
first one increases and the latter decreases. Simultaneously, the branching
ratio for the third dissociation channel, O(3P ) + 2H, also rises; however,
even one electron Volt above the OH(A) threshold it is only 20%. The calcu-
lated results agree reasonably well with the experimental data of Mordaunt
et al.72

The rotational state distributions of the OH(A2Σ) product molecules
have been measured by Fillion et al.82 for a series of excitation wavelengths
and several vibrational states of OH. They are compared to the results
of quantum mechanical calculations using two different sets of PESs.82

Some of the distributions are depicted in Fig. 15. They are inverted, with
a maximum occurring close to the highest state that is energetically acces-
sible. As the excess energy increases, the maximum shifts to higher rota-
tional states. Likewise, the maximum occurs at successively lower states
with increasing vibrational excitation. The agreement with the two sets of
calculated rotational distributions is in general good. The smaller, more
irregular structures, which are probably the result of interferences, are less
well reproduced. An interesting effect, termed “single rotational product
propensity”, has been observed experimentally and explained in terms of
an adiabatic dissociation model.83 It is found that under certain conditions
a single rotational state can have a probability of about 50%.

The rotational distributions of OH(X2Π) are even more inverted
(Fig. 16).84 They have pronounced maxima around N = 45, which
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Fig. 15. OD(A2Σ+) rotational population distributions for vibrational quantum num-
bers v = 0, 1, and 2. The experimental (Exp) results are compared to quantum mechani-
cal calculations using the potential energy surfaces of Dobbyn and Knowles78 (DK) and
of the Leiden group79 (Leiden). Reprinted, with permission of the American Chemical
Society, from Ref. 82.

corresponds to about 32 000 cm−1 or 75% of the available energy. This is
certainly an extreme case of rotational excitation and contrasts the very
weak rotational excitation following photodissociation of water in the first
absorption band.62 The additional release of electronic energy, that is the
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Fig. 16. The total rotational state distribution of OH(X2Π) in vibrational state v = 0
from the photodissociation at 121.6 nm. Reprinted, with permission of the American
Institute of Physics, from Ref. 84.

difference between EOH(A) and EOH(X) is one reason. Another reason is of
dynamical origin:75 The rotational excitation which the OH entity experi-
ences on the excited-state PES up to the linear geometry is continued in the
second half of the dissociation in the ground electronic state. The measured
distribution clearly shows two regions with pronounced odd-even oscilla-
tions. These oscillations have been attributed to interferences between two
pathways for “hopping” to the ground electronic state: through the conical
intersection in linear H–O–H geometry and a similar conical intersection
for linear O–H–H.85

Also the vibrational state distributions of both electronic states of OH
have been determined.73,84 The distribution for OH(A2Σ) is maximal for
n = 0 and then smoothly decays to zero around n = 3. The distribution
for OH(X2Π) is different; the majority of OH(X) molecules are formed in
n = 0. However, there is a long tail with small probability extending to very
high vibrational states, n ≈ 10, in good agreement with the calculations.80

There are more interesting dynamical details in the photodissociation of
water in the second band. Because of lack of space we have to refer to the
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original literature. Finally, we mention that the fully quantum mechanical
3D multiple-surface calculations have been compared to equivalent classi-
cal trajectory surface-hopping calculations.86 Although the classical results
generally agree well with the quantum results, some serious deficiencies of
the former were detected.

A process which bears some similarities with the photodissociation of
water in the B̃ state is the photodissociation of ammonia in the Ã band,87

NH3(X̃1A′
1) + �ω → NH3(Ã1A′′

2) → H + NH2(X̃2B1). The Ã band system
is dominated by a progression of diffuse structures of the out-of-plane vibra-
tion, ν2. All of these levels lie above the H + NH2(X̃2B1) asymptote, but
they are temporarily trapped by the effects of a small barrier in each of the
three equivalent exit channels. Dissociation occurs through a combination
of tunnelling, internal vibrational energy distribution in the Ã state and
internal conversion to the ground electronic state. Very detailed spectro-
scopic experiments have been performed by Mordaunt et al.88,89

Relevant for the present chapter is the existence of a conical intersection
of the Ã and X̃ PESs in the exit channel, beyond the barrier, and the effect
it has on the product state distributions. For planar ammonia the excited
state correlates with ground-state products and the ground state correlates
with excited products H + NH2(Ã2A1). However, if the symmetry is low-
ered, i.e. when ammonia is not planar, both surfaces belong to the same
representation and the intersection becomes an avoided crossing. NH3 in the
lower state is non-planar and therefore the wave packet in the excited state
starts its dissociative motion on the upper-state PES on the slope of the
potential well in the Ã state. After the barrier region has been crossed
the dissociating molecule is “funneled” towards the conical intersection at
the planar geometry and the NH2 product experiences strong internal exci-
tation — particularly rotation about the a inertial axis. The excitation is
continued, as in the dissociation of water, on the ground-state PES yield-
ing strong rotational excitation of the NH2(X̃) product. Elaborate wave
packet calculations including both electronic states have been performed
by Dixon90 including three degrees of freedom: HNH bending, stretching of
the third NH bond and the out-of-plane coordinate. The PESs have been
calculated by Polák et al.91 within the diatom-in-molecule (DIM) approach.
The highly inverted Ka rotational state distributions of NH2(X̃) as well as
the state-dependent anisotropy parameter, β, are accurately reproduced by
these calculations.
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Recently, more experimental work on the dissociation of ammonia,
focussing on the partitioning of the internal energy of the NH2(Ã) products,
has become available.92,93 Bach et al.94,95 have investigated the influence of
vibrational excitation of ammonia in the ground state on the dissociation
products and lifetimes. Detailed theoretical descriptions of these large sets
of experimental data are desired.

Another molecule with strong non-adiabatic coupling caused by a con-
ical intersection is NO2, whose rovibronic spectrum is known to be very
complex;96,97 for references see, for example, Ref. 98. NO2 has been a
benchmark molecule for spectroscopy and unimolecular dissociation for a
long time. The ground electronic state, X̃2A1, is coupled with the Ã2B2

excited electronic state through the asymmetric stretching vibrational mode
already at low energy, about 10 000 cm−1 above the well of the X̃ state. At
higher energies, there are additional crossings with other electronic states,
but the one between the X̃ and the Ã state is believed to have the strongest
influence on the spectrum of NO2 for energies below the O(3P )+NO(X2Π)
dissociation threshold. The equilibrium angles in the two states are quite
different, 134◦ in the ground state and 102◦ in the excited state, and the
conical intersection occurs at intermediate angles of about 108◦ (Ref. 99).
Thus, excitation with photons in the range of 25 000 cm−1, i.e. near the dis-
sociation energy, promotes NO2 to the steep slope of the Ã state PES, far
away from the equilibrium of this PES. As a consequence, the wave packet
performs large-amplitude bending motion which shows up as a pronounced
progression in the (low-resolution) absorption spectrum.100,101 When the
wave packet swings through the region of the conical intersection, which is
located between the two wells, the two states mix and probability is trans-
ferred from the Ã state, where the motion started, to the ground state.
This mixing is very strong and already after 100 fs the probabilities in the
two states are about equal.99 If the energy is sufficiently high, the molecule
can dissociate in the ground electronic state to yield the products O(3P )
and NO(X2Π). The dissociation rate is much smaller than the mixing rate
between the two electronic states, and therefore the internal vibrational
energy distribution on the lowest PES is the rate determining step for the
dissociation.102,103

The mixing between the X̃ and the Ã state has been studied in numerous
theoretical studies. Parts of the corresponding PESs have been calculated
by Hirsch and Buenker104 and diabatic surfaces have been constructed.
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However, these PESs, which have been used in many dynamics calcula-
tions, have not been constructed for dissociation studies and therefore cover
only a rather limited region of the entire configuration space. Extensions to
cover also the O+NO exit channel must be considered with caution.105 The
more recent electronic structure calculations of Mahapatra et al.99 cover the
region up to about 3a0 in the dissociation coordinate. Although this range
is larger than in the older PES calculations, it still does not allow to investi-
gate the fragmentation process. These authors calculated the photodetach-
ment spectrum for NO−

2 and obtained good agreement with experiment.106

Global potential energy surfaces, which do extend to the products region,
recently have been constructed by Reignier et al.107 However, they did not
construct diabatic PESs and did not consider the non-adiabatic coupling.

Because of the strong vibronic interaction and the high density of vibra-
tional states, which is the result of the large dissociation energy and the
three heavy atoms involved, the dynamics of NO2 at energies high above
the conical intersection, especially near the dissociation limit, is irregular.
Therefore, taking into account only the lowest adiabatic PES, is an appro-
priate model. Indeed, quantum calculations using exclusively the X̃ state
PES provide dissociation rates in good overall agreement with experimental
rates as well as time-resolved, non-exponential decay curves.103

The photodissociation of CH2(X̃3B1) through the coupled 23A′′ and
33A′′ states also involves strong excitation of the bending mode.108,109 In
C2v, these states have 3B1 and 3A2 electronic symmetry. In the diabatic
picture, the B state, which in C2v corresponds to the 3B1 state, is prefer-
entially excited, whereas the A state, which correlates with the 3A2 state,
is only marginally excited. However, the conical intersection occurs right in
the region of the FC point,109,110 and therefore probability transfer is fast.
The B state is bound for excitation energies up to 7.3 eV; at higher energies
dissociation into H atoms and excited CH(A2∆) products is possible. Below
7.3 eV the molecule can dissociate only via the A state, which can break
apart into both H + CH(a4Σ) and C(3P ) + H2. Upon photo-excitation the
main part of the wave packet immediately dissociates on the A-state PES
which gives rise to a broad absorption cross section. However, a small part
of the wave packet is temporarily trapped in the B state leading to more or
less sharp resonance structures on the red side of the spectrum.108,109 The
B state is linear while the ground state is strongly bent (134◦). Therefore,
it is plausible to assume that bending motion in the deep well of the B state
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is predominantly excited. The spectrum on the blue side of the maximum
is almost structureless.

6. Renner–Teller Induced Dissociation

Renner–Teller (RT) coupling is a particular case of the breakdown of the
Born–Oppenheimer approximation.111 It is the result of the interaction
between the two components of a degenerate electronic state: Π, ∆, . . . etc.
Let us consider an example, HCO. The lowest doublet state for linear HCO
has 2Π symmetry and is doubly degenerate; the projection of the electronic
angular momentum on the linear HCO axis has the eigenvalues λ = ±1. If
HCO is bent, the degeneracy is lifted, and the resulting two states have 2A′

and 2A′′ symmetry, respectively. The first one is bent and is the ground
electronic state; the other state is linear and is the first excited doublet
state. Excitation with a photon promotes HCO from the ground state to
the first excited state, at geometries far away from the equilibrium of the
upper state. As a consequence, the wave packet immediately slides toward
the linear geometry, where the two states are degenerate. Whenever the
wave packet reaches linearity, part of the wave packet belonging to the 2A′′

state is promoted to the lower state. Since the excitation energy is well
above the H + CO threshold, HCO quickly dissociates on the ground state
PES into H and CO.

The lifetime in the upper state, and therefore the widths of the res-
onances in the absorption spectrum, depend directly on the RT coupling
strength: the stronger the coupling, the shorter is the lifetime. HCO is an
example for a bent/linear RT pair and the probability transfer is quite
effective, because the molecule freely swings through the linear configura-
tion where the RT coupling is localized. Bending excitation decreases the
net probability for the molecule to spend time in the interaction region and
thus the lifetime increases.112 HNO, on the other hand, is an example of
a bent/bent RT pair, i.e. both states are bent (Fig. 17). In this case, the
probability to penetrate into the linear regime is relatively small, the RT
coupling is weak, and consequently the lifetime is long.113 In contrast to
HCO, bending excitation increases the RT coupling and therefore decreases
the lifetime.

Although the RT effect is, strictly speaking, not identical with the cou-
pling between two states at a conical intersection, there are nevertheless
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Fig. 17. One-dimensional cuts through the X̃1A′ and Ã1A′′ potential energy surfaces
along the Jacobi dissociation coordinate R (a) and the Jacobi bending angle γ (b).
The potential is minimized in the other two coordinates. γ = 0 corresponds to linear
HNO. The horizontal lines in (a) indicate the two zero-point energies. Reprinted, with
permission of the American Institute of Physics, from Ref. 113.

important similarities. For example, the interaction between the two elec-
tronic states is localized, where they are degenerate; outside this region
the two states are almost decoupled. Moreover, both processes are most
conveniently described in a diabatic representation. Renner–Teller induced
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dissociation is an important effect in molecular dynamics, especially pho-
todissociation. However, to our knowledge, there are only few theoretical
studies on global PESs including all degrees of freedom. Because the RT
coupling is absent for non-rotating molecules, the calculations must be per-
formed for J �= 0. Although such calculations are certainly more involved
than calculations for J = 0, they do not present a real problem. In the fol-
lowing we will briefly discuss two examples, HCO and HNO, which nicely
illustrate how the lifetime in the excited state varies with the particular
vibrational-rotational excitation.

Calculations of the RT induced fragmentation of HCO(2A′′) have been
performed in the time-dependent114,115 as well as the time-independent116

approach. In the first case, one propagates two coupled wave packets and
determines the autocorrelation function S(t), which shows a long sequence
of recurrences caused by the excited bending motion in the 2A′′ state.
Fourier transformation of S(t) yields the absorption cross section, which in
the present case consists of several progressions of narrow absorption lines,
i.e. resonances, with widths Γ. These widths depend on the vibrational
states and thus reflect, how the coupling to the dissociative state varies
with the degree of vibrational excitation. The calculations are performed in
a diabatic scheme, in which the off-diagonal elements are proportional to the
potential energy difference of the 2A′ and 2A′′ states, VA′′−VA′ . Thus, like in
the case of a conical intersection, the coupling in the diabatic representation
is zero, where the two adiabatic states are degenerate, and it is large, where
the adiabatic states are well separated. In the time-independent approach,
the resonance widths are directly calculated by introduction of an absorbing
complex potential in the H+CO exit channel.116 The corresponding Hamil-
ton matrix is complex symmetric with complex eigenvalues E0 − iΓ/2.

In Fig. 18 we depict Γ for three different progressions as function of
the bending quantum number v2. As rationalized above, the resonance
width decreases with increasing v2. The agreement with the measured117–119

widths is satisfactory. The structures for low values of v2 are probably due to
mixings with particular resonance states belonging to the ground electronic
state (see also below). The RT coupling operator is proportional to K, the
projection quantum number of the total angular momentum on the CO axis.
As a consequence, the widths grow roughly quadratically with K, as has
been observed experimentally and theoretically. The strong bending exci-
tation in the upper electronic state survives when the molecule dissociates
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Fig. 18. Dependence of the HCO(2A′′) predissociation rate Γ on the bending quantum
number v2 for three progressions: (0, v2, 0) (a), (1, v2, 0) (b), and (0, v2, 1) (c). v1 and v3
are the HC and the CO stretching quantum numbers, respectively. In all cases J = K = 1.
The error bars indicate the experimental results of Loison et al.117 Reprinted, with
permission of the American Institute of Physics, from Ref. 116.

on the ground-state PES, with the result that the CO fragments are highly
rotationally excited.115,120

The widths for the predissociation of the 1A′′ state of HNO are much
smaller than the widths shown for HCO in Fig. 18, typically smaller than
1 cm−1; they depend markedly on the particular vibrational state and
the K rotational quantum number (see Ref. 113). The widths depend, of
course, also on the total rotational angular momentum quantum number J .
However, because the term in the kinetic energy operator responsible for the
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RT coupling is independent of J , one anticipates only a marginal variation,
as has been actually found for several states. Nevertheless, there are also
other cases for which Γ shows a distinct J dependence. One example, state
(0,1,1) and K = 3, is shown in Fig. 19. The three quantum numbers refer to
the H–N stretching mode, the N–O mode, and the bending mode, respec-
tively. The resonance width exhibits a variation with J which is reminiscent
of anharmonic mixing with a “dark” state, as it is often found in molecular
spectroscopy.121 In the present case, the “bright” state (0, 1, 1|K = 3) of
the excited electronic state couples to a “dark” state, which mainly belongs
to the ground electronic state. According to Fig. 17, the vibrational states
belonging to the 1A′′ state are embedded in the continuum of the 1A′ elec-
tronic state. The continuum of the ground state itself consists of resonance
states. Many are very broad and overlap, but some of them are reasonably
narrow and have a distinct nodal structure. It is one of the latter with which
the bright state interacts and mixes. Since the rotational constants are dif-
ferent for the two interacting states — their wave functions have completely
different nodal structures — the energy mismatch and therefore the degree
of mixing varies with J : As J increases the two states are tuned in and out
resonance and this is reflected by the resonance width of the bright state.
Because the width of the dark state is considerably larger, the width of the
bright state is noticeably enhanced when the mixing is optimal, i.e. when
the energy gap is close to zero, as seen in the inset of Fig. 19. The mixing
between the two resonance states occurs over an energy range comparable
to the width of the dark state.

This kind of resonance effect has also been observed in the spectroscopic
experiment of Pearson et al.,122 however, for different vibrational states
and different J ’s than in the calculations.113 In order to quantitatively
reproduce these effects, the PESs of the ground and the excited state must
be extremely accurate and the vertical separation between them must also
be precise. The mixing between resonances and the tuning of the resonance
via rotational excitation, for example, is a generic effect, when two electronic
states are coupled, irrespective of the nature of the coupling.

7. Outlook

The transition between different electronic states is an important phe-
nomenon in molecular photodissociation processes. It is more the rule than
the exception; the validity of the Born–Oppenheimer approximation, that
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Fig. 19. The linewidth of state (0,1,1) of HNO(1A′′) as a function of J(J + 1) for
K = 3. The inset shows the width as function of the energy mismatch, ∆E, between the
“bright” state (0,1,1) and the “dark” state belonging to the ground electronic state. The
width of the “bright” state is multiplied by 7.5. See the text for more details. Reprinted,
with permission of the American Institute of Physics, from Ref. 113.

is nuclear motion on a single potential energy surface as in the dissociation
of water via excitation in the Ã state, is exceptional. A nonadiabatic tran-
sition occurring near a conical intersection is only one, but an important
example.

Due to the limitations of computational capacity, theoretical investiga-
tions before the nineties of the last century were mainly based on model
studies using simple PES and coupling elements. Also, often the number of
degrees of freedom were reduced in order to make dynamical studies fea-
sible. As a result of the development of efficient computer codes, both to
calculate potential surfaces and to solve the Schrödinger equation for the
nuclear motion on these potentials, and the drastic increase of computer
power, it is nowadays possible to accurately describe photodissociation pro-
cesses involving more than one electronic state. Especially the development
of easy-to-use diabatization schemes and their implementation in quantum
chemical program packages has greatly advanced the study of nonadiabatic
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processes. Thus, the rigorous treatment of two coupled electronic states
for a triatomic molecule, including low rotational states, is not a serious
problem today. Several examples have been described in this chapter.

However, this does not imply that the calculations are without complica-
tions. The construction of accurate PESs is still a formidable task, especially
if several surfaces have to be calculated simultaneously. The dynamics in
general and the non-adiabatic transitions in particular may crucially depend
on fine details of the electronic structure calculations, such as the location
of the conical intersection in the multi-dimensional coordinate space or its
energy. The dissociations of ICN or HNO, discussed in Secs. 3 and 6, are
good examples to illustrate this point. Although the effects are qualita-
tively well described by the calculations, finer details of the experimental
observations are not in quantitative agreement. In the latter example, two
PES with an accuracy of the order of approximately 50 cm−1 were needed;
moreover, the vertical separation of these two potentials should have a sim-
ilar exactness. It is doubtful whether this goal can be achieved in the near
future.

Although several triatomic molecules, involving nonadiabatic transitions
at conical intersections, have been theoretically described in detail, there
are still examples for which — in view of the many experimental data
available — high-level calculations are needed. One example is the predis-
sociation of high-lying Rydberg states of H3. For a comprehensive list of
references see Ref. 123. Electronically excited H3 can dissociate into H+H2

or three hydrogen atoms. The lifetime and the vibrational-rotational prod-
uct distribution of H2 depend sensitively on the particular rovibronic state
of the parent molecule.123,124 Recently, also the correlation among the frag-
ments in the three-body breakup has been investigated.125,126 Although a
number of calculations have been aimed in interpreting these data,127–131

we think that more rigorous descriptions are still needed.
Rigorous descriptions of nonadiabatic transitions in molecules with more

than three atoms are, for several reasons, much more complicated than
for triatoms. First, the dimensionality is considerably higher and therefore
more energy points are required to construct global PESs. As an unavoid-
able consequence, the accuracy of the electronic structure calculations
has to be lower. Second, the dynamical calculations become much more
demanding. Exact quantum mechanical calculations are possible with more
than three degrees of freedom, as has been demonstrated by Hammerich
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et al.38 for the dissociation of CH3I using the Multi-Configuration Time-
Dependent-Hartree (MCTDH) method (see also Chapters 14 and 15 in this
book). But, these calculations are demanding although the dissociation of
CH3I in the first absorption band is a comparatively “simple” reaction,
because the “lifetime” is extremely short.

A photodissociation process involving a polyatomic molecule and a con-
ical intersection is the fragmentation of HNCO via the first absorption
band, which has been intensively studied in several laboratories.132–135 The
interest for this reaction partly results from the possibility that two dissoci-
ation channels of similar energy are accessible: HN+CO and H+NCO. The
latter channel has a lower threshold, but is blocked by a high barrier.136

Therefore, at low excess energies HNCO can dissociate only via a non-
adiabatic transition to the ground electronic state. The conical intersec-
tion, where this transition can occur, has been localized by extensive ab
initio calculations.137–140 The first triplet state is also involved in the dis-
sociation process. Thus, a complete description requires two singlet PESs
and one triplet PES, each being a function of six variables, and the corre-
sponding coupling matrix elements. This is a great challenge for dynamical
theory. However, in view of the many detailed experimental data available,
it appears worthwhile to tackle this problem.
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J. Chem. Phys. 107, 7282 (1997).

65. S. M. Anderson and K. Mauersberger, J. Geophys. Res. 100, 3033 (1995).
66. K. Bogumil, J. Orphal, J. P. Burrows and J. M. Flaud, Chem. Phys. Lett.

349, 241 (2001).
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1. Introduction

The standard theoretical treatment of chemical reaction dynamics is based
on the separation of the total molecular motion into fast and slow parts. The
fast motion corresponds to the motion of the electrons and the slow motion
corresponds to the motion of the nuclei. The theoretical foundation for the
separation of the electronic and nuclear motion was first developed by Born
and Oppenheimer.1 In this approach, the total molecular wave function is
expanded in terms of a set of electronic eigenfunctions which depend para-
metrically on the nuclear coordinates. The expansion coefficients are the

521
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nuclear motion wave functions which satisfy a matrix Schrödinger equation
which includes off-diagonal coupling matrix elements with respect to the
electronic quantum numbers. The smallness of the electronic mass (me) rel-
ative to the nuclear mass (mN) is used to obtain an asymptotic expansion of
the total molecular wave function, energy, and other quantities of interest in
terms of the small parameter κ = (me/mN)1/4.2–5 To lowest order in κ, the
off-diagonal coupling terms can often be ignored for low-energy collisions
and nondegenerate electronic states. In this case, the total molecular wave
function can be expressed in terms of a single electronic state (usually the
ground state). Thus, to a good approximation, the dynamics of the nuclear
motion is governed by an effective Schrödinger equation, whose potential
energy surface is determined by solving the Schrödinger equation for the
ground electronic state at each nuclear geometry. This one-state approxi-
mation is often referred to as the “Born–Oppenheimer approximation” and
has been the foundation for the modern theory of electronically adiabatic
processes.

For high-energy collisions or degenerate electronic states, the Born–
Oppenheimer approximation breaks down and more than one electronic
state must be included. High-energy collisions give rise to electronically
non-adiabatic processes (i.e. collision processes which change the electronic
quantum numbers).6 Another situation, for which the standard Born–
Oppenheimer method becomes inadequate, is when a conical intersection
occurs between the ground and an excited electronic state. Conical intersec-
tions can alter the nuclear dynamics even for low-energy collisions for which
the one-state approximation is still valid. In this chapter, we will consider
the modifications to the standard Born–Oppenheimer method which are
required in order to account for the effects of conical intersections on the
nuclear dynamics for low-energy collisions.

In 1963, Herzberg and Longuet-Higgins7 showed that a real adiabatic
electronic wave function changes sign (i.e. it is a double-valued function)
when the nuclear coordinates traverse a closed path which encircles a con-
ical intersection. In order for the total molecular wave function to remain
single-valued, a compensating sign change must also occur in the nuclear
motion wave function. Furthermore, for molecules with two or more iden-
tical nuclei, the sign change must be accounted for in order for the total
molecular wave function to satisfy the correct Bose–Fermi statistics under
an interchange of any two identical nuclei. In 1979, Mead and Truhlar8,9
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discussed two approaches for including the sign change in the nuclear
motion wave function. In one approach, a real double-valued electronic wave
function is used and the correct nuclear motion wave functions are obtained
by solving the standard Schrödinger equation for the nuclear motion, but
with double-valued boundary conditions. In the second approach, a com-
plex single-valued electronic wave function is used and the correct nuclear
motion wave functions are obtained by solving a generalized Schrödinger
equation for the nuclear motion with single-valued boundary conditions.
The complex single-valued electronic wave function is obtained by multi-
plying the real double-valued electronic wave function by a complex phase
factor which is a function of the nuclear coordinates. This phase factor
changes sign for any closed path which encircles a conical intersection, so
that the complex electronic wave function is single-valued. The electronic
Schrödinger equation is unchanged by the phase transformation, so that
the complex single-valued electronic wave function satisfies the same eigen-
value equation as the real double-valued electronic wave function. However,
the Schrödinger equation for the nuclear motion acquires a vector potential
(i.e. the momentum operator p → p−A). This vector potential comes from
the gradient operator with respect to the nuclear coordinates acting on the
complex phase factor. The vector potential is non-trivial (i.e. it cannot be
transformed or gauged away by using a single-valued phase transforma-
tion) and is mathematically equivalent to that of a “magnetic solenoid”
centered at the conical intersection. The resulting Schrödinger equation for
the nuclear motion is identical to that of a charged particle moving in the
presence of a magnetic solenoid. If the nuclear motion wave function has
significant amplitude along the entire minimum energy pathway encircling
a conical intersection, significant interference effects will occur which can
significantly alter the nuclear dynamics. These effects can occur for rela-
tively small collision energies which are much smaller than the energy of the
conical intersection. The collision energy only needs to be larger than all of
the potential energy barriers which may occur along the minimum energy
pathway encircling the conical intersection. Mead later called this effect the
“molecular Aharonov–Bohm effect”.10 In 1984, Berry11 considered a gen-
eral quantum system with parametric time dependence undergoing a cyclic
adiabatic time evolution. He showed that the sign change which occurs in
the “molecular Aharonov–Bohm effect” is a special case of the more gen-
eral geometric phase often referred to as “Berry’s phase”. Berry’s influential
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paper generated much theoretical and experimental interest in this effect
which continues to this day.

Section 2.1 presents the generalized Born–Oppenheimer equation for the
nuclear motion which takes into account the geometric phase effects due to
a conical intersection. Section 2.2 reviews the recently developed numerical
methodology for solving the generalized Born–Oppenheimer equation. Sec-
tion 2.3 reviews several applications of this methodology in chemical reac-
tion dynamics. In particular, H+O2 inelastic scattering and H+H2, D+H2,
and H + D2 reactive scattering are discussed. The effects of the geometric
phase are investigated by solving both the standard and generalized Born–
Oppenheimer equations for the nuclear motion and comparing the results.
The effects of the geometric phase in reaction probabilities, resonance spec-
tra, integral, and differential cross sections are investigated as a function
of total energy and total angular momentum (J). Section 3 presents some
conclusions regarding the importance of geometric phase effects in chemical
reaction dynamics.

2. The Generalized Born–Oppenheimer Method

2.1. Theory

The molecular Schrödinger equation is given by

H Ψ = E Ψ , (1)

where Ψ is the total molecular wave function, H the total molecular
Hamiltonian, and E the total energy. We restrict our present treatment
to triatomic molecules so that there are six nuclear coordinates relative to
the center of mass. Three of these six are internal coordinates which are
functions of the three internuclear distances. The remaining three are angu-
lar coordinates which specify the orientation of the body-frame relative to
the space-frame and are usually taken to be the three Euler angles. The six
nuclear coordinates are denoted as R = (x, x̂), where x and x̂ denote the
three internal and three angular coordinates, respectively.

After separating out the center of mass motion, we can express H in
space-frame coordinates as

H ≡ − �
2

2µ
∇2 + He(R) , (2)
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where ∇2 is the six-dimensional Laplacian with respect to the six nuclear
coordinates R, µ is the three body reduced mass µ ≡ (mA mB mC/(mA +
mB + mC))1/2, and He(R) is the electronic Hamiltonian which depends
parametrically on the nuclear coordinates.

We neglect all electronic angular momentum (spin and orbital) so that
the space-frame electronic eigenfunctions (Φn) depend parametrically on
the three internal nuclear coordinates x and can be chosen real orthogonal
with real eigenvalues (Vn)12

He(R) Φn(r; x) = Vn(x) Φn(r; x) , (3)

where r denotes all of the electronic coordinates. From now on, we assume
that accurate solutions to Eq. (3) are available or can be readily calculated.

The total molecular wave function can be expanded in terms of the
electronic eigenfunctions

Ψ =
N∑

n=0

χn(x)Φn(r; x)ψN , (4)

where the expansion coefficients χn(x) are the nuclear motion wave func-
tions, and ψN is the nuclear spin wave function. The number of electronic
states N is in general infinite. Fortunately, for low collision energies, the
smallness of the Born–Oppenheimer parameter κ allows one to truncate this
infinite sum to some finite number N . If one substitutes Eq. (4) into Eq. (1),
multiplies on the left by Φn(r; x), integrates over r and uses Eq. (3), one
obtains the following matrix equation for the nuclear motion wave function
(n = 0, 1, 2, . . . , N)13–15

N∑
m=0

[
�

2

2µ

N∑
k=0

(−iδnk∇ − Ank(x)) · (−iδkm∇ − Akm(x)) + εnm(x)

]
χm(x)

= Eχn(x), (5)

where the vector nonadiabatic coupling matrix elements are given by13–16

Anm(x) = i〈Φn(x)|(∇Φm(x))〉 . (6)
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The effective scalar potential is given by13–15,17

εnm(x) = Vn(x)δnm − �
2

2µ

∑
l �=n,m

〈Φn(x)|(∇Φl(x))〉 · 〈Φl(x)|(∇Φm(x))〉 . (7)

The scalar potential given in Eq. (7) contains contributions which involve
derivative coupling matrix elements between the electronic subspace of
interest and the excited electronic states. These contributions have the
effect of a small correction (proportional to κ4) to the potential energy
Vn(x). From now on, we ignore these small corrections and take εnm(x) =
Vn(x)δnm.

For low collision energies and a non-degenerate ground electronic state,
we can truncate the sum in Eq. (4) to only one term. This case is often
referred to as the “Born–Oppenheimer approximation” and the molecular
wave function is given by

Ψ ≈ χ0(x)Φ0(r; x)ψN , (8)

where n = 0 denotes the ground electronic state. For degenerate electronic
states or high collision energies, more terms in the sum over n must be
included. From now on, we assume that Eq. (8) is valid and drop the sub-
script on the nuclear and electronic wave functions with the understand-
ing that they denote the ground electronic state. The Born–Oppenheimer
Eq. (5) for the nuclear motion becomes

[
− �

2

2µ
∇2 + V (x)

]
χ(x) = Eχ(x) . (9)

In the derivation of Eq. (9), we used the fact that 〈Φ(x)|∇|Φ(x)〉 = 0 which
is straightforward to prove by differentiating the normalization equation
〈Φ(x)|Φ(x)〉 = 1 and using the fact that |Φ(x)〉 is real.

We denote the d-dimensional internal nuclear parameter space by M
(d = 3 for triatomics) and the subspace of M for which a conical intersection
occurs by D ⊂ M. The subspace D is of dimension d− 2, and for triatomic
molecules it is a one-dimensional curve in the three-dimensional nuclear
parameter space M.7,18 Two conditions, u(x) = 0 and v(x) = 0, define
the subspace D, and these can be expressed in terms of any two diagonal
cofactors of the matrix w(x) ≡ He(x) − IV0(x), where He is the electronic
Hamiltonian and V0 is the ground state eigenvalue.19 In an infinitesimal
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region near D, the relevant part of the electronic Hamiltonian is a 2 × 2
matrix of the form8,18

He(x) = −
(

δu δv

δv −δu

)
= −r

(
cos η sin η

sin η − cos η

)
, (10)

where δu(x) and δv(x) are infinitesimal displacements from the origin in
the two-dimensional Cartesian space spanned by ueu and vev (see Fig. 1).
The polar coordinates are denoted by (r, η), where r is the radial distance
from the origin in uv space and η is the azimuthal angle around the origin.
The two eigenvalues of Eq. (3) are V±(x) = ±r which correspond to the
upper and lower cones in Fig. 1. The two corresponding eigenvectors are
given by

Φ+ =
( − sin η

2
cos η

2

)
, Φ− =

(
cos η

2
sin η

2

)
. (11)

It is clear that, due to the half-angle functional dependence upon the
azimuthal angle η, these eigenvectors change sign (i.e. are double-valued)
for any closed path in the nuclear parameter space for which η changes by
2π. Equation (11) is valid only in the infinitesimal region near the coni-
cal intersection. However, the sign change (double-valuedness) exists glob-
ally. That is, any closed path in M which encircles D (no matter how far
away from D) results in a sign change in the adiabatic ground state real
electronic eigenvector.20 The global expression for the angle η is given by
η(x) ≡ tan−1(v(x)/u(x)), which is in general a complicated function of the

z

v

u

C rη

+

−

Fig. 1. Perspective plot of a two-dimensional slice of a potential energy surface near a
conical intersection. The degeneracy point is located at the origin in the uv plane. The
radial distance from the intersection is denoted by r and the azimuthal angle around
the intersection denoted by η. The adiabatic ground state real electronic wave function
changes sign for any closed path in uv space which encircles the origin (such as the
dashed curve C).
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three internal nuclear coordinates.21 Recently, techniques have been devel-
oped to compute η(x) for a general polyatomic molecule.19 However, for tri-
atomic molecules (such as H3, HO2, and Na3) a suitable functional form for
η(x) can often be derived analytically.8,12 It is important to realize that the
functional forms of u(x) and v(x) are not unique. Hence, η(x) is not unique.
The only requirement is that η(x) change by 2π for any closed path in M
which encircles D. This freedom in choosing η is called “gauge freedom” and
different choices for η are related by U(1) gauge transformations.8,12,18,19,22

Following Mead and Truhlar,8 we multiply the real adiabatic electronic
wave function by a complex phase

ΦC(r; x) ≡ exp
(

i
l

2
η(x)

)
Φ(r; x) , (12)

where l is an odd integer and η(x) is the azimuthal angle discussed above
which changes by 2π for any nuclear motion which encircles a conical inter-
section. The complex phase factor cancels the sign change from the real
electronic wave function Φ(r; x), giving rise to a complex single-valued elec-
tronic wave function ΦC(r; x). It is straightforward to show that the different
choices for l are related by gauge transformations.8 Hence, the choice of l

is a matter of convenience, although larger values of l cause the numerical
calculations to converge more slowly.12,22

Using Eq. (12) and repeating the same steps which lead to Eq. (9),
we obtain the generalized Born–Oppenheimer equation for the nuclear
motion8,12–15,18,23[

�
2

2µ
(−i∇ − A(x))2 + V (x)

]
χC(x) = EχC(x) , (13)

where the nuclear motion wave function χC(x) is single-valued and A(x) is
the vector potential defined as

A(x) ≡ i〈ΦC(x)|(∇ΦC(x))〉 . (14)

Substituting Eq. (12) into Eq. (14), we can write the vector potential as

A(x) = − l

2
∇η(x) . (15)

Equation (15) has the same mathematical form as the vector potential of a
magnetic solenoid located at the conical intersection.8–10,18 By taking the
curl of Eq. (15), we find that the corresponding “magnetic field” is zero
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everywhere except at the conical intersection, where it has a delta function
singularity

B(x) ≡ ∇ × A(x) = −lπδ(x)ez , (16)

where ez points along the z axis perpendicular to the uv-plane with the
conical intersection located at the origin (see Fig. 1).8–10,18 Equation (16)
has the same mathematical form as the magnetic field of an infinitely thin
and infinitely long magnetic solenoid centered at the conical intersection.
Of course, the vector potential of Eq. (15) and its associated magnetic field
given by Eq. (16) do not represent a real magnetic field. They come from the
diagonal derivative coupling term which couples the nuclear and electronic
motion [see Eq. (14)].

The geometric phase (βg) can be expressed as the line integral of A along
a closed path C in M which encircles the degeneracy subspace D8–11,18

βg =
∮

C

A · dl . (17)

By using Stokes’s theorem, we can express the line integral of A as a surface
integral of B which shows that the geometric phase (βg) is equal to the
“flux” of the “magnetic field” through the surface S enclosed by C

βg =
∫

S

B · ds . (18)

Upon substituting Eq. (15) into Eq. (17) or Eq. (16) into Eq. (18), we find
that βg = −lπ which corresponds to a phase factor of exp(−lπ) = −1.
Thus, the sign change associated with a conical intersection can be given a
geometrical interpretation. Equations (17) and (18) can be generalized to
higher dimensions using the language of differential geometry. Equation (17)
can be expressed as the line integral of a connection 1-form along the closed
path C and the phase factor exp(iβg) the associated holonomy. Similarly,
Eq. (18) can be expressed as the surface integral of a curvature 2-form over
the surface S enclosed by C.11,18,24–28

2.2. Numerical Techniques

Although the generalized Born–Oppenheimer, Eq. (13), was first derived in
1979, numerical techniques for solving this equation were developed only
recently. Part of this delay is due to the singular nature of the vector
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potential, which exhibits a r−1 singularity where r denotes the radial dis-
tance from the conical intersection. Thus, until recently, geometric phase
effects were included in quantum reactive scattering calculations by solving
the standard Schrödinger Eq. (9), but with double-valued boundary condi-
tions. For example, the H3 molecule contains a conical intersection which
occurs for equilateral triangle (D3h) geometries. If one uses symmetrized
hyperspherical coordinates, then double-valued boundary conditions are
relatively straightforward to implement for this molecule by choosing the
angle η (see Fig. 1) equal to the azimuthal angle φ of the 2D hypersphere.
Thus, geometric phase effects can be included in the calculations by solving
the standard Born–Oppenheimer Eq. (9), but expanding the solutions in
terms of a double-valued basis set such as exp[i(m + 1/2)φ] (where m is an
integer). This is the approach used by Kuppermann and coworkers.29,30

However, for other coordinate systems, more complicated molecules, or
when the conical intersection is not located at the symmetry point of the
hyperspherical coordinates, the double-valued boundary conditions can be
difficult to implement. For these more complicated cases, the vector poten-
tial approach, which is based on solving the generalized Born–Oppenheimer
Eq. (13) with single-valued boundary conditions, is often more convenient.
In 1994, Wu, Wyatt, and D’Mello31 included geometric phase effects in
scattering calculations for a model X3 system using the vector potential
approach. The motivation for using the vector potential approach in their
calculations was that double-valued boundary conditions are difficult to
implement in Jacobi coordinates. The development of numerical methods
for using the vector potential approach to include geometric phase effects
in quantum reactive scattering calculations for a real molecule occurred in
1996.12,22 This methodology uses symmetrized hyperspherical coordinates
and is capable of treating multiple conical intersections located at arbi-
trary points on the 2D hypersphere. In the first applications using this
method, the location of a conical intersection on the 2D hypersphere was
taken to be independent of hyper-radial coordinate ρ.12,22 In this case, the
angle η is a function of the two hyperangles (θ, φ). The method was later
generalized so that it can also treat the dependence of η on ρ.32 The vec-
tor potential approach has been applied to low-energy inelastic scattering
of H + O2(v , j ) → H + O2(v ′, j ′),12,22,32,33 to quantum reactive scattering
of H + D2(v, j) → HD(v′, j′) + D,34 D + H2(v, j) → HD(v′, j′) + H,35,36
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H + H2(v, j) → H2(v′, j′) + H,35 and to bound state calculations of HO2
32

and Na3.33,37

As mentioned above, our theoretical approach is based on symmetrized
hyperspherical coordinates x = (ρ, θ, φ).38–41 The radial coordinate ρ cor-
responds to a symmetric stretch motion, the polar angle θ represents a
bending type motion, where θ = π/2 corresponds to linear geometries and
θ = 0 corresponds to T-shaped arrangements (equilateral triangles for equal
mass nuclei), and the azimuthal angle φ corresponds to an internal kine-
matic rotation (i.e. a pseudo-rotational motion). The body-frame z axis
is chosen perpendicular to the plane of the triatomic molecule, and the
body-frame x and y axes are chosen to lie along the instantaneous princi-
pal axes of inertia (i.e. the Q and q vectors of Ref. 42, respectively). The
orientation of the body-frame relative to the space-frame is given by the
three Euler angles, so that the collective set of six coordinates is given by
R = (ρ, θ, φ, α, β, γ). The Schrödinger equation for the nuclear motion is
solved in two steps.42 In the first step, the radial variable ρ is partitioned
into a large number of “sectors” and the five dimensional surface (angu-
lar) differential equation is solved with ρ fixed at the center of each sector.
This step is independent of the scattering energy. The surface solutions are
used to compute the potential coupling and overlap matrices which appear
in the coupled-channel (CC) radial equations. In the second step, the CC
radial equations are solved at each scattering energy using a log-derivative
propagation technique.43,44 Once we have solved the CC radial equations,
we apply the boundary conditions to the log-derivative matrix at large ρ to
obtain the scattering matrix S.34,42

The five dimensional surface function solutions are expanded in terms
of a hybrid basis set consisting of a Discrete Variable Representation
(DVR)45–47 in the hyperangle θ, a Finite Basis Representation (FBR) in the
azimuthal angle φ, and the appropriate set of normalized Wigner D̃(α, β, γ)
functions.48 The hybrid basis set accurately treats both of the Eckart49 sin-
gularities which occur in the kinetic energy operator at the north pole
and equator of the 2D hypersphere in (θ, φ) for all values of total angular
momentum J (see Ref. 48 for details). This basis set also allows for an accu-
rate treatment of geometric phase effects and is highly parallelizable.34,50

The surface function Hamiltonian is diagonalized in parallel using a parallel
implementation of the Implicitly Restarted Lanzcos Method (IRLM).51–53
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A careful choice of the numerical quadrature scheme and a large set of
quadrature points are required in order to obtain accurate matrix elements
of the vector potential terms in Eq. (13).12 The singularities in the terms
involving A2 are the most troublesome, since they involve r−2. The vol-
ume element cancels one of the r−1 singularities, but the integration of the
remaining r−1 singularity gives rise to a divergent logarithmic function.
Fortunately, the potential energy surface V (x) is highly repulsive near a
conical intersection, so that, for low collision energies, the nuclear motion
wave function has essentially zero amplitude near the conical intersection.
Thus, the problem with the singular A2 terms can be handled by intro-
ducing a cutoff so that when A2 > Acut, we set A2 = Acut. The cutoff
allows the numerical integrals to converge. The cutoff parameter Acut is
determined from convergence studies and is increased until the solutions
become insensitive to it.12,32,34

2.3. Applications

The methodology for solving the generalized Born–Oppenheimer equa-
tion described above was first applied to the inelastic scattering of
H + O2(v , j ) → H + O2(v ′, j ′) at low collision energies and zero total angu-
lar momentum (i.e. J = 0).12,22,32,33 The ground state electronic poten-
tial energy surface for the HO2 molecule contains a conical intersection
which occurs for T-shaped (C2v) geometries. It also contains two conical
intersections which occur for linear geometries. The minimum energy path-
way around each of the linear conical intersections exhibits a barrier of
about 0.42 eV relative to the asymptotic H + O2 potential well.54 Thus,
for total scattering energies below 0.42 eV, the nuclear motion wave func-
tion will not have appreciable amplitude along the entire minimum energy
pathway around the linear conical intersections, and the effects of the geo-
metric phase associated with these intersections can be ignored. However,
the minimum energy pathway around the C2v conical intersection contains
no barrier.54 Thus, the nuclear motion wave function can have significant
amplitude along the entire minimum energy pathway around this intersec-
tion, even for very low scattering energies near threshold. The C2v conical
intersection in HO2 gives rise to a geometric phase which alters the sym-
metry of the nuclear motion wave function, causing it to simultaneously
exhibit both even and odd symmetry (with respect to an interchange of
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the two identical nuclei of 16O).12,32,55 Thus, the correct nuclear motion
wave functions exhibit even symmetry across the C2v saddle point and odd
symmetry across the C2v symmetry line for H–O2 geometries (see Fig. 5 in
Ref. 12 and the discussion of symmetry in Refs. 55 and 56). The odd sym-
metry for H–O2 correlates to the odd rotational levels of O2 (due to Bose
statistics only the odd rotational levels of O2 are physically allowed).57 In
order to quantify the effects of the geometric phase due to the C2v conical
intersection, two sets of calculations were performed. One set included the
geometric phase by using the vector potential approach (i.e. by solving the
generalized Born–Oppenheimer Eq. (13)). The other set did not include
the geometric phase and solved the standard Born–Oppenheimer Eq. (9).
Both sets of calculations implemented single-valued boundary conditions
on the nuclear motion wave function. Significant differences between the
two sets of calculations were observed. The transition probabilities were
computed as a function of total energy. Many of the probabilities which
include the geometric phase were found to be shifted in energy (i.e. “out-of-
phase”) with respect to those which did not include the geometric phase.22

The geometric phase also lowered the average J = 0 cumulative transition
probability for the lowest vibrational transition by 35%.32 Significant differ-
ences were also seen in the resonance spectrum. The geometric phase altered
many of the resonance energies and lifetimes. In addition, new resonances
appeared when the geometric phase was included, which were not present
in the spectrum calculated without the geometric phase. Similarly, many of
the resonances in the spectrum calculated without the geometric phase were
missing in the spectrum which included the geometric phase.22,32 Gauge
invariance was also tested by performing a third set of calculations which
solved the generalized Born–Oppenheimer Eq. (13) but with l = 2 [see
Eq. (15)]. The l = 2 results do not include geometric phase effects and
should be identical to the results based on solving the standard Born–
Oppenheimer Eq. (9) with single-valued boundary conditions (i.e. the l = 0
case). As expected, excellent agreement was observed between the l = 2 and
l = 0 calculations for the resonance spectrum and transition probabilities
which indicates that the calculations are well converged and that gauge
invariance is satisfied.22,32 In summary, the geometric phase significantly
alters the results of the calculations on H + O2 inelastic scattering and it
must be included in the theoretical treatment in order to obtain the correct
results.
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The vector potential approach was recently extended to include non-zero
total angular momentum.34 It was then used to perform quantum reactive
scattering calculations for the H + H2, D + H2, and H + D2 reactions, both
with and without the geometric phase.34–36 The H3 molecule contains a
conical intersection which occurs between the ground and first excited elec-
tronic states for equilateral (D3h) nuclear geometries. The minimum energy
of this intersection is quite high (2.7 eV relative to the bottom of the H2

well) so that, for low collision energies, the Born–Oppenheimer approxima-
tion is valid and the nuclear dynamics can be accurately calculated using
a single (ground state) electronic potential energy surface. However, due
to the low potential energy barrier (0.42 eV) between the different nuclear
arrangements, the nuclear motion wave function can have significant ampli-
tude along the entire minimum energy pathway around the conical inter-
section, even for relatively low collision energies. Thus, a correct theoretical
treatment of the H + H2 reaction (and its isotopic variants) must include
geometric phase effects.

The quantum reactive scattering calculations for the H + D2(v , j ) →
HD(v ′, j ′)+D reaction were done for each value of total angular momentum
J = 0 − 5 and inversion parity P = ± at 126 values of total energy in the
range 0.4–2.4 eV.34 The entire set of calculations were performed on two
different potential energy surfaces for H3: the Boothroyd–Keogh–Martin–
Peterson (BKMP2)58 and the Liu–Siegbahn–Truhlar–Horowitz (LSTH).59

The scattering results on each surface are quite similar. In mass scaled
symmetrized hyperspherical coordinates, the D3h conical intersection for
HD2 is located at θ = 14.478◦ and φ = π for all values of ρ. Since the nuclei
of the two D atoms in HD2 are spin-1 Bosons,57 the total molecular wave
function [Ψ of Eq. (8)] must be symmetric under a permutation (P) of the
two identical nuclei. Since the nuclear spin is S = 1, we have a total of (2S+
1)2 = 9 nuclear spin states with (2S + 1)(S + 1) = 6 being symmetric and
(2S + 1)S = 3 being antisymmetric. The symmetric states have the larger
statistical weight and are called ortho-D2. The antisymmetric states are
called para-D2. Since the ground electronic state of H2 is a 1Σ+

g state,60 we
know that asymptotically (i.e. for large ρ) the electronic wave function for
H–D2 is symmetric. Since the total wave function must be symmetric and
the electronic wave function is symmetric, we know that for ortho (para)-D2

the nuclear motion wave function (Ψ) must be symmetric (antisymmetric)
for H–D2. Thus, for ortho-D2 the symmetry of the nuclear motion wave
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function must be even across the C2v symmetry line for H–D2 geometries
(i.e. to the right of the conical intersection in Fig. 2 of Ref. 34). Since the
geometric phase causes the electronic wave function to be double-valued, the
electronic wave function exhibits odd symmetry across the C2v symmetry
line which lies to the left of the conical intersection in Fig. 2 of Ref. 34. This
implies that the nuclear motion wave function must also be double-valued
and exhibit odd symmetry to the left of the conical intersection, so that Bose
statistics is satisfied. For para-D2, the symmetry arguments are reversed.

The reaction probabilities for H + D2 were computed as a function of
total energy for each value of JP . Many of the reaction probabilities which
include the geometric phase exhibit an “out-of-phase” behavior relative to
those which do not include the geometric phase for total energies above
about 1.6 eV (see Figs. 7 and 8 of Ref. 34). This “out-of-phase” behavior
alternates “phase” with even and odd values of J . When the contributions
from even and odd values of J are added together to obtain the partial
integral and differential cross sections, all of the geometric phase effects
completely cancel out (see Fig. 10 of Ref. 34). No geometric phase effects
were observed in any of the state-to-state partial integral and differential
cross sections summed over the first six values of J for all 126 values of total
energy (see Figs. 9, and 11–15 of Ref. 34). The cancellation of the geometric
phase effects when even and odd values of J are added together appears
to be related to the alternating symmetry of the surface function solutions
with respect to even and odd values of J . The alternating symmetry causes
the differences between the surface function energies computed with and
without the geometric phase to alternate sign with respect to even and odd
values of J (see Fig. 3 of Ref. 34). Since the cancellation of all geometric
phase effects in the partial integral and differential cross sections appears
to be due to symmetry, it was concluded in Ref. 34 that the cancellation
should be independent of the potential energy surface and should continue
to hold for higher values of J . This would imply that there are no geometric
phase effects in fully converged integral and differential cross sections. The
cancellation of all geometric phase effects would explain why fully converged
quantum reactive scattering calculations for the H + D2 reaction which
ignore geometric phase effects50,61–67 are in excellent agreement with recent
high resolution molecular beam experiments.64,65,68,69

The quantum reactive scattering calculations for the D + H2(v , j ) →
HD(v ′, j ′)+H reaction were done for each value of total angular momentum
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J = 0 − 34 and inversion parity P = ± at 48 values of total energy
in the range 0.4–2.32 eV.35,36 The Boothroyd–Keogh–Martin–Peterson
(BKMP2)58 potential energy surface for H3 was used. In mass scaled sym-
metrized hyperspherical coordinates, the D3h conical intersection for DH2

is located at θ = 11.537◦ and φ = 0 for all values of ρ. Since the nuclei of
the two H atoms in DH2 are spin-1/2 fermions,57 the total molecular wave
function [Ψ of Eq. (8)] must be antisymmetric under a permutation (P) of
the two identical nuclei. Since the nuclear spin is S = 1/2, we have a total of
(2S +1)2 = 4 nuclear spin states with (2S +1)(S +1) = 3 being symmetric
and (2S + 1)S = 1 being antisymmetric. The symmetric states have the
larger statistical weight and are called ortho-H2. The antisymmetric states
are called para-H2. Since the ground electronic state of H2 is a 1Σ+

g state,60

we know that asymptotically (i.e. for large ρ) the electronic wave function
for D–H2 is symmetric. Since the total wave function must be antisymmet-
ric and the electronic wave function is symmetric, we know that for ortho
(para)-H2 the nuclear motion wave function (Ψ) must be antisymmetric
(symmetric) for D–H2. Thus, for ortho (para)-H2 the nuclear motion wave
function is antisymmetric (symmetric) across the C2v symmetry line to the
right of the conical intersection. As mentioned above, the geometric phase
alters the symmetry of the real electronic wave function for D–H2 so that
it is antisymmetric across the C2v symmetry line to the left of the conical
intersection. This change in symmetry is a direct consequence of the wave
function’s double-valuedness. Thus, in order for the total molecular wave
function to satisfy Fermi statistics, the nuclear motion wave function for
ortho (para)-H2 must be symmetric (antisymmetric) across the C2v sym-
metry line to the left of the conical intersection.

Many of the state-to-state reaction probabilities for D+H2 which include
the geometric phase were also found to exhibit an “out-of-phase” behavior
as a function of scattering energy relative to those which do not include the
geometric phase.35,36 For example, Fig. 2 plots the reaction probabilities
for D + H2 (v = 1, j = 0) → HD(v′ = 0, j′ = 0) + H as a function of
total energy for all J ≤ 19. We note that for zero initial rotational angular
momentum (i.e. j = 0), the only non-zero reaction probabilities are for
even J + P . The solid curves and data points do not include the geometric
phase. The short dashed curves and open squares include the geometric
phase and are based on the vector potential approach. At high energies,
significant “out-of-phase” behavior occurs between the results which include
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Fig. 2. Reaction probabilities for D + H2(v = 1, j = 0) → HD(v′ = 0, j′ = 0) + H are plotted as a function of total energy
for all values of J ≤ 19. The solid curves and data points do not include the geometric phase. The short dashed curves and open
squares include the geometric phase. The numbers labeling each set of curves denote the value of JP . The curves are shifted to
make viewing easier. The flat part of the curves near 0.5 eV corresponds to zero probability and indicates the value of the shift.
The data points are calculated values and the curves are a cubic spline fit.
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the geometric phase and those which do not. The “out-of-phase” behavior
alternates “phase” with respect to even and odd J . Compare the solid and
dashed curves for J = 0 − 3 near 2.15 eV. For J = 0 the dashed curve is
above the solid curve and for J = 1 the dashed curve is below the solid
curve. Similar behavior occurs for J = 2 and 3. More alternating “out-of-
phase” behavior can be seen for other energies and values of J (especially for
Etot > 1.9 eV and J ≥ 16). The alternating “out-of-phase” behavior in the
reaction probabilities appears to be related to the alternating symmetry
of the Wigner D functions with respect to even and odd J . When the
contributions from even and odd values of J are added together to obtain
fully converged integral and differential cross sections, all of the geometric
phase effects completely cancel out.35,36 For example, Figs. 3 and 4 plot the
degeneracy averaged rotational distribution and differential cross sections
for D+H2 (v = 0, j = 0) → HD(v′ = 0, j′) + H at Etot = 1.25 eV summed
over all values of J ≤ 34, respectively. There are two sets of curves in Figs. 3
and 4. The solid curves and data points do not include the geometric phase.
The short dashed curves and open squares include the geometric phase. In
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Fig. 3. The degeneracy averaged rotational distribution is plotted for D + H2(v = 0,
j = 0) → HD(v′ = 0, j′) + H at Etot = 1.25 eV summed over all J ≤ 34. Two curves
are plotted. The solid curve and data points do not include the geometric phase. The
short dashed curve and open squares include the geometric phase. The geometric phase
results lie directly on top of the results which ignore the geometric phase.
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Fig. 4. The degeneracy averaged differential cross sections are plotted for D + H2(v =
0, j = 0) → HD(v′ = 0, j′) + H at Etot = 1.25 eV summed over all J ≤ 34. The number
next to each curve labels the value of j′. The solid curves and data points do not include
the geometric phase. The short dashed curves and open squares include the geometric
phase. The geometric phase results are almost identical to the results which ignore the
geometric phase.

both figures, the results which include the geometric phase are essentially
identical to those which do not include the geometric phase (i.e. the open
squares cover the solid squares).

Figures 5 and 6 plot the degeneracy averaged rotational distribution and
differential cross sections for D + H2 (v = 1, j = 1) → HD (v′ = 1, j′) + H
at Etot = 1.8 eV summed over all values of J ≤ 34, respectively. There are
two sets of curves in Figs. 5 and 6. The solid curves and data points do
not include the geometric phase. The short dashed curves and open squares
include the geometric phase. In Fig. 5 the results which include the geomet-
ric phase are identical to those which do not include the geometric phase
(i.e. the open squares cover the solid squares). Figure 5 also contains two
additional curves which include the geometric phase but are summed over
J ≤ 33 and 32. These curves correspond to the short dashed curves with
the smaller open squares. The results which are summed over J = 32, 33,
and 34 are nearly the same which indicates that this rotational distribution
is converged with respect to the sum over J . In Fig. 6 the results which
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Fig. 5. The degeneracy averaged rotational distribution is plotted for D + H2(v = 1,
j = 1) → HD(v′ = 1, j′) + H at Etot = 1.8 eV summed over all J ≤ 34. The solid
curve and data points do not include the geometric phase. The short dashed curve and
open squares include the geometric phase. The geometric phase results lie directly on top
of the results which ignore the geometric phase. The two short dashed curves with the
smaller open squares include the geometric phase but are summed over all J ≤ 32 and
33. These results are nearly the same as those summed over all J ≤ 34 which indicates
convergence.

include the geometric phase are very similar to those which do not include
the geometric phase. Some small “out-of-phase” behavior can be seen which
increases in amplitude as j′ is increased. Based on our convergence stud-
ies for other initial and final states and values of total energy, we suspect
that the increasing amplitude of the “out-of-phase” behavior in Fig. 6 with
increasing j′ is due to the lack of convergence of these differential cross
sections with respect to the sum over J . We expect that another four or
six values of J will be required to fully converge all of the differential cross
sections in Fig. 6. We also expect that the amplitude of the “out-of-phase”
behavior for j′ > 6 will decrease as the sum over J is increased to its fully
converged value.

Figure 7 plots the degeneracy averaged differential cross section for D+
H2 (v = 1, j = 1) → HD (v′ = 1, j′ = 8) + H at Etot = 1.8 eV. There are
four sets of curves in Fig. 7. The solid curves and data points do not include
the geometric phase. The short dashed curves and open squares include
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Fig. 6. The degeneracy averaged differential cross sections are plotted for D + H2(v =
1, j = 1) → HD (v′ = 1, j′) + H at Etot = 1.8 eV summed over all J ≤ 34. The number
next to each curve labels the value of j′. The solid curves and data points do not include
the geometric phase. The short dashed curves and open squares include the geometric
phase. The geometric phase results are very similar to those which ignore the geometric
phase. Some small “out-of-phase” behavior can be seen which increases in amplitude as
j′ is increased (see text for discussion and Fig. 7).

the geometric phase. The thick curves and large data points correspond
to summing over all J ≤ 34. The thinner curves and smaller data points
correspond to summing over all J ≤ 33. The differences between the thin
and thick curves indicates the level of convergence. The main features of
the cross section appear to be well converged between about θ = 50◦ and
θ = 160◦. Larger differences occur in the forward θ = 0◦ and backward
θ = 180◦ scattering regions. The amplitude of the “out-of-phase” behavior
between the solid and short dashed curves in the region between θ = 90◦

and θ = 130◦ is similar to the differences between the thin and thick curves
in this region.

The cancellation of the geometric phase effects in both the integral and
differential cross sections with respect to the sum over J occurs for all of the
energies and all of the initial and final states that we have looked at. Some
small amplitude “out-of-phase” behavior is seen in some of the differential
cross sections but these differences are typically quite small (usually less
than 5%). We estimate that our calculations are accurate to within a few
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Fig. 7. The degeneracy averaged differential cross section is plotted for D + H2(v = 1,
j = 1) → HD(v′ = 1, j′ = 8) + H at Etot = 1.8 eV. The solid curves and data points do
not include the geometric phase. The short dashed curves and open squares include the
geometric phase. The thicker curves and larger data points are summed over all J ≤ 34.
The thinner curves and smaller data points are summed over all J ≤ 33. The small
differences between the results which are summed over all J ≤ 34 and 33 indicate the
level of convergence (see text for discussion).

percent. Thus, for all of the initial and final states and values of total energy
that we have considered, most of the differences between the differential
cross sections computed with and without the geometric phase are about
the same as the numerical uncertainties in our calculations. We conclude
that there are no significant geometric phase effects in the fully converged
integral and differential cross sections for the D + H2 reaction at all of the
energies that we have considered.

The geometric phase calculations for D + H2 were done using both
the double-valued basis set approach and the vector potential approach.
As expected, the results and conclusions using these two methods are the
same. The double-valued basis set approach is based on the same scatter-
ing codes which were used to obtain fully converged integral and differential
cross sections for the H + D2 reaction without the geometric phase.50 The
double-valued basis set approach is implemented by changing one line of
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code which replaces the basis set exp(imφ) with exp(i(m + 1/2)φ). The
D + H2 calculations confirm that the cancellation of the geometric phase
effects with respect to the sum over J holds for fully converged integral
and differential cross sections. Since the cancellation appears to be due to
symmetry, we expect that it will probably occur for other A + B2 systems
as well (such as H + D2 and H + O2).

The quantum reactive scattering calculations for the H + H2(v, j) →
H2(v′, j′) + H reaction were done at 96 values of total energy in the range
0.5–2.42 eV for each value of total angular momentum J = 0 − 10.35 The
Boothroyd–Keogh–Martin–Peterson (BKMP2)58 potential energy surface
for H3 was used. Since the masses of the three atoms are all equal, the
D3h conical intersection is located at θ = 0. The nuclei of H3 are spin-
1/2 fermions. Thus, the total molecular wave function [Ψ of Eq. (8)] must
be antisymmetric under a permutation (P) of any two identical nuclei.
Since the nuclear spin is S = 1/2, we have a total of (2S + 1)3 = 8
nuclear spin states. Due to the 3-fold symmetry of H3 the nuclear spin
states can be classified using the irreducible representations of the permu-
tation group S3. The irreducible representations of S3 are A1 (symmetric),
A2 (antisymmetric), and E (doubly degenerate). The number of spin states
of A1, A2, and E symmetry are given by (2S + 1)(2S + 3)(S + 1)/3 = 4,
(2S+1)(2S−1)S/3 = 0, and (2S+1)(S+1)8S/3 = 4, respectively.33,70 Since
the E representation is two dimensional, there are two distinct spin states of
E symmetry and each one consists of two components which makes a total
of four. The two components in each spin state are labeled by ±ms (the
z component of the total nuclear spin). The nuclear motion wave function
(Ψ) can also be classified using the irreducible representations of the per-
mutation group S3. Since the ground state of H2 is a 1Σ+

g state,60 we know
that asymptotically (i.e. for large ρ) the electronic wave function for H–H2

is symmetric. Thus, for the A1 (symmetric) nuclear spin states, we must
choose the nuclear motion wave function (Ψ) to be of A2 symmetry (i.e.
antisymmetric) for H–H2 so that the total wave function is antisymmetric.
Similarly, for the E nuclear spin states, we must choose the nuclear motion
wave function (Ψ) to be of E symmetry for H–H2. The two distinct nuclear
spin states of E symmetry combine with each doubly-degenerate nuclear
motion wave function of E symmetry to form two symmetric and two anti-
symmetric functions. Only the two antisymmetric functions are physically
allowed. Since the real electronic wave function for H3 is symmetric for
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H–H2, we know that it is symmetric across the symmetry line which extends
radially outward from the origin at φ = 0 (i.e. to the right of the coni-
cal intersection). It is also symmetric across the two symmetry lines which
extend radially outward from the origin at φ = ±120◦. The geometric phase
alters the symmetry of the real electronic wave function for H3, so that it
is also antisymmetric across the symmetry line which extends radially out-
ward from the origin at φ = ±π (i.e. to the left of the conical intersection).
By symmetry, it is also antisymmetric across the two symmetry lines which
extend radially outward from the origin at φ = ±60◦. The antisymmetric
behavior is a direct consequence of the wave function’s double-valuedness.
In order to satisfy Fermi statistics for all nuclear geometries, the product
of the nuclear motion wave function and nuclear spin wave function must
also be double-valued and be antisymmetric across the symmetry lines at
φ = 0, φ = +120◦, and φ = −120◦. The product must also be symmetric
across the symmetry lines at φ = π, φ = +60◦, and φ = −60◦.

Significant geometric phase effects occur in many of the reaction prob-
abilities for H + H2, especially for total energies above about 1.9 eV.35 For
example, Fig. 8 plots the reaction probability for H + H2 (v = 0, j = 1) →
H2(v′ = 1, j′ = 2) + H and zero total angular momentum (J = 0) as a
function of total energy. Significant differences occur between the results
which include the geometric phase (the solid curve and squares) and those
which do not (the dashed curve and open squares) for energies above about
1.9 eV. The dashed curve and open squares include the geometric phase
and are based on the vector potential approach with l = 3/2. The long-
dashed curve and Xs also include the geometric phase, but are based on
the double-valued basis set approach. The double-valued basis set approach
uses the same computer codes that were used in the calculations which do
not include the geometric phase. The only difference is one line of code
which replaces the basis set exp(imφ) with exp(i(m+3/2)φ). As expected,
the results based on the double-valued basis set approach are in good agree-
ment with those based on the vector potential approach. Gauge invariance
is also verified by performing the calculations using the vector potential
approach but with l = 9/2 and l = 6/2. The l = 9/2 results are related
to those with l = 3/2 by a gauge transformation. The dashed curve and
open triangles in Fig. 8 are the results using l = 9/2. As expected, good
agreement is observed between the l = 9/2 and l = 3/2 reaction proba-
bilities. The l = 6/2 results are related to those with l = 0 by a gauge
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Fig. 8. The reaction probability for H + H2(v = 0, j = 1) → H2(v′ = 1, j′ = 2) + H
and zero total angular momentum (J = 0) is plotted as a function of energy. The solid
curve and solid squares do not include the geometric phase. The short dashed curve and
open squares include the geometric phase and are based on the vector potential approach
with l = 3/2. The short dashed curve and open triangles also include the geometric phase
and are based on the vector potential approach but are computed with l = 9/2. The long
dashed curve and Xs also include the geometric phase but are based on the double-valued
basis set approach. The short-long dashed curve and solid triangles do not include the
geometric phase but are computed using the vector potential approach with l = 6/2.
The data points are calculated values and the curves are a cubic spline fit.

transformation and correspond to doing the calculations without the geo-
metric phase. The short-long dashed curve and solid triangles in Fig. 8
are the results using l = 6/2. As expected, good agreement is observed
between the l = 6/2 and l = 0 reaction probabilities. Gauge invariance and
the good agreement between the double-valued basis set approach and the
vector potential approach are also observed for other initial and final states
and nonzero values of J .

Figure 9 plots the degeneracy averaged partial integral cross sections for
H + H2(v = 0, j = 0) → H2(v′ = 1, j′ = 0 − 3) + H as a function of energy
and include all J ≤ 10. The solid curve and solid squares do not include
the geometric phase. The short dashed curve and open squares include the
geometric phase and are based on the vector potential approach. For the
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Fig. 9. Degeneracy averaged partial integral cross sections for H + H2(v = 0,
j = 0) → H2(v′ = 1, j′ = 0 − 3) + H summed over all J ≤ 10 are plotted as a function
of energy. The solid curve and solid squares do not include the geometric phase. The
short dashed curve and open squares include the geometric phase and are based on
the vector potential approach. The short dashed curve and open triangles are based on
the calculations which ignore the geometric phase but are computed using the opposite
sign for the interference terms between reactive and non-reactive contributions, for the
para → para transitions. The data points are calculated values and the curves are a cubic
spline fit.
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para → ortho transitions there are no significant differences between the
cross sections computed with and without the geometric phase. However,
for the para → para transitions, significant differences occur between the
cross sections computed with and without the geometric phase, even for
relatively low energies. These differences are due to the change in the sign of
the interference terms between the reactive and nonreactive contributions.35

This can be verified by doing the calculations without the geometric phase,
but changing the sign on the interference terms. The short-long dashed
curve and open triangles are based on the calculations which ignore the
geometric phase, but use the opposite sign on the interference terms. We see
that the short-long dashed curve and open triangles are essentially identical
to the results which include the geometric phase (the short dashed curve
and open squares).

Figure 10 plots the degeneracy averaged partial differential cross sec-
tions for H+H2(v = 0, j = 0) → H2(v′ = 1, j′ = 0−3) + H at Etot = 1.8 eV
and include all J ≤ 10. The solid curve and solid squares do not include the
geometric phase. The short dashed curve and open squares include the geo-
metric phase and are based on the vector potential approach. For the para →
ortho transitions there are no significant differences between the differential
cross sections computed with and without the geometric phase. However,
for the para → para transitions, significant “out-of-phase” behavior occurs
between the differential cross sections computed with and without the geo-
metric phase. These differences are due to the change in the sign of the
interference terms between the reactive and nonreactive contributions. This
can be verified by doing the calculations without the geometric phase, but
using the opposite sign on the interference terms. The short-long dashed
curve and open triangles are based on the calculations which ignore the geo-
metric phase, but use the opposite sign on the interference terms. We see
that the short-long dashed curve and open triangles are essentially identical
to the results which include the geometric phase (the short dashed curve
and open squares).

3. Conclusions

We reviewed the fundamental theory for including the geometric phase
in quantum reactive scattering calculations based on a single adiabatic
electronic potential energy surface. Two methods were discussed. In one
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approach, the standard Born–Oppenheimer equation for the nuclear motion
is solved, but with double-valued boundary conditions. In the second
approach, a generalized Born–Oppenheimer equation for the nuclear motion
is solved using single-valued boundary conditions. The generalized Born–
Oppenheimer equation for the nuclear motion contains a vector poten-
tial which has the same mathematical properties as that of a magnetic
solenoid centered at the conical intersection. Either approach is valid and
will give the same results for the physical observables. In different sit-
uations, one approach may be more convenient to implement than the
other.

We discussed the recently developed numerical methodology for solving
the generalized Born–Oppenheimer equation for the nuclear motion. This
methodology is based on symmetrized hyperspherical coordinates and can
be used for both quantum reactive scattering and bound state calculations.
Several applications using this methodology were discussed. In particular,
the low-energy inelastic scattering of H + O2 and the quantum reactive
scattering of H + H2, D + H2, and H + D2 were discussed. The geometric
phase alters the symmetry of the nuclear motion wave function, causing it to
simultaneously exhibit both even and odd symmetry under an interchange
of any two identical nuclei. This change in symmetry gives rise to an “out-of-
phase” behavior in the transition probabilities for H + O2 and the reaction
probabilities for H+D2 and D+H2. It also alters many of the lifetimes and
energies of the resonances in H + O2. In the H + D2 reaction, the effects
of the geometric phase completely cancel out in the partial integral and
differential cross sections at all energies when the contributions from even
and odd values of J ≤ 5 are added together. This cancellation appears
to be related to the alternating symmetry of the Wigner D functions with
respect to even and odd J . Similarly, in the D+H2 reaction, the effects of the
geometric phase completely cancel out in the fully converged integral and
differential cross sections at all energies when the contributions from even
and odd values of J ≤ 34 are added together. Significant geometric phase
effects are seen in the reaction probabilities for H + H2 at high energies.
For para → ortho and ortho → para transitions, the effects of the geometric
phase completely cancel out in the partial integral and differential cross
sections at all energies when the contributions from even and odd values of
J ≤ 10 are added together. However, for para → para and ortho → ortho
transitions, significant geometric phase effects appear in the partial integral
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and differential cross sections summed over all J ≤ 10, even for relatively
low energies. These large geometric phase effects are due to the change
in sign of the interference terms between the reactive and non-reactive
contributions to the cross sections. This sign change is a direct consequence
of the double-valuedness of the real adiabatic electronic wave function which
changes sign under a cyclic permutation of the three identical nuclei in H3.9

The calculations for D+H2 and H+H2 which include the geometric phase
were done using both the double-valued basis set approach and the vector
potential approach. As expected, these two methods give the same results
and conclusions.

The effects of the geometric phase at low energies for the para → para
and ortho → ortho transitions in H + H2 were first predicted by Mead9 in
1980. He showed that the geometric phase changes the sign of the inter-
ference terms between the reactive and non-reactive contributions to the
cross sections. Thus, significant geometric phase effects can occur whenever
the interference between reactive and non-reactive processes is important.
Mead claimed that, for low energies, the effects of the geometric phase can
be treated by doing the calculations without the geometric phase, but com-
puting the cross sections with the opposite sign on the interference terms.
However, for high energies, an accurate calculation based on the double-
valued basis set approach or the vector potential approach is required. Our
results indicate that Mead’s procedure is probably accurate even for high
energies. All other geometric phase effects in the cross sections appear to
cancel out when summed over J .

We conclude that the effects of the geometric phase in chemical reaction
dynamics can be important for chemical reactions which contain three or
more identical nuclei. For these reactions, the geometric phase can signifi-
cantly alter the integral and differential cross sections whenever the inter-
ference between reactive and non-reactive processes is important. Further-
more, it appears that the effects of the geometric phase for these reactions
can be taken into account by simply applying Mead’s procedure. However,
more work is needed in order to investigate the importance of the geometric
phase in chemical reaction dynamics when more than one conical intersec-
tion is present (such as in the H + O2 → OH + O reaction). Because of
its fundamental nature, the H + H2 reaction is an excellent candidate for
both theoretical and experimental studies. The differential cross sections for
the para → para and ortho → ortho transitions in the H + H2 reaction are
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probably the best candidates for an experimental confirmation of geometric
phase effects in a chemical reaction.
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1. Introduction

The coupling between electronic potential energy surfaces (PESs) through
nuclear vibrational degrees of freedom is a generic feature of polyatomic
molecules. Such a coupling, commonly referred to as vibronic coupling, ini-
tiates a wide variety of new phenomena in molecular dynamics.1,2 Par-
ticularly, conical intersections of PESs in this context are most common
in polyatomic molecular systems and have made considerable impact,3–8

which is attested by the appearance of many articles in the present book.
Conical intersections are characterized by a degeneracy of two PESs

in an (N − 2)-dimensional vibrational subspace (N being the total num-
ber of vibrational degrees of freedom) of the molecule and a lifting of the
degeneracy in first-order with respect to nuclear displacement coordinates
out of the degeneracy space. The locus of this degeneracy is called a seam,
on which the derivative matrix elements of the electronic wave functions
with respect to the nuclear coordinates (known as nonadiabatic coupling)
diverge and the nonadiabatic effects can become very strong.4

The existence of conical intersections of the electronic PESs leads to a
complete break-down of the well-known Born–Oppenheimer (BO) or adia-
batic approximation.9,10 As a result, it is necessary to monitor the nuclear
motions simultaneously on more than one electronic PES in a nuclear
dynamical study, which amounts to solving highly complex coupled dif-
ferential equations. In an adiabatic electronic basis, the coupling between
the electronic states is caused by the off-diagonal elements of the nuclear
kinetic energy operator. These off-diagonal elements form a part of the
nonadiabatic coupling matrix Λ and diverge at the point of intersection of
the electronic states.4 The elements of the matrix Λ are given by4,6,10,11

Λij = −
∫

drΦ∗
i (r,R) [Tn, Φj(r,R)] , (1)

where Φ represents the electronic states, Tn the nuclear kinetic energy oper-
ator and r and R collectively denote the electronic and nuclear coordinates,
respectively. In terms of the first- and second-order derivative couplings, Λij

can be written as (for Cartesian coordinates)4,11

Λij = −
∑

k

�
2

Mk
Fij

∂

∂Rk
−

∑
k

�
2

2Mk
Gij , (2)
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where Mk are nuclear masses and

Fij = 〈Φi(r)|∇k|Φj(r)〉 , (3)

Gij = 〈Φi(r)|∇2
k|Φj(r)〉 , (4)

in which ∇k ≡ ∂/∂Rk. The quantity Λij is Hermitian and represents the
nonadiabatic coupling effects in the adiabatic electronic representation.
Note that Fij is anti-Hermitian and Gij is non-Hermitian. The elements
Gii constitute the diagonal part of Λ and Fij describes the off-diagonal
derivative coupling terms (for real electronic wave functions). In the usual
BO approximation, Λ is set to zero altogether. If the diagonal Gii elements
are retained only, then one arrives at what is known as the Born–Huang
(BH) representation.10

The derivative matrix elements Fij can be expressed according to the
well-known Hellmann–Feynman type of relation as4

Fij = 〈Φi|∇|Φj〉 =
〈Φi|∇He(r,R)|Φj〉

Vi(R) − Vj(R)
, (5)

where He defines the electronic Hamiltonian for fixed nuclear coordinates.
At the degeneracy of the two surfaces, Vi(R) = Vj(R), and the Fij exhibit
a singular behavior. As a result, the electronic wave function becomes dis-
continuous and the energy has a cusp like behavior at such points, making
the adiabatic representation unsuitable for the numerical simulation of the
dynamics. In order to deal with this situation, one resorts to a diabatic
electronic representation, where these diverging kinetic energy coupling ele-
ments are transformed into smooth potential energy couplings and thereby
the discontinuity of the adiabatic representation is avoided.12–14 The dia-
batic molecular states are constructed by a unitary transformation of the
corresponding adiabatic electronic states. The Hamiltonian in the diabatic
representation Hd can be obtained from that in the adiabatic representation
Had through the following unitary transformation

Hd = SHadS† = Tn1 + W. (6)

Here S defines the orthogonal transformation matrix. For a 2 × 2
Hamiltonian S is given by

S =
(

cos α sin α

− sin α cos α

)
, (7)
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where α represents the adiabatic-to-diabatic transformation angle and Ψd =
SΨad. In doing so, the diverging kinetic couplings of Eq. (5) are transformed
into the smooth potential coupling [off-diagonal elements of W in Eq. (6)]
and thereby the discontinuity of the adiabatic representation is avoided.
Various approximate schemes are proposed in the literature to construct
(quasi) diabatic electronic states for polyatomic molecular systems (see, for
example, the reviews in Refs. 15–17 and Chapter 3).

The study of molecular dynamics on conically intersecting PESs has
mainly focused on the spectroscopy of bound molecular systems, in par-
ticular, optical and photoelectron spectroscopy. The typical scenario that
emerged from these studies is an ultrafast decay of the excited molecular
states, a seemingly diffuse line structure in the corresponding electronic
transition,4,6 and also geometric phase (GP) effects.18 It is only recently
that attention has been paid to the possible implications of conical inter-
sections on photodissociation,19 reactive scattering20–27 and photochemical
transitions5,8 (also see the related Chapters 6, 11 and 12 in this book).
Unlike the spectroscopy of bound molecular systems, where small-amplitude
molecular vibrations are of major significance, in order to deal with the pho-
todissociation and reactive scattering dynamics, it is important to describe
the large-amplitude molecular vibrations and the asymptotic behavior of
molecular PESs. Much of the complexity in the treatment of the disso-
ciation of a molecule on multi-sheeted PESs arises from the difficulty in
constructing suitable diabatic electronic potentials of reasonable accuracy.

The effect of conical intersections on the state-specific and state-to-
state reactive and nonreactive scattering attributes was demonstrated with
the aid of an extended two coordinate quasi Jahn–Teller (JT) model.28

In recent years, the photodissociation dynamics of triatomic molecules, for
example O3 and H2S, have been studied by calculating the diabatic elec-
tronic states and their couplings employing an ab initio approach.19 The
reactive scattering dynamics of insertion reactions, for example, C + H2,20

O + H2,21–23 Cl + HCl,24 N + H2,25 S + H2
26 and N + O2,27 where sur-

face coupling is believed to play an important role, have been studied (also
see the review article in Ref. 29). In the following, we consider our recent
work30 on the thermal reactive scattering of a bimolecular system on a
conically intersecting manifold of two electronic states and describe the
multi-state quantum flux operator formalism within a time-dependent wave
packet (WP) approach. This formalism is applied to the H + H2 exchange
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reaction in order to calculate the initial state-selected and energy-resolved
reaction probabilities. These nonadiabatic reaction probabilities are com-
pared with the adiabatic ones obtained only with the lower adiabatic sheet
of its double-sheeted potential energy surface and the differences are ana-
lyzed and discussed.

2. Theory

In the following we consider a bimolecular A + BC type of reaction occur-
ring on the conically intersecting manifold of two electronic states. The ini-
tial state-selected and energy-resolved reaction probabilities are calculated
through the quantum flux operator and a time-dependent WP approach.
The formalism describes the representation of the flux operator in a two-
state adiabatic as well as a diabatic basis, and calculation of state-selected
reaction probabilities in both basis sets. The initial WP pertinent to the
reactants is prepared in the adiabatic electronic representation (as in the
case of all previous studies) and time-propagated in the coupled diabatic
manifold. Finally the scattering attributes are analyzed in both the adia-
batic as well as diabatic electronic basis and the identity of the results is
confirmed by applying this formalism to the H + H2 exchange reaction as
a reference.

In what follows, we use the mass-scaled reactant channel body-fixed
Jacobi coordinates R, r, γ in order to describe the A + BC collisions for
the total angular momentum J = 0 (planar collisions). The two Jacobi
distances are denoted as R (distance of A from the center-of-mass of BC)
and r (BC internuclear distance; not to be confused with the electronic
coordinates as stated in the introduction), respectively. The Jacobi angle
(angle between �R and �r ) is denoted by γ. The body-fixed z axis is defined
to be parallel to �R and BC lies in the (x, z) plane.

2.1. The Flux Operator

The quantum flux operator F̂ measures the probability current density.
The latter satisfies the continuity equation resulting from the invariance
of the norm of the wave packet in the coordinate basis. For a stationary
wave function, the probability density is independent of time and the flux
is constant across any fixed hypersurface. In reaction dynamics the flux
operator is most generally defined in terms of a dividing surface Θ which
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is a function of a suitable coordinate (the convenient choice is the reaction
coordinate) that separates the products from the reactants31

F̂ =
i

�
[H, Θ] . (8)

In the present case an obvious choice for Θ is given by

Θ = h(r − rd), (9)

where h is the heaviside step function which equals unity for positive argu-
ment and zero otherwise. rd is to be chosen far out in the product channel
to ensure the asymptotic motion for all r ≥ rd. Since Θ depends only on
coordinates, the electronic part of H commutes with it, therefore Eq. (8)
becomes

F̂ =
i

�
[Tn, Θ] . (10)

The two-state flux operator described below is derived from Eq. (10) in a
diabatic as well as in an adiabatic electronic basis. We note that the flux
operator is Hermitian and its other properties are well documented in the
literature.32 We note that the flux operator F̂ should not be confused with
the derivative coupling elements Fij introduced in Eq. (2).

2.2. Diabatic Electronic Representation

2.2.1. The Hamiltonian

The diabatic Hamiltonian for the coupled manifold of two electronic states
of the A + BC system can be written as

Hd = Tn + He,

= Tn

(
1 0
0 1

)
+

(
w11 w12

w21 w22

)
, (11)

where Tn and He are the nuclear and the electronic parts of the Hamiltonian
matrix. w11 and w22 are the energies of the two diabatic electronic states
coupled by the potential matrix elements w12 = w21. Tn, in terms of R, r, γ
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and for the total angular momentum J = 0 is given by33

Tn =
1
2µ

[
P 2

R + P 2
r

]
+

j2

2I
,

= − �
2

2µ

[
∂2

∂R2 +
∂2

∂r2

]
− �

2

2I

1
sin γ

∂

∂γ

(
sin γ

∂

∂γ

)
. (12)

Here PR and Pr are the momentum operators corresponding to the respec-
tive Jacobi distances. j is the BC rotational angular momentum operator
associated with the Jacobi angle γ. The quantity µ defines the three-body
uniform reduced mass, µ =

√
mAmBmC/(mA + mB + mC) (where mX

is the mass of the nuclei X), and I is the three-body moment of inertia
I = µR2r2/(R2 + r2).

2.2.2. The Flux Operator and Reaction Probability

In a diabatic representation, the kinetic energy operator Tn is diagonal
[Eq. (11)]; therefore the flux operator [Eq. (10)] possesses the same property
in this representation. Substituting Tn from Eq. (12) into Eq. (10) and
applying some straightforward algebra, the non-zero diagonal elements of
the flux operator are given by

f̂11 = f̂22 =
−i�

2µ

[
∂

∂r
δ(r − rd) + δ(r − rd)

∂

∂r

]
. (13)

The reaction probability is defined as the expectation value of this flux
operator in the basis of energy normalized time-independent reactive scat-
tering wave function evaluated at the dividing surface.31,34–38 We write this
wave function in the diabatic electronic basis as

|Φd(R, rd, γ, E)〉 =
(|φd

1(R, rd, γ, E)〉
|φd

2(R, rd, γ, E)〉
)

, (14)

where φd
1 and φd

2 correspond to the wave function components on the dia-
batic state 1 and 2, respectively. The initial state i (corresponding to a
specific vibrational v and rotational j state of the reagent BC) selected and
energy resolved reaction probability (summed over the final states f (v′, j′)
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of the product AB) is given by

PR
i (E) =

∑
f

|SR
fi|2 = 〈Φd(R, rd, γ, E)|F̂ d|Φd(R, rd, γ, E)〉 . (15)

The quantity SR
fi in the above equation is the reactive scattering matrix

from an initial state (i) of the reactant to a final state (f) of the product.
In terms of the component diabatic wave functions [Eq. (14)], the above
equation can be rewritten as

PR
i (E) =

2∑
k=1

〈φd
k(R, rd, γ, E)|f̂kk|φd

k(R, rd, γ, E)〉 ,

=
�

µ

2∑
k=1

Im
[〈

φd
k(R, rd, γ, E)

∣∣∣∣∂φd
k(R, rd, γ, E)

∂r

〉]∣∣∣∣
r=rd

. (16)

The quantity on the right hand side of the above equation is integrated
over the entire range of R and γ. The energy-normalized time-independent
reactive scattering wave function is calculated along the dividing surface at
r = rd as

|φd
k(R, rd, γ, E)〉 =

|ψd
k(R, rd, γ, E)〉

κE
. (17)

The function |ψd
k(R, rd, γ, E)〉 is obtained by Fourier transforming the time-

evolved WP |ψd
k(R, r, γ, t)〉 along the dividing surface

|ψd
k(R, rd, γ, E)〉 =

1√
2π

∫ +∞

−∞
eiEt/�|ψd

k(R, r, γ, t)〉dt|r=rd
. (18)

The quantity κE in Eq. (17) is the weight of the translational component
F (R) [see Eq. (35)] contained in the initial wave packet for a given total
energy E

κE =
( µ

2π�k

)1/2
∫ +∞

−∞
F (R)eikRdR , (19)

where k =
√

2µ(E − εvj)/�, with εvj being the initial ro-vibrational energy
of the BC molecule.
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2.3. Adiabatic Electronic Representation

2.3.1. The Hamiltonian

The electronic part of the Hamiltonian is diagonal in the adiabatic electronic
representation and the off-diagonal elements of the nuclear part describe the
nonadiabatic coupling between the two states. The adiabatic Hamiltonian
matrix can be obtained from the diabatic one of Eq. (11) via the transfor-
mation matrix S [cf. Eq. (7)] as

Had = S†HdS,

= Tn1 + S† [Tn,S] +
(

V− 0
0 V+

)
, (20)

where Tn represents the nuclear kinetic energy operator given in Eq. (12).
The nonadiabatic coupling matrix is therefore given by

Λ = −S† [Tn,S] . (21)

The elements of Λ are described by Eq. (2). Using the diabatic
Hamiltonian matrix of Eq. (11) and the transformation matrix S of
Eq. (7), after some rigorous algebra the following adiabatic Hamiltonian
is obtained:4,30,39

Had = Tn

(
1 0
0 1

)
+

(
V− 0
0 V+

)
+

[
�

2

2µ
(α′2

R + α′2
r ) +

�
2

2I
α′2

γ

] (
1 0
0 1

)

+
[

�
2

2µ

(
α′′

R + 2α′
R

∂

∂R
+ α′′

r + 2α′
r

∂

∂r

)

+
�

2

2I

(
α′′

γ + 2α′
γ

∂

∂γ
+ α′

γ cot γ

) ] (
0 −1
1 0

)
, (22)

where α′
x = ∂α/∂x and α′′

x = ∂2α/∂x2. In the right hand side of Eq. (22) the
third term corresponds to the diagonal Born-Huang term Λ0 [Gii elements
of Eq. (2)]10 and the fourth term corresponds to the off-diagonal derivative
coupling term [written in terms of Fij in Eq. (2)].

2.3.2. The Flux Operator and Reaction Probability

In order to calculate the reaction probability in the two-state adiabatic
electronic basis, the flux operator needs to be represented in this basis. As
the quantity Θ in the flux operator depends only on the reaction coordinate
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(here r), the r-dependent part of the nuclear kinetic energy operator is of
only relevance in Eq. (10). It can be seen from Eq. (22) that the nuclear
kinetic energy operator is non-diagonal and its r-dependent part is given by

T ad
r =

−�
2

2µ




∂2

∂r2 − α′2
r

(
α′′

r + 2α′
r

∂

∂r

)

−
(

α′′
r + 2α′

r

∂

∂r

)
∂2

∂r2 − α′2
r


 . (23)

Since T ad
r is non-diagonal, the flux operator will have the same property in

the adiabatic electronic basis. On substituting T ad
r in Eq. (10) one arrives

at the same expression as in Eq. (13) for the diagonal elements (f̂11 and
f̂22) of the flux operator in the adiabatic basis, and its off-diagonal elements
take the following form:30

f̂12 = −f̂21 =
−i�α′

r

µ
δ(r − rd) . (24)

Defining the energy normalized time-independent reactive scattering wave
function in the adiabatic electronic basis as

|Φad(R, rd, γ, E)〉 =
(|φad

− (R, rd, γ, E)〉
|φad

+ (R, rd, γ, E)〉
)

, (25)

where φad
− and φad

+ represent the two components of this wave function on
V− and V+, respectively, the reaction probability in this basis is given by

PR
i (E) =

〈
Φad(R, rd, γ, E)|F̂ |Φad(R, rd, γ, E)

〉
,

=
�

µ

[
Im

〈
φad

− (R, rd, γ, E)
∣∣∣∣∂φad

− (R, rd, γ, E)
∂r

〉

+ Im
〈

φad
+ (R, rd, γ, E)

∣∣∣∣∂φad
+ (R, rd, γ, E)

∂r

〉
+ Im〈φad

− (R, rd, γ, E)|α′
r|φad

+ (R, rd, γ, E)〉

− Im〈φad
+ (R, rd, γ, E)|α′

r|φad
− (R, rd, γ, E)〉

]
. (26)

The wave functions φad
− and φad

+ can be obtained in an analogous way as
described for φd

1 and φd
2. Since α′

r is a real quantity, the last two terms of
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Eq. (26) are complex conjugate to each other and therefore PR
i (E) becomes

PR
i (E) =

�

µ

[
Im

〈
φad

− (R, rd, γ, E)
∣∣∣∣∂φad

− (R, rd, γ, E)
∂r

〉

+ Im
〈

φad
+ (R, rd, γ, E)

∣∣∣∣∂φad
+ (R, rd, γ, E)

∂r

〉

+ 2Im〈φad
− (R, rd, γ, E)|α′

r|φad
+ (R, rd, γ, E)〉

]
. (27)

Contrary to the analogous expression [Eq. (16)] in the diabatic basis, the
result [Eq. (27)] contains also off-diagonal electronic contributions. These
are expected to play an important role when both channels, corresponding
to V− and V+, are open. If only V− is open, then only the first of the
three terms on the right hand side of Eq. (27) contributes to the reaction
probability. Even in this case, however, both terms in the diabatic analogue
of Eq. (16) may play a role, because adiabatic and diabatic surfaces need
not coincide asymptotically.19

3. Illustrative Example: The H + H2 Exchange Reaction

3.1. General Consideration

The prototypical hydrogen exchange reaction

H + H2 → H2 + H (R1)

is one of the cornerstones in our understanding of the microscopic details
of the chemical reaction dynamics [for example, see Ref. 40 and references
therein]. The ground electronic state of triatomic hydrogen is degenerate
by symmetry with its first excited electronic state at the D3h equilibrium
configuration and forms a conical intersection.41 This is the simplest rep-
resentative of a (E × ε)-JT conical intersection.41,42 While the lower adi-
abatic sheet of this double-sheeted electronic state is of repulsive nature
and the reactive scattering process occurs on it, the upper adiabatic sheet
supports bound states in the absence of any coupling with the lower one.
The conical intersection in the ground electronic manifold of H3 is probed
in a Rydberg emission experiment,43 which was further corroborated in a
detailed theoretical study44 indicating an extremely fast relaxation from
the upper adiabatic sheet driven by the nonadiabatic coupling associated
with the conical intersection.
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The effect of the conical intersection on the reactive scattering dynam-
ics of (R1) has been studied by Kuppermann and coworkers.45,46 In these
studies, this effect is incorporated in the dynamical calculations in terms
of the GP change of the adiabatic electronic wave function when encircling
the conical intersection in a closed path on the lower adiabatic sheet. The
two sheets of the PES and the nonadiabatic coupling between them are not
explicitly considered in these studies. Their findings show that the differ-
ential cross sections of the H + D2 (v = 0) exchange reaction at a collision
energy of 1.29 eV agree well with the experimental results when the GP
effect is considered.46 In a later study Schnieder et al.47 have reproduced
the fully state-resolved measurements of ultrahigh resolution without tak-
ing the GP effects into account. In view of the fact that the minimum of
the seam of conical intersections in H3 occurs at ∼ 2.74 eV, it is not clear
if any noticeable GP effects will show up in its dynamics much below this
energy. Kendrick48 has performed very accurate quantum mechanical calcu-
lations and found no noticeable GP effects on the dynamics of this reaction.
Very recently a combined experimental and WP theoretical study has been
reported on the system and the experimental results were reproduced with-
out inclusion of the GP effects in the theoretical formulation.49

We have studied for the first time the state-selected scattering dynamics
of (R1) by extending the quantum flux operator formalism (as described
above) to two interacting electronic states.30 The reaction probabilities were
reported for energies up to the onset of the three-body dissociation of H3

and our results did not indicate any noticeable effects of the conical inter-
section on the state-specific dynamics of this system for J = 0. The coupled-
state results can be essentially reproduced by adding the diagonal correction
term in the uncoupled-surface calculations. These findings in a way extend
the recent studies on this system by going to higher energies and incor-
porating GP effects and the nonadiabatic couplings in a coherent fashion.
Furthermore, the formalism illustrated above can be efficiently applied to
reactions that bear strong signatures of nonadiabatic effects. The details of
the calculations for H3 are described in the following.

3.2. Potential Energy Surface

The repulsive lower adiabatic sheet of the ground electronic state of H3 has
been reported by several groups with improved accuracy.50–52 However,
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until recently the double many-body expansion (DMBE) PES has been
the only PES51 available for the system which globally represents both
the lower and the upper adiabatic sheets of the double-sheeted ground
electronic manifold of H3 and thus offers the possibility to study theoreti-
cally the nonadiabatic effects associated with the conical intersection. We
note that the DMBE PES relies on the analytic continuation approach for
the upper adiabatic sheet. Recently extensive ab initio calculations of the
double-sheeted ground electronic manifold of H3 and their nonadiabatic
couplings were performed by Yarkony.53 These ab initio points have been
subsequently utilized by Kuppermann and coworkers54,55 and been rep-
resented in a diabatic electronic basis. In our study we used the DMBE
PES51 and a suitable diabatization scheme (see below) to calculate the
reaction probability in the coupled electronic manifold. We also note that
we have accessed the accuracy of the analytic continuation approach of the
DMBE surface by an explicit comparison of the various stationary points
and the long-range behavior of this surface with the new ab initio results of
Yarkony.53 The topography of the conical intersection in the double-sheeted
ground electronic surface of H3 is shown in Fig. 1.

The elements of the diabatic electronic Hamiltonian matrix in Eq. (11)
are obtained by diabatizing the adiabatic electronic Hamiltonian matrix
through the following similarity transformation:(

w11 w12

w21 w22

)
= S

(
V− 0
0 V+

)
S†

=
V+ + V−

2
1 +

V+ − V−
2

(− cos χ sin χ

sin χ cos χ

)
, (28)

with (χ = 2α). Here 1 is a 2 × 2 unit matrix and S is given in Eq. (7).
The quantities V− and V+ are the potential energies of the lower and the
upper adiabatic sheets of the DMBE PES of H3,51 respectively. The angle
χ is identified with the pseudorotation angle, defined as the direction of
the ε-type displacement in its two-dimensional vibrational space of the D3h

point group.51,56 This method of diabatization was tested numerically with
a second-order model (E×ε)-JT Hamiltonian by Thiel and Köppel.56 It was
shown that with this scheme of diabatization the singular derivative cou-
pling terms are eliminated and the matrix elements of the residual derivative
couplings become vanishingly small.56 We also applied this scheme success-
fully in our earlier investigations on the Rydberg emission spectrum of H3.44
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Fig. 1. Three-dimensional perspective plot of the adiabatic potential energy surfaces
of the double-sheeted ground electronic state of H3 in the (R, r) plane for γ = π/2,
corresponding to the C2v arrangements of the three nuclei. The contour line diagram
is included in the base of the plot. The spacing between the successive contour lines
is 0.3 eV. The potential energies are obtained from the DMBE PES51 and the lower
(V−) and the upper (V+) adiabatic sheets are shown by the thin and thick solid curves,
respectively. The conical intersection of the two surfaces should not be realized as an
isolated point as apparently revealed by the perspective plot, rather, it represents a
seam of intersections occurring for R =

√
3r/2 which is more clearly indicated by the

thick solid line on the contour plot. The energetic minimum on this seam occurring at
∼ 2.74 eV for the D3h configuration of H3 is shown by the dot.

Very recently, Köppel and coworkers have extended this scheme to a more
general situation.57

3.3. Diagonal Correction to the Adiabatic Hamiltonian

The adiabatic–diabatic mixing angle α is a complicated function of the
Jacobi coordinates and an evaluation of Λ in these coordinates is cumber-
some. This can be better accomplished in the (E × ε)-JT coordinates ρJT

and χ. The latter are identified as the radius of the JT displacement and
the pseudo-rotation angle (introduced above), respectively. These coordi-
nates can be expressed in terms of the dimensionless normal coordinates
(cartesian) of the ε-type vibration (Qx and Qy) of the D3h point group as

ρJT eiχ = Qx + iQy . (29)
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In these coordinates the BH term is given by56,58

Λ0(α̃) =
ωε�

8

[(
∂α̃

∂ρJT

)2

+
1

ρ2
JT

(
∂α̃

∂χ

)2
]

, (30)

where ωε is the frequency of the degenerate vibration and α̃ = 2α. Within
the linear coupling scheme α̃ = χ [Eq. (28)] and does not depend on ρJT

and therefore Eq. (30) is given by

Λ0 =
ωε�

8ρ2
JT

. (31)

In terms of the mass-weighted coordinate qJT to be used below, Eq. (31)
reads

Λ0 =
�

2

8mHq2
JT

. (32)

3.4. Computational Details

We now discuss the necessary details of the computational aspects to obtain
the reaction probability by the scheme developed above. In the following
we proceed with the coupled-surface calculations; the uncoupled-surface
calculations follow from them in an elementary way. The time-dependent
Schrödinger equation (TDSE) is solved numerically in the diabatic elec-
tronic representation on a grid in the (R, r, γ) space using the matrix
Hamiltonian in Eq. (11). For an explicitly time-independent Hamiltonian
the solution reads

Ψd(R, r, γ, t) = exp
[−iHdt

�

]
Ψd(R, r, γ, 0) . (33)

Here Ψd(R, r, γ, 0) is the initial wave function pertinent to the reactants in
the diabatic electronic representation and Ψd(R, r, γ, t) is the wave function
at time t.

The initial wave function pertinent to the H + H2 reacting system is
prepared in the asymptotic reactant channel and is written as a product
of the translational wave function F (R) for the motion along R and the
ro-vibrational wave function Φvj(r) of the H2 molecule. We locate the wave
function initially on the repulsive lower adiabatic sheet (V−) of the DMBE
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PES.51 In the present case for, J = 0, it is given by

Ψad(R, r, γ, 0) = F (R)Φvj(r)

√
2j + 1

2
Pj(cos γ)

(
1
0

)
. (34)

We choose a minimum uncertainty Gaussian wave packet (GWP) for
F (R):

F (R) =
(

1
2πδ2

)1/4

exp
[
− (R − R0)2

4δ2 − ik0(R − R0)
]

. (35)

The quantity δ is the width parameter of the GWP, and R0 and k0 cor-
respond to the location of its maximum in the coordinate and momentum
space, respectively. The functions Φvj(r) along with the normalized Legen-
dre polynomials (Pj(cos γ)) represent the ro-vibrational eigenfunction cor-
responding to a (v, j) state of the H2 molecule. The functions Φvj(r) are
obtained by solving the eigenvalue equation of the free H2 molecule:[

− �
2

2µ′
d2

dr′2 + V (r′) +
j(j + 1)�2

2µ′r′2

]
Φvj(r′) = εvjΦvj(r′) . (36)

Here µ′ is the reduced mass of the H2 molecule, εvj the energy eigenvalue,
r′[= r(µ/µ′)1/2] the unscaled internuclear distance, and V (r′) is the poten-
tial energy of the H2 molecule obtained from the DMBE PES by setting
R → ∞. We used the sine-DVR approach of Colbert and Miller59 to solve
the above eigenvalue equation.

The initial wave function defined in Eq. (34) is transformed to the dia-
batic representation by using the S matrix [Eq. (7)] prior to its propagation.
In the diabatic representation the initial wave function can be written in
the vector notation as

Ψd(R, r, γ, 0) = ψd
1(R, r, γ, 0)

(
1
0

)
+ ψd

2(R, r, γ, 0)
(

0
1

)
, (37)

where
( 1

0

)
and

( 0
1

)
indicates the first and the second diabatic electronic

state with energy w11 and w22, respectively. Note that these are different
from the ones introduced in Eq. (34). ψd

1 and ψd
2 are the nuclear wave

functions in the respective electronic states, depending on the set of Jacobi
coordinates. In order to follow the nuclear dynamics, the TDSE [Eq. (33)] is
solved with the above initial diabatic wave function. The exponential time
evolution operator in Eq. (33) is evaluated by dividing the time axis into N
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segments of length ∆t. The exponential operator at each time step is then
approximated by the split-operator method,60

exp
[−iHd∆t

�

]
= exp

[−iHel∆t

2�

]
exp

[−ij2∆t

4I�
1
]

exp
[−iT (R, r)∆t

�
1
]

× exp
[−ij2∆t

4I�
1
]

exp
[−iHel∆t

2�

]
+ O[(∆t)3] , (38)

where T (R, r) = (P 2
R + P 2

r )/2µ is the total radial kinetic energy operator.
1 represents the 2 × 2 unit matrix. The electronic Hamiltonian Hel can be
decomposed into

Hel =
(

w11 0
0 w22

)
+ w12

(
0 1
1 0

)
. (39)

Since the diagonal and the off-diagonal parts of Hel do not commute with
each other, the propagator containing it in Eq. (38) is further written as

e−iHel∆t/2� = e
−i


w11 0

0 w22


∆t/4�

e
−iw12


0 1

1 0


∆t/2�

e
−i


w11 0

0 w22


∆t/4�

.

(40)
The exponent containing the off-diagonal matrix elements is now expressed
in terms of the 2 × 2 Pauli matrix

e
−iw12


0 1

1 0


∆t/2�

=
(

cos(w12∆t/2�) −i sin(w12∆t/2�)
−i sin(w12∆t/2�) cos(w12∆t/2�)

)
. (41)

Equation (38) is used in conjunction with the fast Fourier transform
method61 to evaluate the action of the exponential containing the radial
kinetic energy operator and the discrete variable representation method62 to
evaluate the exponential containing the rotational kinetic energy operator
(j2/2I) on the wave function. The coordinate grid consists of equally spaced
points Rl and rm along the Jacobi distances R and r, respectively. The grid
along the Jacobi angle γ is chosen as the nodes of a n-point Gauss–Legendre
quadrature (GLQ).63

We have constructed a grid consisting of 128 × 64 × 48 points in the
Rl, rm, γn space with R ranging between 0.10 and 15.34a0 and r between
0.50 and 8.06a0. The grid along γ is defined by the 48-point GLQ. The initial
WP is prepared at R0 = 10.5a0 and the width parameter of the GWP, δ

is chosen to be 0.16a0. The WP is time propagated with a step size ∆t
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of 0.1347 fs for a total time of 413.76 fs. The analysis line at the product
channel is fixed at rd = 4.1a0. In order to avoid unphysical reflections
or wrap arounds of the fast moving components of the WP at the grid
boundaries, it is multiplied by a damping function64 at each time step
which is activated outside the dividing line at r = 4.70a0 in the product
channel and also in the asymptotic reactant channel at R = 11.74a0.

The time dependence of the adiabatic electronic populations can be
calculated either by using the S matrix [Eq. (7)] or by defining suitable
adiabatic projection operators. The S matrix is a double-valued function
of the coordinates and possesses a branch point at the conical intersection.
This problem is circumvented by using adiabatic projectors in the diabatic
electronic representation4,39,65

P ad
− = S

(
1 0
0 0

)
S† (42)

=
1
2

− 1
2(∆2 + w2

12)1/2

(−∆ w12

w12 ∆

)
,

P ad
+ = 1 − P ad

− ,

where ∓ refers to the lower and the upper adiabatic sheet, respectively.
∆ is one-half of the energy gap between the two diabatic surfaces. The
expectation values of the above projectors define the electronic populations
in the respective electronic states.

3.5. Results and Discussion

We now show and discuss the results of initial state-specific and energy
resolved reaction probabilities of (R1), applying the formalism and the com-
putational strategy illustrated above. The reaction probabilities are calcu-
lated with an energy spacing of 9×10−3 eV. The convergence of the results
is checked with respect to the numerical grid parameters.

The total reaction probability (summed over all open vibrational
(v′) and rotational (j′) states of the product H2 at a given energy) of
H + H2 (v = 0, j = 0) calculated in the diabatic electronic picture through
Eq. (16) as a function of the total energy E is plotted in Fig. 2. The prob-
ability values shown by the short- and long-dashed lines are obtained by
analyzing the reactive flux on the two component diabatic electronic states
w11 and w22, respectively [represented by the first and the second term of
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Fig. 2. Total reaction probability for the H + H2(v = 0, j = 0) → H2(
∑

v ′,
∑

j ′) + H
exchange reaction in three dimensions and for total angular momentum J = 0, plotted as
a function of total energy E (H,H2 translational + H2 ro-vibrational). The energy E is
measured relative to the H2 potential minimum. The reaction probabilities obtained on
the two diabatic electronic states w11 and w22 [cf. Eq. (16)] are shown by the short- and
long-dashed lines, respectively. The sum total of these diabatic probabilities (indicated
by crosses) on a coarse energy grid is superimposed on the adiabatic coupled-surface
probabilities (indicated by the solid line, see, Fig. 3 below).

Eq. (16)]. The sum of these two components is indicated by the crosses and
is superimposed on the coupled-surface results shown as a solid line. The
latter are obtained by analyzing the reactive flux in the adiabatic electronic
picture and from the first term of Eq. (27) (also see Fig. 3 below). For clar-
ity of presentation, we show the crosses on a coarse grid of energy values. It
is clear from Fig. 2 that the second and the third terms of Eq. (27) do not
contribute to the reaction probability of H+H2(v = 0, j = 0) in the energy
range of the present investigations. This is, because, on the upper adiabatic
surface, product H2 is asymptotically prepared in its 3Σu state which has
its minimum at E ∼ 4.74 eV,51 at the onset of the three-body dissociation.
Therefore, in the present investigation this channel remains energetically
closed and does not contribute to the reaction probability. This is numer-
ically checked further from the reaction probabilities obtained from the
second term of Eq. (27). They are all zero until the fourth decimal place,
which shows that the second and the third terms are zero individually,
not just their sum. Despite a difference in the magnitude of the reaction
probabilities, the two component diabatic probability curves exhibit similar
resonance structures.
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The same reaction probability of H + H2 (v = 0, j = 0) calculated
in the adiabatic electronic picture is shown in Fig. 3. The coupled-surface
results (also shown in Fig. 2 for comparison) are shown by the solid line.
The uncoupled (lower adiabatic)-surface results without and with the diag-
onal correction are shown by the short- and long-dashed lines, respectively.
The energy distribution of the initial translational GWP is shown in the
inset. It can be seen that the translational components of the initial WP
cover a broad range of energies from the onset of the reaction threshold at
E = 0.55 eV to the three-body dissociation limit at E = 4.74 eV. There-
fore, the reaction probabilities in that range of energies can be reliably
obtained with this WP. The coupled-surface results are obtained by analyz-
ing the reactive flux in the adiabatic picture through Eq. (27). As mentioned
above, only the first term of Eq. (27) contributes to the reaction probabil-
ity. The resonance structures and their energetic locations are same in the
coupled- and uncoupled-surface results. The difference between the coupled-
and uncoupled-surface (without the diagonal correction) results is 2–3% at
low energies. At high energies this difference increases only slightly. The
minimum of the seam of conical intersections of H3 occurs at ∼ 2.74 eV.51

Therefore, the coupled-surface results are expected to differ more from the
uncoupled ones beyond this energy. However, it can be seen from Fig. 3
that the impact of the conical intersection on the H2(v = 0, j = 0) reaction
probabilities is negligibly small. The small deviations become even smaller
when including the diagonal correction.

In order to better understand the similarity between the coupled- and
the uncoupled-surface results, we show the time evolution of the electronic
populations in Fig. 4. The initial WP corresponds to H2(v = 0, j = 0)
and is again prepared in the asymptotic reactant channel of the lower adi-
abatic sheet. [It is transformed to the diabatic representation using the
S-matrix of Eq. (7) prior to propagation]. As can be seen from Fig. 4, we
obtain a 0.71/0.29 population of the two component diabatic electronic
states (shown by the dashed and solid lines) at t = 0. Therefore, the dia-
batic potentials do not approach the asymptotic adiabatic states of H+H2

but represent a mixture of them.
A similar kind of behavior of the diabatic electronic states has been

found, e.g. for the ozone and hydrogen disulphide molecules.19 This may
be a surprising feature of the diabatization procedure but, in practice, is
often unavoidable. However, since the adiabatic states are well separated
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Fig. 3. Same as in Fig. 2, the coupled-surface results [obtained through Eq. (27)]
are shown by the solid line. The uncoupled-surface results with (long-dashed lines) and
without (short-dashed lines) the diagonal BH correction are also shown. The energy
distribution of the initial translational GWP is shown in the inset.
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Fig. 4. Time dependence of the electronic populations for the exchange process of
Fig. 3. The populations of the two component diabatic electronic states w11 and w22 are
shown by the dashed and solid lines, respectively. The electronic populations approach
zero at longer times because of the damping of the WP at the grid edges. The population
of the upper adiabatic electronic state (V+) is shown in the inset.

asymptotically, preparing an initial WP on the adiabatic electronic state
and propagating it in the diabatic electronic representation and finally
transforming it back to the adiabatic states before analysis, is expected to
have only little relevance of this “artifact” on the dynamics. The coincidence
of the reaction probabilities obtained in the diabatic and the adiabatic
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picture (see Fig. 2) also adds evidence to this remark. The population of
the upper adiabatic electronic state is shown in the inset of Fig. 4. The pop-
ulation of this state reaches a maximum value of ∼6.25×10−3 after ∼15 fs.
Therefore, only ∼0.625% of the WP traverses to the upper adiabatic cone
during the course of the entire dynamics. This can hardly have any major
impact on the dynamics. The minimum energy path for the H+H2 reactive
scattering process occurs at the collinear arrangement of the three nuclei
which is far away from the seam of conical intersections, occurring at the
D3h arrangements of the three nuclei. The classical barrier height of the
collinear saddle point on the lower adiabatic sheet is ∼0.42 eV, whereas
the minimum of the seam of conical intersections occurs at ∼2.74 eV at
the equilateral triangular geometry.51 Apparently, also for higher energies
a major part of the reactive flux is directed via the low-energy transition
state conformation. A similar numerical observation has been made ear-
lier in a bound-state calculation of electronically excited states of SO2 by
Müller and Köppel.66

We also performed a detailed analysis of the probabilities obtained with
vibrationally excited H2. Our findings are similar to those discussed above:
the difference between the coupled- and uncoupled-surface results is very
small. We notice that for vibrationally excited H2 a relatively larger fraction
of the WP traverses to the upper adiabatic sheet during the reaction. For
instance, ∼ 1% and ∼ 1.6% of the WP traverse to the upper cone during the
reaction for v = 1 and v = 2, respectively. Also, the population maximum
occurs at a slightly later propagation time upon vibrational excitation.30

4. Summary and Outlook

We have presented a brief account of the reactive scattering dynamics occur-
ring on a multi-sheeted PES. The reaction dynamics of bimolecular systems
occurring on a single PES is well studied in the literature. In this account,
effort is made to include the surface crossings and the associated nonadia-
batic couplings in the formalism — the importance of which in a reactive
scattering process is being increasingly realized in recent years.

We particularly focused on a conically intersecting manifold of two elec-
tronic states and described the quantum flux operator formalism within
a time-dependent WP approach to calculate the initial state-specific and
energy resolved reaction probabilities. The flux operator is represented
in the two-state diabatic as well as adiabatic representation. While the
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representation of the flux operator is diagonal in the diabatic electronic
basis, it contains off-diagonal elements (arising from the off-diagonal kinetic
coupling elements) in the adiabatic electronic basis. The initial WP is
prepared on an adiabatic electronic state and is propagated in a suitable
diabatic electronic representation. One needs to resort to the latter repre-
sentation in order to avoid the diverging (at the seam of intersections of the
potential energy surfaces) nonadiabatic coupling elements appearing in the
adiabatic electronic basis. The final analysis of the reactive flux is carried
out both in the adiabatic and in the diabatic electronic representations and
the identity of the results were confirmed.

With the aid of the above formalism we reported the state-selected and
energy resolved total reaction probabilities of the H+H2 exchange reaction
(R1) on the DMBE PES. The coupled-surface results differ only slightly
from the corresponding uncoupled (single) surface ones, and the former at
high energies can essentially be reproduced by the uncoupled-surface calcu-
lation, including the diagonal correction to the BO Hamiltonian. The reso-
nance structures and their energetic locations are found to be similar in both
the coupled- and uncoupled-surface results. The sum of the reaction prob-
abilities obtained in the diabatic representation [Eq. (16)] equals to that
obtained in the adiabatic picture considering only the first term of Eq. (27).
On the upper adiabatic sheet, H2 is produced in its 3Σu state and the ener-
getic minimum of this state occurs at the onset of the three-body dissocia-
tion (∼4.74 eV) Therefore, in the energy range of the present investigations,
the last two terms of Eq. (27) do not contribute to the reaction probability.

The minimum energy path for the H + H2 exchange process occurs at
the collinear arrangement of the three nuclei, which is far away from the
seam of conical intersections occurring at the D3h configuration. Beyond
the minimum of the seam of conical intersections occurring at ∼2.74 eV,
the noncollinear collisions might be expected to make significant contribu-
tions in the reactive scattering dynamics. However, the region of the space
covered by the configuration of the three nuclei for which the two surfaces
are nearly degenerate is very small and any slight deviation form these con-
figurations leads to a significant energy splitting of the two surfaces. We
find only a very small fraction the WP (less than 2%) traversing the upper
adiabatic cone during the course of the reaction. Therefore, no dramatic
effects of the conical intersections on the reaction probability are unveiled
by the present investigations.
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Unlike in the above situation, where surface couplings have been shown
to have only minor effects on the dynamics, they may have quite significant
roles in other situations, e.g. in the dynamics of H + O2

22,23 and N + O2
27

reactions. Investigations of the dynamics of H + O2 reaction by Gray and
coworkers22 have indicated that the inclusion of the coupling between its
two low-lying 1A′ surfaces yields reaction cross-section in better agreement
with the experiment than the uncoupled-surface result at 56 meV collision
energy. In a subsequent study Aoiz et al.23 have reiterated this point in a
combined experimental and theoretical study and found that the experi-
mental results at 56 meV collision energy can be essentially reproduced by
resorting to adiabatic calculations on the ground 11A′ PES. The 21A′ sur-
face has a barrier of ∼ 0.1 eV relative to the reactants and the conical inter-
sections of the 11A′-21A′ electronic states occur at the product side of the
barrier.21,22 Therefore, any possible contribution of the nonadiabatic cou-
pling in the H+O2 reaction dynamics is only expected beyond the collision
energy of 0.1 eV. More theoretical and experimental works are necessary in
order to resolve this issue. The N+O2 reaction, on the other hand, appears
to be far more complex.27 Several low-lying doublet and quartet electronic
states and multiple conical intersections are reported to be involved in the
C2v insertion mechanism of the reaction.27 A study of the dynamics of this
reaction including these conical intersections and the associated nonadia-
batic couplings is worthwhile and is expected to lead to a better understand-
ing of the impact of conical intersections in bimolecular reactive scattering.
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2. H. Köppel and W. Domcke, in Encyclopedia of Computational Chemistry;
Ed. P. v. R. Schleyer (Wiley, New York, 1998), p. 3166.

3. E. Teller, J. Phys. Chem. 41, 109 (1937); G. Herzberg and H. C. Longuet-
Higgins, Discuss. Faraday Soc. 35, 77 (1963); T. Carrington, Discuss.
Faraday Soc. 53, 27 (1972); Acc. Chem. Res. 7, 20 (1974); E. R. Davidson,
J. Am. Chem. Soc. 99, 397 (1977).
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1. Introduction

The time-evolution of a molecular system through a conical intersection
is multi-dimensional in nature, i.e. its description cannot be reduced to a
single reaction coordinate. In addition to this, such processes are inherently
quantum mechanical due to the mixing of electronic states as the intersec-
tion is traversed, and a powerful quantum dynamics method is required to
treat these, often large, systems accurately.

The most intuitive way of obtaining a numerically exact solution of
the time-dependent Schrödinger equation is to use standard wave packet
propagation methods. These represent the evolving system wave function
using basis set expansion techniques or grid representations.1–3 Unfortu-
nately, the standard methods are restricted by an exponential increase in
the computational resources required with the number of degrees of free-
dom treated. Therefore, usually no more than 4–6 nuclear modes can be
included. Systems in which vibronic coupling plays a role are often much
larger than this. To treat these systems using the standard methods, it is
then necessary to turn to reduced dimensionality models, in which only a
few degrees of freedom are explicitly included, and the remainder either
ignored or included in a phenomenological manner.

An alternative is to use approximative methods and include all degrees
of freedom. In this chapter we discuss and apply the multi-configuration
time-dependent Hartree (MCTDH) method.4–6 At the present time, this
method is the only one that can treat reliably, with controllable accuracy,
the multi-mode dynamics of polyatomic systems like the ones discussed
below. By using a time-dependent basis set that adapts with the evolving
wave packet, the MCTDH algorithm extends wave packet propagation to
larger systems. Importantly, calculations converge to the numerically exact
solution, and so the error introduced by the approximative nature of the
method can be controlled. Using MCTDH, conically intersecting systems
with up to 24 degrees of freedom have been studied.
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Importantly, the vibronic coupling model Hamiltonian described in
detail in Sec. 2 is of a form that allows the full efficiency of the method
to be realized. This combination of model and propagation technique thus
allows us to study completely and in detail the multidimensional molecular
dynamics through a conical intersection.

As well as providing an overview of the MCTDH method and the
vibronic coupling Hamiltonian, results will be presented in this chapter
that highlight the features of three photo-physical systems in which vibronic
coupling plays a crucial role. Here it will become clear that in some cases
many degrees of freedom are required for a faithful description of the sys-
tem dynamics through a conical intersection, and for these the MCTDH
method is able to provide accurate information.

2. Vibronic Coupling Hamiltonian

The existence of a conical intersection within or close to the Franck–Condon
zone has very dramatic effects on the dynamics and hence on the spectra
of polyatomic molecules. Usually, the density of spectral lines becomes very
high and only the envelope, rather than the individual line, is of inter-
est. This allows one to concentrate on short-time dynamics. For a reliable
treatment of the dynamics it is important to describe the vicinity of the
Franck–Condon point accurately. However, as only short-time dynamics is
required, the interaction potential away from the Franck–Condon point may
be of lesser accuracy.

The adiabatic potential energy surfaces in the vicinity of a conical inter-
section usually exhibit a rather complicated form, i.e. they are strongly
anharmonic and may show double or multiple minima. In contrast to the
adiabatic surfaces, the diabatic ones often show an astonishingly simple
structure and may — for the region of interest — be well approximated
by simple harmonic potentials. Combined with the fact that the diabatic
coupling is well behaved, non-singular, and of potential type, this makes
the diabatic representation extremely attractive.

We are interested in the study of absorption or ionisation spectra of
small polyatomic molecules. Before the absorption of a photon (or the col-
lision with an electron) the molecule is assumed to be in its electronic and
vibrational ground state (we ignore rotation). We use the dimensionless
normal coordinates of the ground state throughout and write the ground
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state Hamiltonian in harmonic approximation as

HGS = Tn +
f∑

i=1

ωi

2
Q2

i , (1)

Tn = −
f∑

i=1

ωi

2
∂2

∂Q2
i

(2)

where f denotes the number of degrees of freedom and ωi is the ith normal
mode frequency (we use units in which � = 1). The ground state is assumed
to be well separated from all other electronic states. After excitation, how-
ever, the electronic structure is described by a set of close lying, interacting
states. The vibronic Hamiltonian for this set of states reads

H = Tn + W(Q) . (3)

Assuming — for sake of simplicity — that there are only two interacting
excited states of relevance, and developing the diabatic potential energy
matrix W in a power series around the equilibrium position of the ground
state, keeping only terms up to second order, one arrives at

H = Tn1 +
f∑

i=1

ωi

2
Q2

i 1 +
(

ε1 0
0 ε2

)
+

∑
i∈G1

(
κ

(1)
i 0
0 κ

(2)
i

)
Qi

+
∑

(i,j)∈G2

(
γ

(1)
i,j 0
0 γ

(2)
i,j

)
QiQj +

∑
i∈G3

(
0 λi

λi 0

)
Qi

+
∑

(i,j)∈G4

(
0 µi,j

µi,j 0

)
QiQj . (4)

The first two terms reproduce the ground state Hamiltonian, but located
on the diagonal of the electronic 2 × 2 matrix. The two energies ε1 and ε2
are the vertical excitation energies. The next four sums describe the linear
and the bilinear coupling terms.

Due to symmetry considerations, the sums run only over restricted sets
of modes. G1 is the set of totally symmetric modes:

G1 : Γi ⊃ ΓA , (5)

where Γi is the irreducible representation of the normal–mode coordinate
Qi and ΓA the totally symmetric representation. These modes provide the
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linear intra-state coupling. They are called tuning modes, as they modulate
the energy gap between the two states.

G2 is the set of pairs of modes that supplies the bilinear and quadratic
on-diagonal couplings:

G2 : Γi × Γj ⊃ ΓA . (6)

The parameters γ
(s)
i,j account for frequency shifts and for the so-called

Duschinsky rotation.7

G3 is the set of modes which provide linear coupling between the two
interacting states:

G3 : Γi × Γ1 × Γ2 ⊃ ΓA , (7)

where Γ1 and Γ2 are the irreducible representations of the two electronic
states considered. These modes account for the linear inter-state coupling.
They are called coupling modes, as they couple the two electronic states.
Finally, G4 is the set of all pairs of off-diagonal coupling modes which
bilinearly enter the Hamiltonian:

G4 : Γi × Γj × Γ1 × Γ2 ⊃ ΓA . (8)

When only linear coupling terms are included, i.e. when γ and µ are set to
zero, one arrives at the so-called linear vibronic coupling (LVC) model.

A high symmetry of the molecule does not only help to (sometimes
dramatically) reduce the number of parameters, it also provides a solid basis
for the vibronic coupling model Hamiltonian. When the two interacting
electronic states are of different symmetry (as assumed here), the inter-
state coupling must be an odd function of the coupling coordinate. Hence,
there can be no constant or quadratic terms, only linear or bilinear ones are
allowed. The vibronic coupling Hamiltonian was first derived by Cederbaum
et al.8,9 and is more fully described in a review article by Köppel et al.10

and in Chapter 7 of this book.
Quantum chemistry supplies us with the adiabatic potential energy sur-

faces Vi, and — at considerably higher cost — with the nonadiabatic cou-
pling elements. Fortunately, the latter are not needed when determining
the parameters of the vibronic coupling Hamiltonian, the knowledge of the
adiabatic potential energy surfaces alone is sufficient. The parameters of
the vibronic coupling Hamiltonian are determined by comparing the adia-
batic potential energy surfaces obtained by diagonalising the diabatic model
potential with those obtained by quantum chemistry. The most simple and
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most direct way is to require that the lowest order derivatives agree at the
Franck–Condon point, Q = 0. This readily yields for the linear parameters:

κ
(s)
i =

∂Vs

∂Qi
|Q=0 , (9)

λ2
i =

1
8

∂2

∂Q2
i

[V2(Q) − V1(Q)]2 |Q=0 . (10)

The equations for the parameters of the bilinear and quadratic terms are
more complicated. They are discussed, e.g. in Ref. 11.

It has been found that the determination of the parameters may become
unstable when going beyond the linear model. Much more convenient is
then to determine the parameters by a least-squares fit, i.e. to minimize
the function12

L(κ, λ, γ, µ) =
M1∑
n=1

w(1)
n

[
V mod

1 (ε1, ε2, κ, λ, γ, µ;Qn) − V1(Qn)
]2

+
M2∑
n=1

w(2)
n

[
V mod

2 (ε1, ε2, κ, λ, γ, µ;Qn) − V2(Qn)
]2

. (11)

Here κ, λ, γ, µ stand for all the coupling constants and V mod
1,2 denote the adi-

abatic surfaces obtained by diagonalising the potential part of the vibronic
coupling Hamiltonian, Eq. (4). There is some unavoidable arbitrariness in
this approach, as the points Qn and their weights w

(s)
n have to be chosen.

However, the least-squares approach is to be preferred when more than
linear coupling terms are included.

Finally, we remark that one may replace the low-order polynomials
by other functions, if those functions would better describe the particu-
lar molecule under discussion. For example, the inter-state coupling mode
of molecules like ethylene, allene, or butatriene is the torsion of the two
CH2 end-groups. To correctly reproduce the periodicity of this degree of
freedom one may replace λQ by α sin(βQ), where αβ = λ and where Q is
the normal mode coordinate representing the torsion.12

3. Multiconfiguration Time-Dependent Hartree (MCTDH)

3.1. Introduction

Wave packet propagation methods are an essential tool for understanding
the molecular dynamics underlying many physical phenomena, especially
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those that occur on an ultrafast (sub-picosecond) time scale. The standard
method is the numerically exact solution of the time-dependent Schrödinger
equation, representing the wavepacket and Hamiltonian in an appropri-
ate basis. The method is, however, restricted by the numerical resources
required, which grow exponentially with the number of degrees of freedom,
and studies of systems with more than six degrees of freedom are in general
impossible.

In an attempt to remove this obstacle, approximate methods exemplified
by the time-dependent Hartree (TDH) method have been developed. Here,
the wave function is represented as a Hartree product of one-dimensional
functions, and, as a result, the equations of motion for the wave packet are
a set of coupled one-dimensional equations. The effort required is thus sig-
nificantly reduced, but at the cost that the correlation between the degrees
of freedom is no longer treated correctly. For strongly correlated systems
like the vibronic coupled ones, TDH completely fails.

The multi-configuration time-dependent Hartree (MCTDH)
method4–6,13,14 combines the benefits of these two extremes. As the name
implies, the wave function is described by an expansion in Hartree prod-
ucts (configurations). Using this wave function ansatz and solving the time-
dependent Schrödinger equation by a variational method leads to a set of
coupled equations of motion for the expansion coefficients and for the func-
tions used to build the Hartree products. The latter are known as single-
particle functions (SPFs). In the limit of convergence with respect to the
number of configurations included, the results become numerically exact.
An important feature of the method is that, due to its variational charac-
ter, small sets of SPFs are in general sufficient to produce good results. The
MCTDH method thus requires considerably less effort and memory than
the standard one.

3.2. Equations of Motion

The MCTDH method is to a large extent defined through its ansatz for the
wave function4–6,13

Ψ(Q1, . . . , Qf , t) =
n1∑

j1=1

. . .

nf∑
jf =1

Aj1...jf
(t)

f∏
κ=1

ϕ
(κ)
jκ

(Qκ, t) , (12)
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where f denotes the number of degrees of freedom, Q1, . . . , Qf are the
nuclear coordinates, the Aj1...jf

denote the MCTDH expansion coefficients,
and the ϕ

(κ)
jκ

are the nκ expansion functions for each degree of freedom κ,
the SPFs.

We simplify the notation by introducing the composite index J

J = (j1, j2, . . . , jf ) , (13)

and the configuration

ΦJ =
f∏

κ=1

ϕ
(κ)
jκ

, (14)

which is known as a Hartree product. The MCTDH wave function is thus a
superposition of Hartree products. This explains the name of the method.
Alternatively, one may interpret Eq. (12) as an expansion of the wave func-
tion in a time-dependent product basis. Since the basis set functions follow
the wave packet, one may expect that the numbers, nκ, of SPFs, needed
to ensure convergence, are rather small. The SPFs are given only numeri-
cally, and in a practical calculation they thus have to be represented in an
underlying — so-called primitive — basis set

ϕ
(κ)
jκ

(Qκ, t) =
Nκ∑
l=1

c
(κ)
ljκ

(t)χ(κ)
l (Qκ) .

MCTDH will be of advantage if nκ < Nκ (κ = 1, . . . , f). The primitive
basis functions χ

(κ)
l are in practice often replaced by a discrete variable

representation (DVR) grid,6,15,16 and we use the word grid as synonymous
with primitive basis.

The equations of motion for the coefficients and the SPFs are derived
from the Dirac–Frenkel variational principle17,18

〈δΨ|H − i∂/∂t|Ψ〉 = 0 . (15)

As the coefficients and the SPFs are time-dependent, there are some ambi-
guities in the equations of motions which must be lifted by imposing con-
straints. The simplest set of constraints reads

〈ϕ(κ)
j (t)|ϕ̇(κ)

l (t)〉 = 0 . (16)
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These constraints minimise the motion of the SPFs and keeps them
orthonormal. For a discussion of other constraints see Refs. 5 and 6. Employ-
ing the above constraints, the equations of motion read5,6

iȦJ =
∑
L

〈ΦJ |H|ΦL〉AL , (17)

iϕ̇
(κ)
j =

∑
l,m

(
1 − P (κ)

) (
ρ(κ)−1)

jl
〈H〉(κ)

lm ϕ(κ)
m (18)

where

P (κ) =
nκ∑
j=1

∣∣∣ϕ(κ)
j

〉 〈
ϕ

(κ)
j

∣∣∣ (19)

denotes the projector on the space spanned by the SPFs for the κth degree
of freedom, and

ρ
(κ)
jl =

〈
Ψ(κ)

j |Ψ(κ)
l

〉
(20)

and

〈H〉(κ)
jl =

〈
Ψ(κ)

j

∣∣∣H∣∣∣Ψ(κ)
l

〉
(21)

denote a density matrix and a matrix of mean-fields, respectively. Here

Ψ(κ)
l =

〈
ϕ

(κ)
l

∣∣∣Ψ〉
κ

(22)

denotes a single–hole function. Obviously, Ψ(κ)
l depends on all coordinates

except the κ’s one. The mean-fields are thus one-dimensional operators,
acting solely on the κ’s degree of freedom.

The MCTDH equations of motion (17) and (18) are a fairly complicated
set of coupled non-linear differential equations. (Note that Ȧ depends on
ϕ through 〈ΦJ |H|ΦL〉 and ϕ̇ depends on A through ρ and 〈H〉). However,
there are fewer equations compared to the set of linear differential equations
of the standard method, i.e by simply employing directly the primitive
product basis set. In fact, the number of equations is often smaller by
several orders of magnitude. This is what makes MCTDH both small (in
terms of memory requirement) and fast.
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3.3. Representation of the Hamiltonian

The solution of the MCTDH equations of motion requires the evaluation of
the Hamiltonian matrix 〈ΦJ |H|ΦL〉 and the mean fields 〈H〉 at each time
step of the integration. These are formally f and f−1 dimensional integrals.
Doing the integrals by multi-dimensional quadrature over the primitive grid
points would slow down MCTDH such that it would not be competitive.

The multi-dimensional integrations can be circumvented if the
Hamiltonian is written as a sum of products of single-particle operators,

H =
s∑

r=1

cr

f∏
κ=1

h(κ)
r , (23)

with expansion coefficients cr. Using Eq. (23) the matrix elements can be
expanded as

〈ΦJ |H|ΦL〉 =
s∑

r=1

cr

f∏
κ=1

〈
ϕ

(κ)
jκ

∣∣h(κ)
r

∣∣ϕ(κ)
lκ

〉
, (24)

and similarly for the mean fields (see Refs. 5 and 6). Note that only
one-dimensional integrals are used now. Fortunately, the vibronic-coupling
Hamiltonian, derived in the previous section, is precisely of form (23) with
comparatively few expansion terms. This makes MCTDH very well adapted
for solving the vibronic coupling dynamical problem.

For the general case, we remark that the kinetic energy operator nor-
mally has the required form (23), but the potential energy operator often
does not. It then may be fitted to the product form. A convenient, system-
atic, and efficient approach to obtain an optimal product representation is
described in Refs. 6 and 19. We finally note that there are other methods
which evaluate the Hamiltonian matrix elements efficiently without relying
on a product expansion (23). Most notable here is the CDVR method of
Manthe.20

The building of the mean fields is still the most time consuming part
of MCTDH. To reduce the effort, the mean fields are evaluated not at
every integrator time step, but at larger (so called update) time steps. This
constant mean field (CMF) integration scheme is described in Refs. 6 and
21. The use of CMF speeds up the calculation by typically a factor of 10.
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3.4. Nonadiabatic Systems

It was implicitly assumed in the discussion so far that the motion of the
molecular nuclei is determined by a single Born–Oppenheimer potential
energy surface. However, in vibronic coupling systems, there are several
coupled electronic states of importance. The MCTDH algorithm hence has
to be extended to deal with more than one electronic state.

The most direct way to accomplish this is to choose one extra degree
of freedom, the κeth say, to represent the electronic manifold.22,23 The
coordinate Qκe

then labels the electronic states, taking only discrete val-
ues Qκe

= 1, 2, . . . , σ, where σ is the number of electronic states under
consideration. The number of SPFs for such an electronic mode is set to
the number of states, i.e. nκe

= σ. The equations of motion (17) and (18)
remain unchanged, treating nuclear and electronic modes on the same foot-
ing. This is called the single-set formulation, since only one set of SPFs is
used for all the electronic states.

Contrary to this, the multi-set formulation employs different sets of
SPFs for each electronic state.24,25 In this formulation, the wave function
Ψ and the Hamiltonian H are expanded in the set {|α〉} of electronic states:

|Ψ〉 =
σ∑

α=1

Ψ(α)|α〉 (25)

and

H =
σ∑

α,β=1

|α〉H(αβ)〈β| , (26)

where each state function Ψ(α) is expanded in MCTDH form (12). The
derivation of the equations of motion corresponds to the single-set formal-
ism, except that extra state labels have to be introduced on the various
quantities such as mean fields and density matrices. The equations of motion
now read

iȦ
(α)
J =

σ∑
β=1

∑
L

〈Φ(α)
J |H(αβ)|Φ(β)

L 〉A(β)
L , (27)

iϕ̇
(α,κ)
j =

∑
lmβ

(
1 − P (α,κ)

) (
ρ(α,κ)−1)

jl
〈H〉(αβ,κ)

lm ϕ(β,κ)
m , (28)
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with mean-fields

〈H〉(αβ,κ)
jl = 〈Ψ(α,κ)

j |H(αβ)|Ψ(β,κ)
l 〉 . (29)

The superscripts α and β denote to which electronic state the functions and
operators belong. A fuller derivation of these equations is given in Refs. 6,
21 and 25.

The single-set formulation is to be preferred when the different elec-
tronic states have a similar form. The well known spin-boson model is in
this category.26 When the motion on the different electronic states is very
different, the multi-set formulation becomes the appropriate choice. The
smaller number of SPFs needed for convergence then over-compensates the
overhead of the multi-set formulation. For vibronically coupled systems, we
have always chosen the multi-set formulation.

3.5. Mode Combination

The importance of the memory requirements for large systems can be eas-
ily seen by looking at what would be needed for studying the dynamics
of the pyrazine molecule (C4H4N2). This system has 25 degrees of free-
dom (24 vibrational modes and a set of electronic states). Although in a
study which we have performed14 the mean grid length for the degrees
of freedom was only N ≈ 7.4, the corresponding direct product grid con-
sists of about 1021 points, making the use of the standard method totally
infeasible. Unfortunately, the MCTDH method as presented above, using
a set of SPFs per degree of freedom, is also unable to treat this system
on a workstation: the program requires memory equivalent to approxi-
mately 12 wave function vectors, double precision complex, and so with
only 5 SPFs for each of the four strongly coupled modes and only 2 SPFs
per mode for the remaining degrees of freedom the calculation would need
54 × 221 × 12 × 16 Bytes ≈ 234 GB.

The memory requirements can, however, be reduced, if SPFs are used
that describe a set of degrees of freedom, rather than just one. The wave
function ansatz, Eq. (12), is then rewritten as a multi-configuration over p

generalised “particles”,

Ψ(q1, . . . , qp, t) =
ñ1∑

j1=1

. . .

ñp∑
jp=1

Aj1...jp
(t)

p∏
κ=1

ϕ
(κ)
jκ

(qκ, t) , (30)
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where qκ = (Qi, Qj , . . .) is the set of coordinates combined together in
a single particle, described by ñκ functions, termed multi-mode SPFs to
distinguish them from the usual single-mode SPFs.

By combining d degrees of freedom together to form a set of p = f/d

particles, the memory requirement reads

memory ∼ pñNd + ñp , (31)

where ñ is the number of multi-mode functions needed for the new particles.
The first and second term of Eq. (31) represent the space taken by the
SPFs and the coefficients, respectively. This equation holds as well for the
uncombined case when setting p = f, d = 1 and ñκ = nκ. For large systems,
the second term of Eq. (31) dominates. Thus, if

ñ < nd , (32)

i.e. the number of multi-mode functions is less for a multi-dimensional par-
ticle than the product of single-mode functions needed for the separate
degrees of freedom, there can be a large saving in memory required.

The inequality (32) will in general be fulfilled. This comes from the fact
that the number of SPFs required is related to the strength of coupling
between the particle and the rest of the system. By combining modes, this
coupling is reduced as the coupling between the combined degrees of free-
dom is now treated within the SPFs for the combined mode. For example,
consider a system with a set of coupled modes. The coupling will lead to a
wave function which is poorly described by a Hartree product, and many
single-mode SPFs would be needed. Going to the extreme and combining
all the degrees of freedom together into one particle, only one SPF will be
required: the standard numerically exact wave function.

To summarize, if only single-mode functions are used, i.e. d = 1, the
memory requirement is dominated by the number of A-coefficients, nf .
By combining degrees of freedom together, this number can be reduced,
but at the expense of longer product grids required to describe the now
multi-mode SPFs. At the extreme of all degrees of freedom combined
together, one arrives at Nf . Between these two extremes, however, there
is an optimally small amount of memory required. Similar considerations
apply to the numerical effort. For a fuller discussion see Ref. 6. Combining
modes is not recommended for small systems, unless two degrees of freedom
are very strongly coupled.27 For large systems however, the effect is very
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significant, and enables the 24 nuclear degrees of freedom pyrazine system
to be studied.11,14,28 More recently, it was even possible to study a 80 mode
spin-boson model with the MCTDH method26 using highly combined SPFs.

4. Examples of Dynamics

4.1. Spectral Intensities

In this section, results are presented from MCTDH wavepacket propagation
calculations29 on systems involving a conical intersection. The accuracy of
the method is such that all results can be taken as complete quantum
dynamical calculations, while the power is seen in that calculations with
up to 24 vibrational modes have been made, allowing calculations to be
made without resorting to drastic approximations. Photophysical systems
from three molecules will be looked at: butatriene, allene and pyrazine.

The property of interest here is a spectrum, either an absorption spec-
trum (pyrazine) or photoelectron spectrum (butatriene and allene). The
spectrum σ(ω) is calculated by Fermi’s golden rule:8

σ(ω) = a(ω)
∑

n

|〈Ψf
n|T̂ |Ψi

0〉|2δ
(
ω + Ei

0 − Ef
n

)
. (33)

Here, the final states {|Ψf
n〉} represent eigenstates of the Hamiltonian with

energies Ef
n, and T̂ denotes the appropriate transition operator. The initial

state |Ψi
0〉 (with energy Ei

0) is the electronic and vibrational ground state
of the molecule. The pre-factor a(ω) is proportional to ω for absorption
spectra, but is taken constant for ionization spectra.

The spectrum is conveniently evaluated by Fourier transform of the
autocorrelation function. To this end, one defines the initial state of the
propagation by

Ψ(0) = T̂ |Ψi
0〉 . (34)

As we assume a vertical transition (Condon approximation), Ψ(0) is the
ground-state wave packet placed on an excited or ionic diabatic potential
energy surface. The autocorrelation function is defined as

C(t) =
〈
Ψ(0)

∣∣Ψ(t)
〉

=
〈
Ψ∗(t/2)

∣∣Ψ(t/2)
〉

(35)

where the second form is only valid for a real initial wave function and
a symmetric Hamiltonian. These requirements are fulfilled here and the
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second form is particularly useful in conjunction with the MCTDH method,
as it reduces the required length of propagation by a factor of two.

The absorption (or ionization) cross-section can now be expressed as

σ(ω) = a(ω)π−1Re
∫ ∞

0
C(t)ei(ω+Ei

0)tdt . (36)

To compensate for the finite time of the propagation, the autocorrelation
must be multiplied by a function which ensures that it goes to zero at the
end of the propagation. If this is not done, spurious structures (known as
Gibbs phenomenon) will be seen in the spectrum. We choose the function

g(t) = cos
(

πt

2T

)
θ

(
1 − |t|

T

)
(37)

for this task, where T is the length of the propagation, and θ is the Heav-
iside step function. In order to compare the calculated spectrum with the
experimental one, it may also be necessary to multiply the autocorrelation
function with a damping factor

f(t) = exp(−t/τ) (38)

where τ is a time constant describing a phenomenological broadening of the
spectrum due to, e.g. spectral resolution. This is equivalent to convoluting
the spectrum with a Lorentzian function of full width at half-maximum
(FWHM) of Γ[eV] ≈ 1.31/τ [fs].

4.2. The Butatriene Cation X̃/Ã Manifold

The first demonstration8 of the dramatic effects which a conical intersec-
tion may have on the dynamics of a molecular system was given through
the computation of the photoelectron spectrum of butatriene (C4H4). The
measured spectrum30 of the ground (X̃) and first excited (Ã) electronic
states of the cation of this planar molecule is shown in Fig. 1(a). Two
intense peaks are seen, which lie at the energies expected for the two elec-
tronic states. Unexpectedly, between these peaks is also a structured region,
which is due to the strong vibronic coupling between these states. The cal-
culation could reproduce the measured spectrum and, in particular, the
so called “mystery band”, i.e. the intensity between the two main peaks.
As the “mystery band” is not understandable in an adiabatic picture, this
early study vividly proved the importance of nonadiabatic effects caused
by a conical intersection when computing spectra.
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C C C C

H
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H
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Fig. 1. The X̃/Ã spectrum of the butatriene radical cation. (a) Experimental results
from Ref. 30. (b) 2-mode model from Ref. 10. (c) 18-mode model from Ref. 12. The model
spectra are the Fourier Transform of the autocorrelation function calculated using the
MCTDH wavepacket propagation method. A damping function of τ = 55 fs has been
used.
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The molecule has D2h symmetry and the states of the cation are X̃2B2g

and Ã2B3u. Thus, from the symmetry arguments of the vibronic coupling
model, the linear coupling is due to modes with Au symmetry, of which
butatriene has only one, the ν5 torsional motion. Four modes of Ag sym-
metry are present and able to be tuning modes, but the ν14 central C–C
stretch dominates, with a coupling constant an order of magnitude larger
than the coupling constants of the other modes.

Using this information, a two-dimensional vibronic coupling model
Hamiltonian, Eq. (4), has been set up and parametrised using ab initio cal-
culated data.8,10 Figure 2 shows the adiabatic potential energy surfaces for
these states in the space of the two dominant vibrational modes. These sur-
faces are the eigenvalues of the diabatic potential matrix, W, in Eq. (3). In
Fig. 2(a) the vibronic coupling has been set to zero. Two inter-penetrating
wells are seen, representing the uncoupled oscillators, shifted along the sym-
metric vibrational coordinate. In Fig. 2(b), the effect of including the inter-
state coupling is obvious: the lower well has broadened and split into a
double well. The upper and lower surfaces also now meet at a point, the
conical intersection.

The spectrum from this two-dimensional model is shown in Fig. 1(b).
The spectrum has been broadened by multiplying the autocorrelation func-
tion with Eq. (38) with a time constant of 35 fs. This is equivalent to con-
voluting the peaks in the spectrum with a fairly broad Lorentzian with
40 meV FWHM. The agreement with the experimental spectrum is very
good: proof that the central band is due to a breakdown of the Born–
Oppenheimer approximation by vibronic coupling.

To see the effect of the vibrational modes which have been neglected
in this 2-mode model, an 18-mode model Hamiltonian has also been
parametrised including all the vibrational modes, and coupling coefficients
up to second order (quadratic and bilinear).12 The spectrum from this 18-
mode model is shown in Fig. 1(c). Little change is seen, showing that in
this case the two modes previously identified dominate the dynamics. This
will be shown not to be the case in other systems.

Although the 2-mode model can reproduce the experiment astonishing
well, it can do so only by using effective coupling constants. To reproduce
the experiment, the coupling constants had to be manually adjusted and
differ from the ab initio values by factors between 1.3 and 1.5. In contrast,
the 18-mode model used the un-modified ab initio values for all coupling
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Fig. 2. The adiabatic potential energy surfaces for the X̃/Ã states of the butatriene
radical cation. (a) in the absence of vibronic coupling. (b) including vibronic coupling. Qu

is the unsymmetric normal mode corresponding to the ν5(au) torsional mode, and Qg is
the symmetric normal mode corresponding to the ν14 central C–C stretching vibration.

constants except for the linear interstate coupling constant λ. The latter
was increased by 19% with respect to the ab initio data. (See Ref. 12 for
details). The rather large changes required for the parameters of the 2-mode
model indicate that here the two modes act as effective modes, partially
accounting for the neglected modes through their modified parameters.

As this system can be described by a 2-mode model, we are able to
plot the complete nuclear wave function as it evolves in time, and this
provides a base against which other systems can be compared. In Fig. 3,
the time-evolution of the system density is shown in the diabatic picture.
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Fig. 3. The time evolution of a wavepacket through the conical intersection between
the X̃/Ã PES of the butatriene radical cation in the diabatic picture. The location of
the conical intersection is indicated by a thick point in the uppermost plot. Left: first
surface, right: second surface.
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The initial wave packet is the ground state vibrational eigenfunction, a
Gaussian function centred around Q = 0, projected onto the upper state.
Initial motion remains in this state, moving across the upper well, until the
conical intersection is reached. At this point, which is reached after only
a few femtoseconds, density is transferred to the lower state, appearing on
two sides of the cone. The density on both surfaces then travels around
the respective minima, and returns to the intersection after 40 fs, when
interstate crossing (in both directions) occurs once more. In this undamped
two-mode system, this pattern is repeated ad infinitum.

In Fig. 4, the time-evolution of a wavepacket is shown again, but this
time in the adiabatic picture. As the conical intersection lies within the
Condon region, the excitation results in a small occupation of the lower
adiabatic state besides mainly occupying the upper. Following the evolution
of the packet on the upper surface, the cone in Fig. 2(b), the density quickly
disappears, and is transferred to the lower state within 30 fs. The dynamics
on the lower surface is more complicated, but similar to that in the diabatic
picture, with the density again flowing around the minimum, coming away
from two sides of the intersection. After 40 fs the density returns to the
intersection point and some re-crossing to the upper state is seen.

4.3. The Allene Cation Ã/B̃ Manifold

Despite its chemical similarity to butatriene, allene (C3H4) has a very differ-
ent set of electronic states due to the fact that the ground state equilibrium
structure is D2d, with the CH2 groups perpendicular to one another. The
ground state of the cation is doubly degenerate, X̃2E, and forms an exam-
ple of the relatively rare E ⊗ β Jahn–Teller interaction.31,32 An even more
interesting system is found in the next band of the photoelectron spectrum,
which is shown in Fig. 5(a). At low energies a set of ordered peaks are seen,
with the structure being washed out at high energies. This band in fact
contains two states, the close lying Ã2E and B̃2B2 states.33 The Ã2E is
again a E⊗β Jahn–Teller state, which then further interacts with the B̃2B2

state via pseudo-Jahn–Teller coupling. This system provides a challenge for
dynamics calculations, as all fifteen vibrational modes couple in first order.

Early calculations focused on the low energy Ã2E band structure.32

Here the four doubly degenerate vibrations can be ignored, as they do
not couple these states. Of the remaining seven modes, the most strongly
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Fig. 4. The time evolution of a wavepacket through the conical intersection between
the X̃/Ã PES of the butatriene radical cation in the adiabatic picture. The location of
the conical intersection is indicated by a thick point in the uppermost plot. Left: lower
surface, right: upper surface.
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Fig. 5. The Ã/B̃ spectrum of the allene radical cation. (a) Experimental results from
Ref. 33. (b) 10-mode model from Ref. 34. (c) 15-mode model from Ref. 35. The model
spectra are the Fourier Transform of the autocorrelation function calculated using the
MCTDH wavepacket propagation method. A damping function of τ = 50 fs has been
used.
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coupled of each symmetry type were taken to provide a 3-mode model with
the ν4 (B1), ν7 (B2), and ν2 (A1) modes. The first two of these provide the
Jahn–Teller active modes, coupling the degenerate electronic states. From
inspection of the orbitals, the B1 torsional mode provides the off-diagonal
coupling and B2 the on-diagonal coupling. The A1 mode is also activated
by excitation from the neutral ground state, and appears on the diagonal
of the Hamiltonian. The coupling constant is, however, the same for both
states by symmetry. After adjustment of the parameters, this model is able
to adequately describe the experimental spectrum.

A later study34 added the pseudo-Jahn–Teller coupling to the B̃2B2

state to this model. This resulted in a 10-mode model, the spectrum of
which is shown in Fig. 5(b). The two parts of the spectrum are plotted
separately to show that the peaks at either end can be assigned to each
state, with the overlap in the middle forming a structureless band.

Including all 15 vibrational modes, however, was not possible within
the linear model in a satisfactory manner. In particular, inclusion of the
ν3 (A1) mode provided problems, as it is also significantly coupled to the
excitation. The problem was traced to the lack of second-order coupling.
On calculating these parameters, it was found that the ν2 and ν3 modes
were strongly coupled, and undergo Duschinsky rotation. No correction of
the first order terms was then required and the resulting spectrum from the
15-mode model is shown in Fig. 5(c).35

How this second order model changes the interpretation of the spectrum
arising from the Jahn–Teller active Ã band is made clear in Fig. 6. In (a)
the spectrum obtained from a 2-mode model with the adjusted parameters
of Ref. 32 is shown. The progression of peaks is in good agreement with
the experimental spectrum, and these can then be assigned to the ν7 and
ν2 vibrations, and overtones of these. Figure 6(b) shows the same spectrum
from the three most important modes from the second order model. The
interpretation here is that the lower peak is due to a combination of ν2 and
ν3 vibrations, while the higher peak is from ν7. This interpretation is more
satisfactory, as it fits the ab initio data better. Moreover, the inclusion of
ν3 and — to a lesser extent — of all the other neglected modes significantly
increases the density of states, leading to an enhanced spectral intensity in
the vicinity of 15 eV (see Fig. 5).

In Fig. 7 the time evolution of the diabatic state populations in the
Ã/B̃ manifold are plotted. In (a) the results are shown after excitation
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Fig. 6. The spectrum of the Jahn–Teller split Ã2E state of the allene radical cation
using different reduced dimensionality models. (a) A linear 2-mode model including the
vibrational modes ν2 and ν7 with parameters adjusted to fit the spectrum. (b) A 2nd
order 3-mode model including the vibrational modes ν2, ν3 and ν7.

takes place from the neutral ground state to the B2 state. The population
is seen to rapidly decay, transferring to the lower energy E state within
20 fs. Weak recurrences are then seen with a time period of 50 fs.

In Fig. 7(b) the population is shown after excitation to one component of
the E state. Population transfer takes place initially to the B2 state before
being transferred on to the other E component. This process continues
in an oscillatory fashion with a frequency of approximately 25 fs, which
corresponds to the frequency of the ν2 mode. This process is in fact a
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Fig. 7. The time evolution of state population transfer in the Ã/B̃ manifold of the
allene radical cation after excitation to (a) the B̃(B2) and (b) the X̃(Ey) diabatic state.

step-wise electron transfer process.36 The orbitals of the states are plotted
in Fig. 7(a), and it can be seen that excitation to a component of the E

state corresponds to removing an electron from one end of the molecule.
Population transfer corresponds to transferring electron density from the
other end to fill this hole. The B2 state, which has density all along the
conjugated system, thus plays a role in this transfer.

4.4. The Pyrazine S1/S2 Manifold

A classic example of the effect of a conical intersection on the photo-
physics of a molecule is found in the absorption spectrum of the pyrazine
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molecule.37,38 In contrast to the S1 (B3u) band, which has a well defined
vibronic structure, the S2 (B2u) state gives rise to a very broad band with
little structure. This is reproduced in Fig. 8(a).

Using the vibronic coupling model, a conical intersection has been iden-
tified and characterized.39 In the linear model, there is one coupling mode,
ν10a with B1g symmetry, and five possible tuning modes with Ag sym-
metry. The spectrum from a linear 4-mode model, which ignores the two
weakest coupled tuning modes, is shown in Fig. 8(b), and is seen to agree
very well with the experimental one. To obtain this spectrum, however,
a large phenomenological broadening has been added, with the spectrum
being convoluted with a broad Lorentzian of 37 meV FWHM (τ = 35 fs in
Eq. (38)).

In Fig. 8(c) the spectrum is shown from a second order model, which
includes all 24 modes.11 Here a damping function with a time-constant
of 150 fs is sufficient for good agreement with the experimental spectrum,
equivalent to the broadening due to the spectrometer. Thus, while the major
features of the spectrum can be accounted for by the 4-mode model, its
envelope can only be explained by including all the modes.

This calculation was a formidable task. Alone setting up the Hamilto-
nian, which involved calculating and testing 102 coupling constants, was
very time consuming. 24 vibrational modes and 2 coupled electronic states
is well beyond the reach of standard wave packet methods. This was possi-
ble only by using the MCTDH method, with the refinements of combined
modes, and the multi-set formulation. Even so, 2 771 440 configurations were
required for good quality results, and the propagation of 150 fs required
650 MB and 485 h on a Cray T90 vector computer. In contrast, the 4-mode
model required 20 min and 16 MB on an IBM RS/6000 power 2 workstation.

4.5. The Pyrazine Molecule Viewed as a System Coupled to
a Bath

One question that arises in the pyrazine study is as to whether it is really
necessary to accurately describe the 20 weakly-coupled modes, or could a
weakly coupled bath lead to the same result, namely a seemingly homo-
geneous broadening of the 4-mode model spectrum. A model in which the
4-mode linear model is coupled to a weak bath has thus also been set up.40

The bath modes are coupled linearly to each state, and provide pathways
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Fig. 8. The S2 absorption spectrum of the pyrazine molecule (a). Experimental results
from Ref. 37. (b) 4-mode model from Ref. 39. (c) 24-mode model from Ref. 11. The model
spectra are the Fourier Transform of the autocorrelation function calculated using the
MCTDH wave packet propagation method. A damping function of τ = 30 fs has been
used in (b) and τ = 150 fs in (c).
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for the dephasing of the wavepacket. We have studied this model using
the MCTDH method,14 with which it was possible to perform accurate
quantum dynamical calculations including up to 20 bath modes.

These calculations demonstrate the scaling of the MCTDH method with
system size. The computer resources required are summarized in Table 1.
For comparison, it is indicated how many MCTDH particles (effective
degrees of freedom in the calculation) were used, and how many configu-
rations were required. Both memory requirements and CPU-time required
increase rapidly: not exponentially, however, but roughly like dimension
to the third power. For a 120 fs propagation, this 4-mode model, which is
slightly different from that used above, required 4 MB and 6 min, while the
system coupled to 20 bath modes required 687 MB and 3100 min (≈52 h).
Even so, the 24-mode calculations are easy to perform on a normal worksta-
tion. The much longer time required for the 24-mode second-order pyrazine
model calculations discussed above is due to the large number of terms in
the Hamiltonian required.

The spectra from the 4-mode model coupled to 0, 5, 10, and 20 bath
modes are plotted in Figs. 9(a)–(d). The addition of the bath clearly results
in the structure of the spectrum being washed out. The experimental spec-
trum is, however, not obtained. The effect of the bath modes is made clear in
Figs. 10(a)–(d), in which the absolute values of the autocorrelation function
for the 4-mode system with 0, 5, 10, and 20 bath modes is plotted. Just the
strongest 5 bath modes lead to a significant damping of the oscillations in
the function. This is simply due to the extra volume of phase-space available

Table 1. Summary of computer resources required for calculations made using the
MCTDH method on a 4-mode model of the S1 and S2 states of the pyrazine molecule
after excitation to the S2 state, and coupled to harmonic oscillator baths of varying
size.14 The degrees of freedom (no. of bath modes + 4) were combined together into the
no. of particles listed, and the no. of configurations required for converged calculations
are given. The wave packet was propagated for 120 fs.

Bath Modes MCTDH Configurations Memory CPU Timea

Particles (MB) (min)

0 4 10 575 3.7 6.3
5 4 74 024 48.9 185.0

10 5 142 350 52.5 196.9
20 7 3 759 552 686.5 3095.6

a On an IBM RS/6000 power2 workstation.
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Fig. 9. The effect of a bath on the spectrum of the 4-mode model for the S1/S2
manifold of the pyrazine molecule after initial excitation to the S2 state. Taken from
Ref. 14. (a) No bath present. (b) 5 bath modes. (c) 10 bath modes. (d) 20 bath modes.
The spectra are calculated from the Fourier Transform of the autocorrelation function.
No phenomenological broadening has been added, but a cutoff function is used to remove
artefacts due to the finite time-length (240 fs) of the autocorrelation function.
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Fig. 10. The effect of a bath on the autocorrelation function of the 4-mode model
for the S1/S2 manifold of the pyrazine molecule after initial excitation to the S2 state.
Taken from Ref. 14. (a) No bath present. (b) 5 bath modes. (c) 10 bath modes. (d)
20 bath modes.
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in which the wavepacket dissipates, and thus dephases. It is clear from this
plot that the bath model chosen does not lead to a homogenous broadening
of the spectrum, as extra structure is also added (see for example the first
peak). Interestingly, even with the 20-mode bath a definite beat-like struc-
ture is present, and it is as if the bath is filtering the spectrum — while the
wave packet at most frequencies is dephased, certain frequencies survive.28

Figure 11 shows the time-evolution of the population of (a) diabatic and
(b) adiabatic S2 states. In all cases, the population decays sharply during
the first 40 fs. After approximately 80 fs, a recurrence occurs, and population
is transferred back from the S1 to the S2 state. The adiabatic populations
exhibit a faster, and more complete, population transfer. The recurrence is
also much smaller. In both diabatic and adiabatic pictures, the presence of
the bath increases the rate and amount of transfer. With 10 bath modes,
the population of the adiabatic S2 state goes very nearly to zero over this
time-scale. The 20 bath mode model adiabatic state populations could not
be calculated due to the technical problem of the diabatic — adiabatic
transformation for a system of this size.

We finally mention that the system/bath picture for studying the
pyrazine spectrum has been adopted by two other publications.41,42 There,
however, the bath was treated implicitly by dissipative operators of the
Lindblad type.

5. Conclusions

A very useful starting point for the study of non-adiabatic processes, which
are common in photochemistry and photophysics, is the vibronic coupling
model Hamiltonian. The model is based on a Taylor expansion of the
potential surfaces in a diabatic electronic basis, and it is able to correctly
describe the dominant feature resulting from vibronic coupling in poly-
atomic molecules: a conical intersection. The importance of such intersec-
tions is that they provide efficient non-radiative pathways for electronic
transitions. Not only is the position and shape of the intersection described
by the model, but it also predicts which nuclear modes of motion are cou-
pled to the electronic transition which takes place as the system evolves
through the intersection.

The modes involved to first order, i.e. including coupling terms linear
in the nuclear coordinates, are the coordinates of the correct symmetry
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Fig. 11. The effect of a bath on the rate of inter-state crossing in the 4-mode model
of the pyrazine S1/S2 manifold of the pyrazine molecule after initial excitation to the
S2 state. Taken from Ref. 14. (a) diabatic state population. (b) adiabatic state popula-
tion. Full line: 0 bath oscillators. Dashed line: 5 bath oscillators. Dotted line: 10 bath
oscillators. Dash-dot line 20 bath oscillators (diabatic state only).

required to couple the electronic states, as well as the totally symmetric
coordinates, which modulate the energy gap. These are often only a few
modes in total, and may provide a reasonable description of the major
physics of the system. Neglecting further the most weakly coupled modes,
this can result in small, 2, 3 or 4 mode models, which can then be treated
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using standard wave packet methods to obtain a full quantum mechanical
solution of the problem.

To second order, however, all degrees of freedom are involved. Even for
small molecules (5–12 atoms, say) these systems are no longer accessible to
standard quantum dynamics methods. Here, the MCTDH method becomes
an essential tool. MCTDH is an efficient wave packet propagation method,
accurate, yet flexible, and applicable to a wide range of problems. Its ability
to include more degrees of freedom than conventional wave packet methods
is of particular importance in the study of the multi-dimensional dynamics
associated with nonadiabatic processes. Using this method, we have been
able to treat a number of typical nonadiabatic systems completely up to
second order, i.e. including all degrees of freedom.

Our calculations show that these second order terms are important for
a quantitative description of nonadiabatic systems. This is demonstrated
in the pyrazine S1/S2 system, where a reduced 4-mode model provides
a qualitative picture with the main peaks of the spectrum in the correct
places. The addition of second order terms and all degrees of freedom,
results in the correct spectral envelope also being produced by the model.
Also in the allene Ã/B̃ system, the second order terms are required, not
only for the correct description of the Duschinsky rotation in the excited
state, but also for the high spectral density between the two bands. Even
in the butatriene X̃/Ã system, in which second order terms play a minor
role in the description of the spectral band, the inclusion of these terms
means that the ab initio data could be taken with minimal adjustment,
whereas a reduced dimensionality model required significant adjustment of
the expansion parameters.

Using the MCTDH method, we have thus been able to provide full-
dimensionality calculations on the quantum dynamics of a molecular system
passing through a conical intersection. These calculations not only give
insight into the factors required for the description of such systems, but also
provide benchmarks for comparison with results from more approximate
methods.

Let us summarize the major points:

• The vibronic coupling Hamiltonian provides a realistic model for accu-
rately describing the short-time multi-mode dynamics in nonadiabatic
systems.
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• The computations have shown that a multi-mode treatment is essential
for correctly describing the dynamics in the presence of a conical inter-
section.

• The advent of MCTDH has made it possible to solve the (second-order)
vibronic coupling Hamiltonian of small to medium sized molecules (5–12
atoms, say), including all internal degrees of freedom. In fact, it is
the combination of the vibronic coupling model with MCTDH which
is numerically so successful. The vibronic coupling model provides a real-
istic multi-mode Hamiltonian, and this Hamiltonian is, from its ansatz,
in the product form advantageous for MCTDH. MCTDH then solves the
dynamics problem accurately and efficiently.
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(1999).
35. S. Mahapatra et al., J. Phys. Chem. A105, 5567 (2001).
36. G. Worth and L. Cederbaum, Chem. Phys. Lett. 348, 477 (2001).
37. I. Yamazaki, T. Murao, T. Yamanaka and K. Yoshihara, Faraday Discuss.

Chem. Soc. 75, 395 (1983).
38. K. K. Innes, I. G. Ross and W. R. Moonaw, J. Mol. Spec. 132, 492 (1988).
39. C. Woywod, W. Domcke, A. L. Sobolewski and H.-J. Werner, J. Chem. Phys.

100, 1400 (1994).
40. S. Krempl, M. Winterstetter, H. Plöhn and W. Domcke, J. Chem. Phys. 100,
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1. Introduction

The description of quantum-mechanical processes through a mixed
quantum-classical (MQC) formulation has attracted considerable interest
for more than seventy years. The reason for this is easy to understand: As
the numerical effort of a quantum-mechanical basis-set calculation increases
exponentially with the number of nonseparable degrees of freedom (DoF),
a straightforward quantum computation is restricted to only a few vibra-
tional DoF of a polyatomic system. Classical mechanics, on the other hand,
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scales linearly with the number of DoF; however it only represents a reason-
able description of microscopic dynamics in the case that the corresponding
action integral is large compared to �, i.e. for heavy particles. Hence the
strategy of MQC models is to combine the advantages of both methods,
thus describing the dynamics of the “classical DoF” (e.g. the motion of
heavy nuclei) in a classical framework and invoke quantum mechanics only
for the description of the dynamics of the “quantum DoF” (e.g. the motion
of electrons and protons). In this review, we will focus on the application
of MQC methods to describe non-Born–Oppenheimer dynamics mediated
by a conical intersection.

The first MQC formulation was proposed by Mott,1 who considered
the excitation of atoms in collision reactions. Inspired by the work of Born
and Oppenheimer,2 he described the dynamics of the electrons through
an expansion of the total wave function in adiabatic electronic wave func-
tions, while the motion of the heavy nuclei was considered in a classical
manner. As the electronic dynamics is evaluated along the classical path of
the nuclei, this ansatz is often referred to as classical-path approximation.
While the classical-path approximation describing the reaction of the quan-
tum DoF to the dynamics of the classical DoF is common to most MQC
formulations, there are several ways to describe the “back-reaction” of the
classical DoF to the dynamics of the quantum DoF. One way is to employ
Ehrenfest’s theorem3 and calculate the effective force on the classical trajec-
tory through a mean potential that is averaged over the quantum DoF.4–16

As most MQC formulations, the resulting mean-field trajectory method
employs a quasiclassical approximation for the heavy-particle DoF, i.e. the
quantum nature of the initial state of the classically treated subsystem is
simulated through quasiclassical sampling of the corresponding probabil-
ity distribution.17–19 In contrast to a true semiclassical description (i.e. in
the sense of the Van–Vleck–Gutzwiller formulation20), possible quantum-
mechanical interferences between individual classical paths are therefore
not included.

1.1. Classification of Methods

In general, a MQC description may be derived by starting with a quantum-
mechanically exact formulation for the complete system and performing
a partial classical limit for the heavy-particle DoF. This procedure is not
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unique, however, since it depends on the particular quantum formulation
chosen as well as on the specific way to achieve the classical limit. In
the mean-field trajectory method explained above, for example, the wave-
function formulation of quantum mechanics is adopted and the Ehren-
fest classical limit is performed for the heavy-particle DoF. Alternatively,
one may consider the Liouville equation of the density operator and per-
form a classical limit within the Wigner representation for the heavy-
particle DoF. This leads to the quantum-classical Liouville description
which has recently received considerable attention.21–34 Furthermore, one
may start with a path-integral formulation and treat the heavy-particle DoF
by the stationary-phase approximation, thus yielding Pechukas’ theory.35

Quite recently, also the hydrodynamic or Bohmian formulation of quantum
mechanics has been used as a starting point for a MQC description.36–38

It should be made clear at the outset that the MQC formulations differ
greatly, depending on whether the problem is approached via the wave-
function, density-operator, path-integral, or hydrodynamic formulation of
quantum mechanics.

A different way to combine classical and quantum mechanics is the
“connection approach,” which was proposed independently by Landau,39

Zener,40 and Stückelberg41 and has later been adopted and generalized by
many authors.42–50 In this formulation, nonadiabatic transitions of classical
trajectories are described in terms of a connection formula of the semiclassi-
cal WKB wave functions associated with the two coupled electronic states.
While the true semiclassical evaluation of these formulations has mostly
been concerned with one-dimensional problems, the intuitively appealing
picture of trajectories hopping between coupled potential-energy surfaces
gave rise to a number of quasiclassical implementations of this idea.51–68 In
the popular surface-hopping scheme of Tully and coworkers,51–53 classical
trajectories are propagated on a single adiabatic potential-energy surface
until, according to some “hopping criterion”, a transition probability p1→2

to another potential-energy surface is calculated and, depending on the
comparison of p1→2 with a random number, the trajectory “hops” to the
other adiabatic surface. The many existing variants of the method mainly
differ in choice and degree of sophistication of the hopping criteria. In recent
years, the term “surface hopping” and its underlying ideas have also been
used in the stochastic modeling of a given deterministic differential equa-
tion, e.g. the quantum-classical Liouville equation.29–32
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Recently, a conceptionally different way to couple the dynamics of
quantum and classical DoF has been proposed, the so-called mapping
approach.69–71 In this formulation the problem of a classical treatment of
discrete quantum DoF is bypassed by transforming the discrete quantum
variables to continuous variables. Based on Schwinger’s theory of angular
momentum,72 the mapping of discrete DoF to continuous DoF is achieved
through the representation of spin operators by boson operators. To illus-
trate the concept, consider a molecular system comprising Nel electronic
states and Nvib vibrational modes: The basic idea is to (i) map the Nel

discrete DoF onto Nel continuous DoF and (ii) solve the resulting dynam-
ical problem of Nel + Nvib continuous DoF employing standard classical
or semiclassical methodology. On a purely classical level, the formalism
has been shown to recover the classical electron analog model of Meyer
and Miller.73–76 The “Langer-like modifications”77 that were empirically
introduced in this model could be identified as a zero-point energy term
that accounts for quantum fluctuations in the electronic DoF.71,78 This
in practice quite important feature was found to be the main difference
between the classical mapping formulation and standard quantum-classical
mean-field models. On a semiclassical level, the mapping goes beyond the
original classical electron analog model, because it is exact for an N -level
system and unambiguously defines the Hamiltonian as well as the bound-
ary (or initial) conditions of the semiclassical propagator.69,70 Employing
an initial-value representation for the semiclassical propagator,79–86 the for-
mulation has recently been applied to a variety of systems with nonadia-
batic dynamics.69–71,78,87–97 Furthermore, the approach allows us to study
the classical phase space of a nonadiabatically coupled system and also to
introduce classical periodic orbits of such a system.98–101

In summary, we have made an attempt to classify existing MQC strate-
gies in formulations resulting from (i) a partial classical limit, (ii) a connec-
tion ansatz, and (iii) a mapping formalism. In this overview, we shall focus
on essentially classical formulations that may be relatively easily applied to
multidimensional surface-crossing problems. On the other hand, it should
be noted that there also exists a number of essentially quantum-mechanical
formulations which at some point use classical ideas. A well-known example
are formulations that combine quantum-mechanical time-dependent per-
turbation theory with a classical evaluation of the resulting correlation
functions, e.g. Golden Rule type formulations.102,103 Furthermore, several
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workers have suggested time-dependent quantum propagation schemes that
employ Gaussian wave packets as a time-dependent basis set.104–108 For
example, Martinez and coworkers have developed such a method (“multi-
ple spawning”) that borrows ideas from surface-hopping and is designed to
be effectively interfaced with quantum-chemical methods, thus providing
an ab initio molecular dynamics description of nonadiabatic photochemical
processes.105–107

1.2. Application to the Dynamics at Conical Intersections

Since the validity of an approximate description depends to a large extent on
the specific physical application under consideration, one may ask whether a
MQC strategy appears promising to describe the dynamics at conical inter-
sections. As discussed in this book, the electronic and vibrational relaxation
dynamics associated with conical intersections exhibits several character-
istic features, which represent a hard challenge for an approximate the-
oretical description: (i) The dynamics is caused by strong intramolecular
interactions that cannot be accounted for in a perturbative manner (ii) Due
to the large anharmonicity of the adiabatic potential-energy surfaces, the
vibrational motion is highly correlated, thus hampering the application of
simple self-consistent-field schemes. Within the limits of the underlying clas-
sical approximation, these requirements are fulfilled by a MQC formulation
which is a nonperturbative description and also fully includes the correla-
tion between the individual DoF. In fact, a MQC description appears to be
one of the few approximations that may be expected to work. Furthermore,
it should be stressed that a classical (and therefore local) description is
readily combined with an “on-the-fly” ab initio evaluation of the potential-
energy.106,107,109–114 Nonadiabatic ab initio molecular dynamics methods
are one of the few promising strategies to explore excited-state potential-
energy surfaces of multidimensional system in an unbiased manner.

Let us briefly review what MQC methods have so far been applied to
the dynamics at conical intersections. Here the surface-hopping method
has been the most popular approach,54,60–62,115 in particular in combina-
tion with an on-the-fly ab initio evaluation of the potential-energy.109–114

Furthermore, various self-consistent-field methods have been employed to
describe internal-conversion dynamics associated with a conical intersec-
tion, including the mean-field trajectory method, the classical electron
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analog model, and the quasiclassical mapping formulation.14,71,78,116 Since
there is no sampling problem due to oscillating phases, all these method
are readily implemented and typically converge for a moderate number of
trajectories (≈ 102 − 104). Because of rapidly oscillating phases and the
representation of nonlocal operators, however, the numerical propagation
of the quantum-classical Liouville equation represents a significantly more
tedious problem. Hence only a few workers have considered the dynamics
at conical intersections with this approach.33,34

Due to the development of efficient initial-value representations of the
semiclassical propagator, recently there has been considerable progress in
the semiclassical description of multidimensional quantum processes.79–86

Considering the semiclassical description of nonadiabatic dynamics, only
the mapping approach,69,70 and the equivalent formulation that is obtained
by requantizing the classical electron analog model of Meyer and Miller,87

appears to be amenable to a numerical treatment via an initial-value
representation.89,92,97 Other semiclassical formulations such as Pechukas’
path-integral formulation35 and the various connection theories42–50 have
been conceptionally illuminating, but so far of limited computational value.

1.3. Outline of the Chapter

The goal of this review is to critically compare — from both a concep-
tional and a practical point of view — various MQC strategies to describe
non-Born–Oppenheimer dynamics. Owing to personal preferences, we will
focus on the modeling of ultrafast bound-state processes following photoex-
citation such as internal-conversion and nonadiabatic photoisomerization.
To this end, Sec. 2 introduces three model problems: Model I represents a
three-mode description of the S1 − S2 conical intersection in pyrazine.117

Model II accounts for the ultrafast C̃ → B̃ → X̃ internal-conversion process
in the benzene cation,118,119 and Model III represents a three-mode descrip-
tion of ultrafast photoisomerization triggered by a conical intersection.120

Allowing for exact quantum-mechanical reference calculations, all models
have been used as benchmark problems to study approximate descriptions.

The remaining sections are devoted to a discussion of the various MQC
methods. Among other issues, we consider the ability of a method to
(i) account for the branching of trajectories, (ii) account for the electronic
phase coherence, (iii) correctly describe the vibrational motion on coupled



May 26, 2004 15:28 Conical Intersections: Electronic Structure, Dynamics and Spectroscopy chap15

626 Conical Intersections: Electronic Structure, Dynamics and Spectroscopy

PESs, and (iv) obey the principle of microreversibility. Section 3 describes in
some detail the mean-field trajectory method and also discusses its connec-
tion to time-dependent self-consistent-field schemes. The surface-hopping
method is considered in Sec. 4, which discusses various motivations of the
ansatz as well as several variants of the implementation. Section 5 gives a
brief account on the quantum-classical Liouville description and considers
the possibility of an exact stochastic realization of its equation of motion.
The mapping formalism, its relation to other formulations, and its quasi-
classical implementation is introduced in Sec. 6. Section 7 is concerned with
the semiclassical description of nonadiabatic quantum mechanics. Section 8
summarizes our results and concludes with some general remarks.

2. Models

2.1. Model Hamiltonian

In what follows, we introduce the model Hamiltonian pertaining to the
molecular systems under consideration. As has been discussed in detail in
previous chapters of this book, a curve-crossing problem can be formulated
in the adiabatic as well as in a diabatic electronic representation. Depending
on the system under consideration and on the specific method used, both
representations have been employed in mixed quantum-classical (MQC)
approaches. While the diabatic representation is advantageous to model
potential-energy surfaces in the vicinity of an intersection and has been
used in mean-field type approaches, other MQC approaches such as the
surface-hopping method usually employ the adiabatic representation.

Adopting diabatic electronic basis states |Φd
k〉, the molecular model

Hamiltonian can be written as121,122

H = Tn +
∑
k,k′

∣∣Φd
k

〉
Wkk′
〈
Φd

k′
∣∣ . (1)

Here the Wkk′ represent the electronic matrix elements of the diabatic
potential matrix and Tn is the nuclear kinetic-energy operator. We wish to
consider molecular models describing (i) photophysical processes in which
the molecular system undergoes electronic relaxation through internal con-
version mediated by conical intersections and (ii) photochemical processes
in which the molecular system additionally changes its chemical identity
(e.g. through isomerization).
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To account for the first kind of process, we employ the linear vibronic
coupling model, where the diabatic potential matrix elements Wkk′ are
approximated by a Taylor expansion with respect to the electronic ground-
state equilibrium geometry121,122 (see Chapter 7). In lowest order we thus
obtain (throughout the article, we set � ≡ 1)

Tn =
1
2

∑
j

ωjP
2
j , (2)

Wkk = Ek +
1
2

∑
j

ωjQ
2
j +
∑

j

κ
(k)
j Qj , (3)

Wkk′ = Wkk′(0) +
∑

j

λ
(kk′)
j Qj , k �= k′, (4)

where ωj is the vibrational frequency and Qj , Pj are the dimensionless posi-
tion and momentum of the jth vibrational mode. Ek denotes the vertical
transition energy of the diabatic state |Φd

k〉 and κ
(k)
j represents the gradi-

ent of the exited-state diabatic potential-energy surface at the ground-state
equilibrium geometry. The vibronic-coupling constants λ

(kk′)
j are given by

the gradients of Wkk′(x). In all the models considered in this paper we have
Wkk′(0) = 0 due to symmetry reasons, resulting in a conical intersection of
the corresponding adiabatic potential-energy surfaces.

To account for photochemical processes, we adopt a simple model
recently proposed by Seidner and Domcke for the description of cis-
trans isomerization processes.120 In addition to the normal-mode expan-
sion above, they introduced a Hamiltonian exhibiting torsional motion, the
diabatic matrix elements of which are given as

hR
kk = − 1

2I

∂2

∂ϕ2 +
1
2
WR

k (1 − cos(nϕ)). (5)

Here ϕ represents the torsional coordinate, I denotes the moment of iner-
tia, and WR

k is the first coefficient of the Fourier series expansion of the
isomerization potential of periodicity nπ.

Introducing adiabatic electronic states |Φa
k〉 the model Hamiltonian in

the adiabatic representation can then be written as121,122

H =
∑
k,k′

|Φa
k〉 [(Tn + Vk)δk,k′ + Λkk′ ] 〈Φa

k′ | . (6)

Here, Vk denotes the adiabatic Born–Oppenheimer potential-energy sur-
faces which are obtained by diagonalizing the diabatic potential matrix
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defined above. The non-Born–Oppenheimer operator

Λkk′ = −
∑

j

ωj

(
iF

(j)
kk′Pj +

1
2
G

(j)
kk′

)
(7)

is given in terms of the nonadiabatic coupling matrices of first and second
order

F
(j)
kk′ =

〈
Φa

k

∣∣∣∣ ∂

∂Qj

∣∣∣∣Φa
k′

〉
, (8)

G
(j)
kk′ =

〈
Φa

k

∣∣∣∣∣ ∂2

∂Q2
j

∣∣∣∣∣Φa
k′

〉
. (9)

2.2. Observables of Interest

The various aspects of photoinduced nonadiabatic dynamics are reflected
by different time-dependent observables. Following a brief introduction of
the observables of interest, we discuss how these quantities are evaluated
in a MQC simulation.

In general, the time evolution of the molecular system is governed by
the Liouville–von Neumann equation

iρ̇(t) = [H, ρ(t)], (10)

where H represents the molecular Hamiltonian defined in Eqs. (1) or (6)
and ρ(t) is the density operator. The time-dependent expectation value of
the observable Â is then given by

A(t) = Tr{ρ(t)Â} = Tr{ρ(0)Â(t)}, (11)

where Tr{. . .} represents the quantum-mechanical trace over all degrees of
freedom of the system and Â(t) denotes the operator Â in the Heisenberg
representation. Assuming that at time t = 0 the molecular system is pho-
toexcited from the electronic ground state (e.g. |Φ0〉) to an upper state (e.g.
|Φ2〉) by an ultrashort laser pulse, the initial state is given as

ρ(0) = |Φ2〉|0〉〈0|〈Φ2|, (12)

where |0〉 denotes the vibrational ground state in |Φ0〉.122 In a MQC calcu-
lation the trace operation in the Heisenberg representation is replaced by a
quantum-mechanical trace (Trq) over the quantum degrees of freedom and
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a classical trace (i.e. a phase-space integral over the initial positions R0 and
momenta P0) over the classical degrees of freedom. This yields

A(t) =
∫

dR0

∫
dP0 Trq{ρ(R0,P0)A[R(t),P(t)]}, (13)

where ρ(R0,P0) denotes a phase-space representation of the vibrational
initial state.17–19 For example, to represent the ground state |0〉〈0| of a
one-dimensional harmonic oscillator H = 1

2ω(P 2 + R2), one may employ
the Wigner distribution 123

ρ(R0, P0) =
1
π

e−P 2
0 −R2

0 . (14)

Alternatively one may change to classical action-angle variables n, q

(using the transformation R =
√

2N + 1 sin q, P =
√

2N + 1 cos q, q ∈
[0, 2π]17,18) and consider initial conditions with fixed action N0 = 1

2

ρ(N0) = δ
(
N0 − 1

2

)
, (15)

reflecting the zero-point energy of the harmonic oscillator.
As a first example, let us consider the time-dependent mean position of

a normal mode Qj of the system. In a MQC calculation, this observable
is directly given by the quasiclassical average over the nuclear trajectories
Q

(r)
j (t), i.e.

〈Qj(t)〉C =
1

Ntraj

Ntraj∑
r=1

Q
(r)
j (t) (16)

where the phase-space integral over the classical initial conditions in
Eq. (13) has been approximated by a sum over Ntraj trajectories with equal
weights. Similarly, the corresponding mean momenta and other vibrational
quantities such as normal-mode energies are readily evaluated.

The time evolution of a photoisomerization process can be visualized by
considering the time-dependent probability of finding the system in either
the cis or the trans conformation.120,122 Assuming a π-periodic torsional
potential as used in Model III below, we assign a torsional angle ϕ between
−π/2 and π/2 to the cis conformation and a torsional angle between π/2
and 3π/2 to the trans conformation, resulting in the projectors

Ptrans = Θ(|ϕ| − π/2),

Pcis = 1 − Ptrans, (17)
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where Θ denotes the Heaviside step function and ϕ is restricted to −π/2 ≤
ϕ ≤ 3π/2.

To describe the electronic relaxation dynamics of a photoexcited molec-
ular system, it is instructive to consider the time-dependent population of
an electronic state, which can be defined in a diabatic or the adiabatic
representation.122 The population probability of the diabatic electronic
state
∣∣Φd

k

〉
is defined as the expectation value of the diabatic projector

P dia
k (t) = Tr{P̂ dia

k ρ(t)},

P̂ dia
k =

∣∣Φd
k

〉 〈
Φd

k

∣∣ . (18)

In a MQC simulation such as a mean-field-trajectory or a surface-hopping
calculation, the population probability of the diabatic state

∣∣Φd
k

〉
is given

as the quasiclassical average over the squared modulus of the diabatic elec-
tronic coefficients dk(t) defined in Eq. (21). This yields

P dia
k (t) = 〈d∗

k(t)dk(t)〉C

=
1

Ntraj

Ntraj∑
r=1

|d(r)
k (t)|2. (19)

In complete analogy, the adiabatic population probability is defined as the
expectation value of the adiabatic projector P̂ ad

k = |Φa
k〉 〈Φa

k|, and is qua-
siclassically given as average over the squared modulus of the adiabatic
electronic coefficients ak(t) defined in Eq. (24).

Finally, in the semiclassical formulation introduced in Sec. 7 it is of
interest to calculate the autocorrelation function

J(t) =
〈
0
∣∣〈Φ2
∣∣e−iHt

∣∣Φ2
〉∣∣0〉 , (20)

the Fourier transform of which yields the electronic absorption spectrum.

2.3. Model Systems

In order to discuss various aspects of a MQC treatment of photoinduced
electronic and vibrational relaxation dynamics mediated by conical inter-
sections, we consider three different kinds of molecular models, each rep-
resenting a specific challenge for a MQC modeling. Here, we introduce the
specifics of these models and discuss the characteristics of their nonadia-
batic dynamics. The molecular parameters of the models are collected in
Tables 1–3.
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Table 1. Parameters of Model I representing a three-mode model of the
S1 − S2 conical intersection in pyrazine.117 All quantities are given in eV.

Ek ω1 κ
(k)
1 ω6a κ

(k)
6a ω10a λ

|Φd
1〉 3.94 0.126 0.037 0.074 −0.105 0.118

0.262
|Φd

2〉 4.84 0.126 −0.254 0.074 0.149 0.118

Table 2. Parameters of Model II representing a three-state five-mode model of the
ultrafast C̃ → B̃ → X̃ internal-conversion process in the benzene cation.118,119 All
quantities are given in eV.

Ek ω2 κ
(k)
2 ω16 κ

(k)
16 ω18 κ

(k)
18 ω8 λ

(12)
8 ω19 λ

(23)
19

|Φd
1〉 9.65 0.123 −0.042 0.198 0.246 0.075 0.125 0.088 0.12

0.164
|Φd

2〉 11.84 0.123 −0.042 0.198 0.246 0.075 0.1 0.088 0.12
0.154

|Φd
3〉 12.44 0.123 −0.301 0.198 0 0.075 0 0.088 0.12

Table 3. Parameters of Model III which represents a three-mode model exhibiting nona-
diabatic photoisomerization.130 The torsional potentials are characterized by the recipro-
cal moment of inertia I−1 and the potential parameters Ek and Wk. All quantities are
given in eV.

Ek I−1 Wk ωt κ(k) ωc λ

|Φd
1〉 0.0 1.11 × 10−3 4.5 0.2 0.0 0.17

0.34
|Φd

2〉 5.0 1.11 × 10−3 −4.5 0.2 0.3 0.17

2.3.1. Model I: S2 → S1 Internal Conversion in Pyrazine

Model I represents a three-mode model of the S1(nπ∗) and S2(ππ∗) elec-
tronic states of pyrazine,117 which has been adopted by several authors as
a standard example of ultrafast electronic relaxation.14,124–126 Taking into
account a single coupling mode (ν10a) and two totally symmetric modes
(ν1, ν6a), Domcke and coworkers have identified a low-lying conical inter-
section of the two lowest excited singlet states of pyrazine, which has been
shown to trigger internal conversion and a dephasing of the vibrational
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motion on a femtosecond time scale.124 A variety of theoretical investiga-
tions, including quantum wave-packet studies,124,125 absorption and reso-
nance Raman spectra,127 as well as time-resolved pump-probe spectra122,128

have been reported for this system. Exhibiting complex electronic and
vibrational relaxation dynamics, the model provides a stringent test for
an approximate description.

Let us briefly discuss the characteristics of the nonadiabatic dynamics
exhibited by this model. Assuming an initial preparation of the S2 state by
an ideally short laser pulse, Fig. 1 displays in thick lines the first 500 fs of the
quantum-mechanical time evolution of the system. The population proba-
bility of the diabatic S2 state shown in panel (b) exhibits an initial decay
on a timescale of ≈ 20 fs, followed by quasi-periodic recurrences of the pop-
ulation, which are damped on a timescale of a few hundred femtoseconds.
Beyond ≈ 500 fs (not shown) the S2 population probability becomes quasi-
stationary, fluctuating statistically around its asymptotic value of ≈0.3.
The time-dependent population of the adiabatic S2 state, displayed in panel
(a), is seen to decay even faster than the diabatic population — essentially
within a single vibrational period — and to attain an asymptotic value of
≈0.05. The finite asymptotic value of P ad

2 is a consequence of the restricted
phase space of the three-mode model. The population P ad

2 is expected to
decay to zero for systems with many degrees of freedom.

The vibrational dynamics of the model is illustrated in panels (c) and
(d) of Fig. 1, showing the expectation values of the momenta of the tuning
modes ν1 and ν6a, respectively. It is seen that the oscillations of the two
modes are damped on a timescale of a few hundred femtoseconds. As has
been discussed in detail in Ref. 124, this damping reflects the strong nona-
diabatic coupling of the system which causes a large anharmonicity of the
lower adiabatic potential-energy surface. It should be pointed out that the
decay of the amplitude of 〈p〉t is not related to the dissipation of vibrational
energy but rather reflects a vibrational pure dephasing process.

2.3.2. Model II: C̃ →B̃ → X̃ Internal-Conversion Process in the
Benzene Cation

Recently, an ab initio-based model of the ultrafast C̃ → B̃ → X̃ internal-
conversion process in the benzene cation (Bz+) has been proposed by
Köppel, Domcke, and Cederbaum.118,119 The diabatic potential matrix
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Fig. 1. Quantum-mechanical (thick lines) and mean-field-trajectory (thin lines) cal-
culations obtained for Model I describing the S2 → S1 internal-conversion process in
pyrazine. Shown are the time-dependent population probabilities P ad

2 (t), Pdia
2 (t) of the

initially prepared adiabatic and diabatic electronic state, respectively, as well as the mean
momenta p1(t), p2(t) of the two totally symmetric modes ν1 and ν6a of the model.

elements of the Hamiltonian have been approximated by a quadratic Taylor
expansion in normal coordinates of the electronic ground state of neu-
tral benzene. The resulting model system has been shown to give rise
to multidimensional conical intersections of the corresponding adiabatic
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potential-energy surfaces. Model II is obtained by taking into account the
five most important vibrational modes (ν2, ν8, ν16, ν18, and ν19 in Herzberg
numbering) and ignoring the degeneracy of the X̃ and B̃ electronic states
as well as of the modes ν16, ν18, ν19.

Köppel119 has performed exact time-dependent quantum wave-packet
propagations for this model, the results of which are depicted in Fig. 2(a).
He showed that the initially excited C̃ state decays irreversibly into the
X̃ state within ≈250 fs. The decay is nonexponential and exhibits a pro-
nounced beating of the C̃ and B̃ state populations. This model will allow us
to test MQC approaches for multistate systems with several conical inter-
sections.
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Fig. 2. Diabatic (left) and adiabatic (right) population probabilities of the C̃ (full
line), B̃ (dotted line), and X̃ (dashed line) electronic states as obtained for Model II
representing a three-state five-mode model of the benzene cation. Shown are (a) exact
quantum calculations of Ref. 119, as well as mean-field-trajectory results [panels (b),(e)]
and surface-hopping results [panels (c),(d),(f),(g)]. The latter are obtained either directly
from the electronic coefficients [(c),(f)] or from binned coefficients [(d),(g)].



May 26, 2004 15:28 Conical Intersections: Electronic Structure, Dynamics and Spectroscopy chap15

Description of the Dynamics at Conical Intersections 635

2.3.3. Model III: Nonadiabatic Photoisomerization

As last example of a molecular system exhibiting nonadiabatic dynam-
ics caused by a conical intersection we consider a model that recently
has been proposed by Seidner and Domcke to describe ultrafast cis-
trans isomerization processes in unsaturated hydrocarbons.120 Photochem-
ical reactions of this type are known to involve large-amplitude motion
on coupled potential-energy surfaces,129 thus representing another strin-
gent test for a MQC description which is complementary to Models I
and II. A number of theoretical investigations, including quantum wave-
packet studies,120,122,130 time-resolved pump-probe spectra,130–132 and var-
ious MQC simulations62,133 have been reported for this system. The model
considered here includes three nuclear degrees of freedom consisting of a
large-amplitude torsional motion, a vibronically active mode which couples
the electronic ground state and the excited state, and a totally symmetric
mode which modulates the energy gap of the interacting states.

Figure 3 shows the quantum-results (thick full lines) for time-
dependent population probabilities P ad

2 (t), P dia
2 (t) of the initially prepared

(a) adiabatic and (b) diabatic electronic state, respectively, as well as (c) the
probability Pcis(t) that the system remains in the initially prepared cis con-
formation. The results illustrate the interplay of isomerization dynamics
and internal-conversion dynamics of Model III: The ultrafast photoisomer-
ization process as monitored by the probability Pcis(t) is seen to directly
result in a highly effective internal-conversion process as monitored by the
adiabatic population P ad

2 (t). It is noted that the isomerization process and
the decay of the diabatic population is virtually completed after 100 fs.
The long-time values of ≈ 1

2 for Pcis(∞) and P dia
2 (∞) is a consequence of

the symmetric torsional potential chosen in Model III (cf. Table 3). The
adiabatic population probability, on the other hand, decays to its long-time
value of 0.25 within ≈400 fs, thus reflecting the redistribution of vibrational
energy occurring on this time scale.120

3. Mean-Field Trajectory Method

3.1. Classical-Path Approximation

As explained in the Introduction, most mixed quantum-classical (MQC)
methods are based on the classical-path approximation, which describes
the reaction of the quantum degrees of freedom (DoF) to the dynamics of
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Fig. 3. Time-dependent simulations of the nonadiabatic photoisomerization dynamics
exhibited by Model III, comparing results of the mean-field-trajectory method (dashed
lines), the surface-hopping approach (thin lines), and exact quantum calculations (full
lines). Shown are the population probabilities of the initially prepared (a) adiabatic and
(b) diabatic electronic state, respectively, as well as (c) the probability Pcis(t) that the
system remains in the initially prepared cis conformation.

the classical DoF. Let us first consider a diabatic electronic representation
and expand the time-dependent molecular wave function |Ψ(t)〉 in terms of
diabatic basis states |Φd

k〉

|Ψ(t)〉 =
∑

k

dk(R, t)
∣∣Φd

k

〉
, (21)
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where dk(R, t) denotes the vibrational wave function pertaining to the dia-
batic state |Φd

k〉. Insertion of Eq. (21) into the time-dependent Schrödinger
equation yields the equations of motion in the diabatic representation

iḋk =
∑
k′

Wkk′dk′ . (22)

Equation (22) is still exact. To introduce the classical-path approxima-
tion, we assume that the nuclear dynamics of the system can be described
by classical trajectories, that is, the position operator R̂ is approximated
by its mean value, i.e. the trajectory R(t). As a consequence, the quantum-
mechanical operators of the nuclear dynamics (e.g. Wkk′(R)) become clas-
sical functions which depend parametrically on R(t). In the same way,
the nuclear wave functions dk(R, t) become complex-valued coefficients
dk(R(t), t). As the electronic dynamics is evaluated along the classical path
of the nuclei, the approximation thus accounts for the reaction of the quan-
tum DoF to the dynamics of the classical DoF.

In order to introduce the classical-path approximation in the adiabatic
electronic representation, we expand the total wave function in terms of
adiabatic basis states

|Ψ(t)〉 =
∑

k

ak(R, t)|Φa
k〉. (23)

In complete analogy to the diabatic case, the equations of motion in
the adiabatic representation are then obtained by inserting the ansatz
(23) into the time-dependent Schrödinger equation for the adiabatic
Hamiltonian (6)

ȧk =
∑
k′

Akk′ak′

Akk′ = −i(Vkδk,k′ + Λkk′). (24)

As long as no approximation is introduced, it is clear that the equa-
tions of motion are equivalent in the diabatic and adiabatic representations.
This is no longer true, however, once the classical-path approximation is
employed; the resulting classical-path equations of motion in the adia-
batic representation are not equivalent to the diabatic equations of motion.
Depending on whether the approximation is employed in the diabatic
or in the adiabatic representation, the resulting classical-path Hamilto-
nian contains identical first-order nonadiabatic couplings but different
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second-order nonadiabatic couplings.62 The existence of several possibili-
ties always raises the question on the “best” approximation. The numerical
studies reported below suggest that the mean-field trajectory simulations
for the model Hamiltonian (1) are best performed in a diabatic represen-
tation; employing the classical-path approximation in the adiabatic repre-
sentation was found to lead to numerical instabilities in the vicinity of the
intersection of the electronic potential-energy surfaces. The surface-hopping
simulations, on the other hand, are best performed in the adiabatic repre-
sentation. This appears to be the natural choice, since the surface-hopping
model is defined in the adiabatic representation.

3.2. Mean-Field Trajectory Scheme

The classical-path approximation introduced above is common to most
MQC formulations and describes the reaction of the quantum DoF to the
dynamics of the classical DoF. The back-reaction of the quantum DoF onto
the dynamics of the classical DoF, on the other hand, may be described in
different ways. In the mean-field trajectory (MFT) method (which is some-
times also called Ehrenfest model, self-consistent classical-path method,
or semiclassical time-dependent self-consistent-field method) considered in
this section, the classical force F = Ṗj acting on the nuclear DoF Rj is
given as an average over the quantum DoF

Ṗj = −
〈

Ψ(t)
∣∣∣∣ ∂H

∂Rj

∣∣∣∣Ψ(t)
〉

, (25)

where the wave function |Ψ(t)〉 and the molecular Hamiltonian H may be
defined in a diabatic as well as in the adiabatic representation. Adopting, for
example, a diabatic electronic representation, the nuclear MFT equations
of motion read

Ṗj = −
∑
k,k′

d∗
kdk′

∂Wkk′(R)
∂Rj

, (26)

i.e. the classical DoF propagate according to a mean-field potential, the
value of which is weighted by the instantaneous populations of the different
quantum states. A MFT calculation thus consists of the self-consistent solu-
tion of the time-dependent Schrödinger equation (22) for the quantum DoF
and Newton’s equation (26) for the classical DoF. To represent the initial
state (12) of the molecular system, the electronic DoF dk(0) as well as the
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nuclear DoF Rj(0) and Pj(0) are sampled from a quasiclassical phase-space
distribution.17–19 For example, the vibrational initial state may be repre-
sented by a Wigner distribution (14), while the initial electronic coefficients
may be determined by dk(0) = δk2e

iq, q being an arbitrary phase.134

3.3. Results

To illustrate the quality of the MFT method, let us first consider Model I
describing the S2 − S1 conical intersection in pyrazine. Figure 1 compares
quantum-mechanical and MFT results obtained for the adiabatic and dia-
batic electronic population probabilities P ad

2 (t) and P dia
2 (t) as well as for

the mean momenta of the two totally symmetric modes of the model. Gen-
erally speaking, the results are in qualitative agreement, in particular, the
ultrafast initial decay of the adiabatic population and the oscillations of
the diabatic population are quite well described by the MFT method. The
electronic relaxation dynamics for longer time, however, is not reproduced.
The oscillations of the diabatic population are too strongly damped and the
final value of the adiabatic population is too large. As will be discussed in
detail in Sec. 6.3, this deficiency of the method is related to the fact that the
MFT approach treats electronic and nuclear DoF on an unequal dynamical
footing. The comparison of the MFT and quantum results obtained for the
mean momenta of the two vibrational modes v1 and v6a demonstrates that
the MFT method is able to describe the dephasing of the vibrational motion
caused by the internal conversion process. For longer times, however, the
quality of the MFT result deteriorates. In particular, there is a mismatch
of the phase of the oscillations.

Let us next turn to Model II representing the C̃ → B̃ → X̃ internal-
conversion process in the benzene cation. Figure 2 demonstrates that this
(compared to the electronic two-state Model I) more complicated process
is difficult to describe with a MFT ansatz. Although the method is seen to
catch the initial fast C̃ → B̃ decay quite accurately and can also qualita-
tively reproduce the oscillations of the diabatic populations of the C̃- and
B̃-state, it essentially fails to reproduce the subsequent internal conversion
to the electronic X̃-state. In particular, the MFT method predicts a too slow
population transfer from the C̃- and B̃-state to the electronic ground state.

Finally, Fig. 3 displays the results for Model III, describing ultrafast
photoisomerization triggered by a conical intersection. Similarly as found
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for Model I, the MFT method is seen to reproduce the initial fast decay of
the adiabatic population as well as the coherent oscillations of the diabatic
population, but has problems to describe the long-time decay of the adi-
abatic population correctly. The probability Pcis that the system remains
in the initially prepared cis-conformation is also seen to be in quite good
agreement with the quantum result. This finding demonstrates the ability
of the MFT method to qualitatively describe the nonadiabatic dynamics in
the presence of highly anharmonic potential-energy surfaces.

3.4. Discussion

The MFT equation of motion (25) can be derived in many ways, includ-
ing the WKB approximation,4 the eikonal method,7 a (semi)classical time-
dependent self-consistent field ansatz,11–14 density-matrix approaches,8–10

and the classical limit of algebraic quantization.23 Depending on the specific
approach used, slightly different MFT schemes may result. For example, the
classical force can be described either by the average of the quantum force
as in Eq. (25) or by the derivative of the average quantum potential.15,16

While most derivations focus on the equation of motion, an equally
important aspect of the MFT method is the correct representation of the
quantum-mechanical initial state. It is well known that the classical limit
of quantum dynamics in general is represented by an ensemble of classical
orbits.17–19,135 Hence it is not appropriate to use a single classical trajectory
but it is necessary to average over many trajectories, the initial conditions
of which are chosen to mimic the quantum nature of the initial state of
the classically treated subsystem. Interestingly, it turns out that several
misconceptions concerning the theory and performance of the MFT method
are rooted in the assumption of a single classical trajectory.

First, it is noted that it is this sampling that makes the MFT
method quite different from the quantum-mechanical time-dependent self-
consistent-field (TDSCF) approach. It is well known that the MFT equation
of motion for a single trajectory may be derived as an classical approxima-
tion to the single-configuration TDSCF ansatz.11–14 To derive the MFT
method including the correct quasiclassical averaging, however, the deriva-
tion needs to start from a multiconfiguration-type TDSCF ansatz and fur-
thermore has to assume a rapid randomization of the nuclear phases.13,14

Because of the ensemble average, the quasiclassical MFT method contains
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“static” correlation, and actually may perform qualitatively better than a
quantum-mechanical single-configuration TDSCF ansatz. This effect was
explicitly shown in the case of Model I,126 where the quantum TDSCF
approximation was found to completely fail to account for the long-time
behavior of the electronic dynamics, which is at least qualitatively repro-
duced by the MFT results reported above. This is because the stan-
dard TDSCF ansatz neglects all correlations between the dynamical DoF,
whereas the MFT treatment may account for some correlation due to the
sampling of the initial state.

Furthermore, a related and common criticism of the MFT method is
that a mean-field approach cannot correctly describe the branching of wave-
packets at crossings of electronic states.52,55,66 This is true for a single
mean-field trajectory, however, not so for an ensemble of trajectories. In
this context it may be stressed that an individual trajectory of an ensemble
does not even possess a physical meaning — only the average does.

Employing a correct quasiclassical average, the numerical results
obtained above for the Models I and III have clearly demonstrated that the
MFT method qualitatively reproduces the electronic population dynamics
and therefore — at least in principle — is able to account for the branch-
ing of trajectories in a nonadiabatic calculation. The failure of the MFT
method to describe the long-time dynamics of the three-state Model II has
a quite different origin. It is related to the fact that the MFT approach
treats electronic and nuclear DoF on an unequal dynamical footing. This
becomes clear within the mapping approach introduced in Sec. 6, where it
is shown that the MFT method can be derived from the classical mapping
formulation if the initial quantum fluctuations of the electronic and nuclear
DoF are treated in a different way.

Let us finally discuss to what extend the MFT is able to (i) obey
the principle of microreversibility, (ii) account for the electronic phase
coherence, and (iii) correctly describe the vibrational motion on coupled
potential-energy surfaces. Although the MFT equations of motion and their
solutions are invariant with respect to the symmetry operation of time
reversal, it is a well-known flaw of the MFT propagation to violate quantum
microreversibility. It should be noted that this property of the MFT scheme
is not caused by the classical-path approximation, but is common to any
approximate TDSCF description. The problem is most easily rationalized
in the case of a scattering reaction occurring in a two-state curve-crossing
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system. Assuming for illustrative purposes that the electronic transition
probability is small, the forward trajectory mainly propagates on the elec-
tronic |Φ1〉 surface, while the back trajectory mainly propagates on the
electronic |Φ2〉 surface, thus leading to different dynamics and transition
probabilities (see, e.g. the discussion in Ref. 62).

A further important property of a MQC description is the ability to
correctly describe the time evolution of the electronic coefficients. A proper
description of the electronic phase coherence is expected to be particu-
larly important in the case of multiple curve-crossings which are frequently
encountered in bound-state relaxation dynamics.122 Within the limits of
the classical-path approximation, the MFT method naturally accounts for
the coherent time evolution of the electronic coefficients. This conclusion is
clearly supported by the numerical results for the transient oscillations of
the electronic population, which were reproduced quite well by the MFT
method. Similarly, it has been shown that the MFT method in general does
a good job in reproducing coherent nuclear motion on coupled potential-
energy surfaces.

4. Surface-Hopping Method

As explained in the Introduction, one needs to distinguish the following
kinds of “surface hopping” (SH) methods: (i) Semiclassical theories based
on a connection ansatz of the WKB wave function,39–50 (ii) stochastic imple-
mentations of a given deterministic multistate differential equation, e.g. the
quantum-classical Liouville equation,29,31,32 and (iii) quasiclassical models
such as the well-known SH schemes of Tully and others.51–68 In this chap-
ter, we focus on the latter type of SH method, which has turned out to be
the most popular approach to describe nonadiabatic dynamics at conical
intersections.

4.1. General Idea

The quasiclassical SH model employs the simple and physically appealing
picture in which a molecular system always evolves on a single adiabatic
potential-energy surface (PES). When the trajectory reaches an intersec-
tion of the electronic PESs, the transition probability pk→k′ to the other
PES is calculated according to some hopping criterion and, depending on
the comparison of pk→k′ with a random number, the trajectory “hops” to
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the other adiabatic surface. Contrary to the mean-field trajectory scheme,
where the trajectories evolve on an averaged electronic PES [cf. Eq. (25)],
the SH equations of motion for the nuclear degrees of freedom therefore
assume the simple form

Ṙj = ωjPj ,

Ṗj = − ∂Vk

∂Rj
, (27)

where Vk denotes the adiabatic PES on which the trajectory currently
evolves. In order to conserve the energy of the classical system during an
electronic transition, the momenta of the nuclei have to be adjusted after
every hop. We note in passing that SH simulations are performed in the
adiabatic representation, because (i) the picture of instantaneous hops only
appears plausible for highly localized interactions between the PESs such as
the nonadiabatic kinetic-energy couplings, and (ii) a single adiabatic PES
is expected to represent the coupled-surfaces problem better than a single
diabatic one.

Since the hopping procedure accounts for the coupling of electronic and
nuclear degrees of freedom, the key problem of the SH approach is to estab-
lish a dynamically consistent hopping criterion and momentum adjustment.
As already mentioned, any rigorous way to derive such a formulation leads
to complicated equations of motion that in general are quite cumbersome
to implement (see, e.g. Sec. 5.2). Many workers have therefore developed
simple but practical models of SH.51–68 Here the most popular formulation
is the “fewest switches” algorithm proposed by Tully.52 Since a detailed
description can be found in many papers (see, e.g. Refs. 52, 53, 66 and 67),
in the following only the main idea of this method is outlined.

4.2. Theory and Numerical Implementation

As a starting point, we consider the Schrödinger equation (24) in the adia-
batic classical-path approximation. This equation can be recast in a density-
matrix notation by

ρ̇kk = 2Re
∑
k′

Akk′ρkk′ , (28)

where the electronic density-matrix elements are given as ρkk′(t) =
a∗

k(t)ak′(t), and k, k′ = 1, 2. Introducing a time step ∆t which is small
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enough that the change ∆ρkk of the diagonal matrix elements can be
approximated by

∆ρkk = ρ̇kk∆t, (29)

the basic assumption is that the populations ρkk change according to the
master equation

∆ρkk = −
∑
k′

pk→k′ρkk +
∑
k′

pk′→kρk′k′ . (30)

By combining Eqs. (28)–(30), the electronic transition probability p1→2 is
readily derived as

p1→2 = 2Re A21∆t ρ21/ρ11. (31)

Similarly, the transition probability p2→1 is obtained by exchanging the
indices “1” and “2”.

The formulation outlined above allows for a simple stochastic imple-
mentation of the deterministic differential equation (28). Starting with an
ensemble of trajectories on a given adiabatic PES Vk, at each time step ∆t

(i) we compute the transition probability pk→k′ , (ii) compare it to a random
number ζ ∈ [0, 1], and (iii) perform a hop if pk→k′ > ζ. In the case of a pure
N -level system (i.e. in the absence of nuclear dynamics), the assumption
(30) holds in general, and the stochastic modeling of Eq. (28) is exact. Con-
sidering a vibronic problem with coordinate-dependent Akk′ , however, it
can be shown that the electronic transition probability depends in a compli-
cated and nonlocal way on the nuclear dynamics (cf. Sec. 5.2). In this case,
the stochastic model represents an approximation to the true dynamics.

As a consistency test of the stochastic model, one can check whether
the percentage Nk(t) of trajectories propagating on the adiabatic PES Vk

is equal to the corresponding adiabatic population probability P ad
k (t). In

a SH calculation, the latter quantity may be evaluated by an ensemble
average over the squared modulus of the adiabatic electronic coefficients
[cf. Eq. (19)], i.e.

P ad
k (t) = 〈a∗

k(t)ak(t)〉C . (32)

To obtain a similar expression for Nk(t), we introduce “binned” adiabatic
coefficients ãk(t), i.e.

ãk(t) =
{

1 if trajectory evolves on Vk

0 otherwise.
(33)
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Hence the percentage Nk(t) of trajectories propagating on the adiabatic
PES Vk can be written as

Nk(t) = 〈ã∗
k(t)ãk(t)〉C . (34)

Combining these equation, the consistency condition of the stochastic model
reads

〈a∗
k(t)ak(t)〉C = 〈ã∗

k(t)ãk(t)〉C . (35)

As is shown below, the simple SH model in general does not satisfy this
relation.

Besides the hopping criterion, one furthermore needs to establish a rule
that ensures the energy conservation of the classical system during an elec-
tronic transition. Assuming that the positions of the nuclei do not change
during an instantaneous hopping process, we need to find a procedure which
allows us to calculate the momenta of the trajectory on the new electronic
PES. Semiclassical analyzes42,44,47 suggest that the momenta are adjusted
in the direction of the nonadiabatic coupling Fkk′ = 〈Φk|∇|Φk′〉, thus yield-
ing the ansatz

P′ = P + σFkk′ , (36)

where the parameter σ is assumed to be real and identical for all momenta.
Employing the condition of energy conservation, we obtain a quadratic
equation for σ

ckk′σ2 + bkk′σ + (Vk′ − Vk) = 0, (37)

where we have used the abbreviations ckk′ =
∑

j
1
2ωi|F j

kk′ |2 and bkk′ =∑
j ωjPjF

j
kk′ .

To obtain a unique and consistent matching condition for the vibra-
tional momenta in a hopping process, a single and real solution of Eq. (37)
is required. If the equation possesses two real roots, one may choose the
solution with the smaller modulus. Problems arise, however, if there is no
real solution to Eq. (37). This case may occur for transitions from a lower
to a higher electronic state whereby there is less kinetic energy (in direction
of the nonadiabatic coupling) available than the potential-energy difference
Vk′ −Vk requires. Hence the hopping process has to be rejected although the
electronic equations of motion (28) suggest an electronic transition. Since
the situation is quite similar to quantum-mechanical tunneling, the rejected
hops have been referred to as classically forbidden electronic transitions.62
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The breakdown of the SH scheme in the case of classically forbidden
electronic transitions should not come as a surprise, but is a consequence
of the rather simplifying assumptions [i.e. Eqs. (30) and (36)] underlying
the SH model. On a semiclassical level, classically forbidden transitions
may approximately be described within an initial-value representation (see
Sec. 7) or by introducing complex-valued trajectories.42 On the quasiclas-
sical level considered here, however, there is no rigorous way to solve the
problem. This has spurred a large number of ideas to fix the situation.
The standard proposal is to “reflect” the trajectory when a surface hop is
rejected, that is, to reverse the component of momentum in direction of the
nonadiabatic coupling vector.47,53 Other proposals include the combination
of mean-field and SH ideas,55–58 the resetting of electronic coefficients,61

and the introduction of a position adjustment50 or a time uncertainty59

during a hop. Based on detailed numerical studies of the dynamics at a
conical intersection, Müller and Stock62 suggested the minimal solution of
simply ignoring forbidden hops (see below).

4.3. Results and Discussion

As first example, we again consider Model I describing a two-state three-
mode model of the S1(nπ∗) and S2(ππ∗) states of pyrazine. Figure 4(a)
shows the quantum-mechanical (thick line) and the SH (thin lines) results
for the population probability P ad

2 (t) of the initially prepared adiabatic
electronic state |Φ2〉. As explained above, there are two ways to evaluate
the adiabatic population in a SH calculation: One may either evaluate the
adiabatic population from the electronic coefficients [Eq. (32)], or one may
employ the binned adiabatic coefficients defined in Eq. (33) and calculate
the percentage of trajectories Nk(t) propagating on the adiabatic surface
Vk [Eq. (34)]. According to Eq. (35), the results of both calculations should
coincide if the SH model provides a consistent description of the nonadia-
batic dynamics. Figure 4(a) clearly demonstrates that this is not the case.
Although the general appearance (i.e. ultrafast initial decay to an approx-
imately constant value) is roughly the same for both quantities, they are
seen to differ significantly after only ≈ 20 fs.

As discussed above, this discrepancy may be caused by classically for-
bidden electronic transitions, i.e. cases in which a proposed hopping process
is rejected due to a lack of nuclear kinetic energy. Figure 4(c) supports this
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Fig. 4. Time-dependent population probability of the upper (a) adiabatic and (b) dia-
batic electronic state of Model I. The quantum-mechanical results (thick lines) are com-
pared to SH results obtained directly from the electronic coefficients (dashed lines) and
to SH results obtained from binned coefficients (thin solid lines), reflecting the per-
centage N2(t) of trajectories propagating on the upper adiabatic surface. (c) Absolute
number of successful (thick line) and rejected (thin line) surface hops occurring in the
SH calculation.

idea by showing the absolute numbers of successful (thick line) and rejected
(thin line) surface hops. In accordance with the initial decay of the adia-
batic population, the number of successful surface hops is largest during the
first 20 fs. For larger times, the number of rejected hops exceeds the number
of successful surface hops. This behavior clearly coincides with the onset
of the deviations between the two classically evaluated curves Nk(t) and
P ad

k (t). We therefore conclude that the observed breakdown of the con-
sistency relation (35) is indeed caused by classically forbidden electronic
transitions.
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In direct analogy to the adiabatic case, the classical diabatic population
probability is given by

P di
k (t) = 〈d∗

k(t)dk(t)〉C , (38)

where the diabatic electronic coefficients dk(t) may be calculated from the
adiabatic electronic coefficients ak(t) employing the transformation between
the two representations. Figure 4(b) compares the SH results obtained for
the diabatic population (dashed line) to the quantum-mechanical reference
data (thick line). Similar as in the adiabatic case, the diabatic popula-
tion calculated from the electronic coefficients can only roughly match the
quantum results. Inspired by the finding that the quantity Nk(t) provides a
better approximation of the adiabatic population probability, we have also
evaluated the “binned” diabatic population

P̃ di
k (t) = 〈d̃∗

k(t)d̃k(t)〉C , (39)

where the diabatic coefficients d̃k(t) have been calculated from the binned
adiabatic coefficients ãk(t). Interestingly, it is seen that the quantum results
are reproduced much better by this approximation. In fact, in all sim-
ulations performed for conical intersections, it has been found that the
binned quantities Nk(t) and P̃ di

k (t) provide the better approximation to the
corresponding quantum-mechanical population probabilities. If not noted
otherwise, henceforth we will always consider binned electronic population
probabilities.

To obtain a more comprehensive picture of the performance of the SH
method for Model I, Fig. 5 compares quantum (thick lines) and SH (thin
lines) results for the adiabatic and diabatic population probabilities as well
as for the mean momenta of the two totally symmetric modes of the model.
Let us first consider the results obtained for the standard SH algorithm52

shown on the left side, and focus on the vibrational dynamics of the sys-
tem. The SH calculations of the momenta are seen to qualitatively match
the quantum-mechanical results, although the classical approximation exag-
gerates the damping of the coherent vibrational motion. Interestingly, the
onset of the deviations between quantum and classical results again coin-
cides with the onset of rejected hops displayed in Fig. 4(b). This finding
indicates that the adjustment of momenta performed in this case might
not be appropriate. In fact, we have found that the SH results improve
significantly, if one simply omits the momentum adjustment in the case of
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Fig. 5. Quantum-mechanical (thick lines) and SH (thin lines) calculations obtained
for Model I describing the S2 → S1 internal-conversion process in pyrazine. Shown are
the time-dependent population probabilities P ad

2 (t), Pdia
2 (t) of the initially prepared

adiabatic and diabatic electronic state, respectively, as well as the mean momenta of
the two totally symmetric modes ν1 and ν6a. The SH calculations used the standard
algorithm of Tully52 (left panels) as well as a modified algorithm described in Ref. 62
(right panels).

a rejected hop. A comparison of the results obtained by the thus modi-
fied SH algorithm (right panels) and the standard algorithm (left panels)
reveals that all time-dependent observables are reproduced much better
by the modified algorithm. In particular, the vibrational momenta of the
quantum calculation and the modified SH calculation are in excellent agree-
ment, thus suggesting that the vibrational dephasing associated with the
internal-conversion process in pyrazine is mainly caused by the anharmonic-
ity of the lower adiabatic PES. As the modified algorithm has been found
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to yield better results for all model systems considered,62 it has been used
in all remaining calculations.

Let us turn to Model II describing the C̃ → B̃ → X̃ internal-conversion
of the benzene cation. Figure 2 shows the diabatic population probabilities
pertaining to the three electronic states as obtained from (a) the quantum-
mechanical calculation of Köppel,119 (b) the mean-field trajectory method
described in Sec. 3, (c) the SH method using Eq. (38), and (d) the SH
method using Eq. (39). Furthermore, the corresponding adiabatic popula-
tion probabilities are shown at the right-hand-side of Fig. 2, although a
quantum-mechanical calculation of this observable is not available. Again,
we observe that only the binned SH results match the quantum reference
data. It is interesting to note that the standard SH results shown in panel (c)
are quite similar to the mean-field trajectory results in that they essentially
fail to reproduce the internal conversion to the electronic X̃-state. As both
SH populations are obtained from the same simulation, this finding is some-
what disturbing, although the binned results in (d) look quite promising.

Finally, let us consider Model III describing ultrafast nonadiabatic
cis-trans photoisomerization. Figure 3 compares quantum (thick line),
mean-field (dashed line), and SH (thin line) results of the (a) adiabatic and
(b) diabatic population as well as (c) of the probability Pcis(t) that the sys-
tem remains in the initially prepared cis conformation. Again, binned elec-
tronic population probabilities and no momentum adjustment for classically
forbidden transitions are employed in the SH calculations. Similar to the
mean-field calculations, the SH simulations are able to qualitatively repro-
duce the main features of the nonadiabatic photoisomerization, includ-
ing initial decay, oscillatory transients as well as long-time limits. It may
be noted that, similar to Model I, the adiabatic relaxation dynamics of
Model III is relatively simple, thus facilitating a modeling by the SH
method. On the other hand, the simulations for Model III convincingly
demonstrate that the SH technique is able to account for nonadiabatic
relaxation dynamics in the presence of highly anharmonic PESs.

5. Quantum-Classical Liouville Description

5.1. General Idea

The dynamics of classical as well as of quantum systems can be described by
a Liouville equation for the time-dependent density. In quantum-mechanics,
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the Liouville equation for the density operator ρ̂(t) reads

∂

∂t
ρ̂(t) = − i

�
[Ĥ, ρ̂(t)], (40)

where Ĥ = Ĥ(q̂, p̂) is the quantum Hamiltonian depending on position
and momentum operators q̂ and p̂, respectively and [Â, B̂] = ÂB̂ − B̂Â

denotes the usual quantum commutator. In order to obtain the classical
limit of Eq. (40), one may introduce a quantum-mechanical phase-space
representation of the operators such as the Wigner–Weyl formulation.123

Retaining only the classical (� = 0) terms, the resulting equation of motion
reads

∂

∂t
ρ(t) = {H, ρ(t)}, (41)

where ρ(t) = ρ(q, p, t) is the Wigner density function, H = H(q, p) is the
classical Hamiltonian, and {A, B} = ∂qA∂pB−∂pA∂qB denotes the classical
Poisson bracket.

The similar appearance of the quantum and classical Liouville equations
has motivated several workers to construct a mixed quantum-classical Liou-
ville (QCL) description.21–34 Hereby a partial classical limit is performed
for the heavy-particles dynamics, while a quantum-mechanical formulation
is retained for the light particles. The quantities ρ(t) and H in the mixed
QC formulation are then operators with respect to the electronic degrees of
freedom, described by some basis states |φn〉, and classical functions with
respect to the nuclear degrees of freedom with coordinates R = {Rj} and
momenta P = {Pj}, for example,

ρ(t) =
∑
nm

ρnm(R,P, t)|φn〉〈φm|. (42)

The standard proposal for the Liouville equation for this QC density oper-
ator is

∂

∂t
ρ(t) = [H, ρ(t)]QC , (43)

[A, B]QC = −i/�[A, B] + 1
2{A, B} − 1

2{B, A}, (44)

where [., .]QC denotes the QC bracket that contains the quantum commu-
tator [., .] in (40) and the classical Poisson bracket {., .} in (41) as limiting
cases. Equation (43) can be derived via a number of approaches, for exam-
ple, by requiring certain axioms for the QC bracket to be satisfied,22 by
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replacing nuclear commutators by Poisson brackets and nuclear anticom-
mutators by products of operators,25 and by performing the partial classical
limit in the Wigner phase-space representation.24,27,28,30

Although the QC bracket (44) is not unique and there has been some
discussion on the overall consistency of the approach,23,24,27 the QCL for-
mulation appears to be a quite promising formulation. As shown below, the
QCL description naturally provides a correct treatment of electronic coher-
ences and of the momentum change associated with an electronic transition,
and is therefore not plagued by the obvious inconsistencies arising in simpler
MQC approaches. Furthermore, since the classical Wigner approximation is
exact for quadratic Hamiltonians, it is easy to show that the QCL equation
is actually exact in the case of the linear vibronic-coupling Hamiltonian of
Model I (2), describing a multimode model of a conical intersection.

The latter observation, however, indicates that the general solution of
the QCL equation may require a similar effort as the solution of an exact
quantum-mechanical description. In fact, the numerical implementation of
the partial differential equation (43) is only straightforward if the density is
represented by some sort of a grid in phase space. The grid may be fixed25,30

or moving in phase space, for example, via Gaussian wave packets.26,31 Sim-
ilar to a full quantum calculation, however, the numerical effort for these
strategies appears to scale exponentially with the number of quantum and
classical degrees of freedom. To obtain a numerical method that is directly
applicable to truly multidimensional systems, it therefore is desirable to
employ a stochastic scheme involving a Monte-Carlo sampling of local clas-
sical trajectories.29,32–34 Such an approach has to cope with two major
complications, that is, the representation of nonlocal phase-space operators
and the convergence of the sampling procedure which is cumbersome due
to complex-valued trajectories with rapidly oscillating phases. The latter is
related to the so-called dynamical sign problem which is well known from
real-time path-integral136 and time-dependent semiclassical86 calculations.

To give an impression of the virtues and shortcomings of the QCL
approach and to study the performance of the method when applied to
the dynamics at conical intersections, in the following we briefly intro-
duce the QCL working equation in the adiabatic representation, describe
a recently proposed stochastic trajectory implementation of the result-
ing QCL equation,34 and apply this numerical scheme to Model I, which
describes the S2 → S1 internal conversion in pyrazine.
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5.2. Theory and Numerical Implementation

Performing a partial Wigner transformation with respect to the nuclear
variables, the molecular Hamiltonian can be written as

H(R,P) =
∑

j

P 2
j

2Mj
+ h(R), (45)

where the nuclear coordinates R and momenta P are now classical degrees
of freedom and h(R) = Tr + V (r,R) is the electronic Hamiltonian com-
prising the electronic coordinates r. Adopting the adiabatic electronic rep-
resentation with basis states {|Φa

n(R)〉}, the electronic Hamiltonian h(R)
is diagonal in this representation

h(R)|Φa
n(R)〉 = Vn(R)|Φa

n(R)〉, (46)

with Vn(R) being the nth adiabatic potential-energy surface. The corre-
sponding electronic matrix elements of the partial Wigner transformed den-
sity operator ρ(R,P, t) are given by

ρnm(R,P, t) = 〈Φa
n(R)|ρ(R,P, t)|Φa

m(R)〉. (47)

For notational convenience, in the following we will usually drop the depen-
dency on the nuclear variables R,P.

By inserting Eqs. (45)–(47) into the QCL equation (43), the equations
of motion for the QC density matrix in the adiabatic representation can be
written in the following suggestive form28

∂

∂t
ρnn′ =

∑
m,m′

(
LQ

nn′,mm′ + LC
nn′,mm′ + LQC

nn′,mm′

)
ρmm′ , (48)

where

LQ
nn′,mm′ = −i/�(Vn − Vn′)δnmδn′m′ , (49)

LC
nn′,mm′ =

∑
j

(
− Pj

Mj

∂

∂Rj
+

∂

∂Rj

1
2

(Vn + Vn′)
∂

∂Pj

)
δnmδn′m′ , (50)

account for the pure quantum-mechanical and the pure classical time evo-
lution of the density matrix, respectively. Hereby, the quantum part LQ

introduces the phase (Vn−Vn′)/� to the off-diagonal matrix elements of the
density matrix, while the classical part LC describes standard Newtonian
dynamics with respect to the adiabatic potential energy (Vn + Vn′)/2. It is
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noted that the evaluation of the equations of motion (48) requires the prop-
agation of classical trajectories in diagonal and off-diagonal matrix elements
of the electronic density matrix. This is in contrast to usual surface-hopping
methods based on a wave-function ansatz.65–67 These formulations do not
explicitly account for the coherences ρn �=m(t) and therefore only require
the propagation of classical trajectories in diagonal potential-matrix ele-
ments Vnn.

The quantum-classical part of the Liouville operator

LQC
nn′,mm′ = −

∑
j

Pj

Mj
F (j)

nm

(
1 +
∑

i

S(i)
nm

∂

∂Pi

)
δn′m′(1 − δnmδn′m′) + h.c.,

(51)

S(i)
nm =

(Vn − Vm)

2
∑

j F
(j)
nm Pj/Mj

F (i)
nm (52)

accounts for the non-Born–Oppenheimer transitions of the system which are
induced by the first-order nonadiabatic couplings F

(j)
nm = 〈Φn|∂/∂Rj |Φm〉.

Note that in a standard quantum-mechanical formulation only the first part
of LQC appears, that is, the term ∝ PFnm. In this case, P and Fnm rep-
resent nonlocal quantum operators with respect to the nuclear degrees of
freedom, while in the QC case P and Fnm are classical functions. Here the
nonlocal nature of the nonadiabatic transition is accounted for by the term
∝ Snm∂/∂P , which affects a momentum change of the classical trajectory.
This shift of nuclear momenta associated with the transition between adi-
abatic potential-energy surfaces has been discussed in various semiclassical
theories of nonadiabatic processes.42–50

It is noted that the momentum derivatives of the coupling elements
(51) represent one of the main obstacles of a practical trajectory-based
evaluation of the QCL equation, because these terms require the knowl-
edge of the function in question not only at a particular point in phase
space but at the same time also at nearby points. As a remedy, we may
restrict ourselves to the limit of small momentum changes Snm/P  1 and
approximate 1 + SnmP ≈ exp(Snm∂/∂P ). Since eS∂/∂pf(p) = f(p + S),
the approximation reduces the action of the differential operator to a sim-
ple shift of momenta. We note that this approximation resembles the usual
momentum-jump ansatz employed in various surface-hopping methods.65–67

As has been discussed in Sec. 4, however, the latter formulations typically
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require the conservation of nuclear energy during an electronic transition,
which gives rise to the problem of classically forbidden transitions. The
QCL formulation, on the other hand, does not conserve the energy of an
individual trajectory but the energy of the trajectory average.30

For the numerical implementation of the QCL equation, the Liouville
operator L is decomposed into a zero-order part L0 which is easy to evalu-
ate and a nonadiabatic transition part LQC whose evaluation is difficult. In
order to facilitate the treatment of multidimensional systems, Santer et al.
have introduced a stochastic algorithm which uses a Monte-Carlo sampling
of local classical trajectories.34 In this formulation, the QC density matrix
ρnm(R,P, t) is represented by a set of “random walkers,” where each ran-
dom walker carries the information of its phase-space position (R,P), its
density Pnm(t) and phase σnm(t), as well as of its weight Wnm(t). A stochas-
tic realization of the L0 propagation process is then straightforward: One
first samples positions and momenta from the given initial phase-space dis-
tributions ρnm(R,P, t = 0), thus determining the densities Pnm(0). Fur-
thermore, the initial weights and phases are chosen to correctly represent
the initial state of the density matrix. To describe the evolution of the
system within a time step δt due to the action of L0 = LQ + LC , the
density matrix element ρnm (i) accumulates a phase exp(−i/�(Vn − Vm)δt)
which is represented by the phase function σnm(t), and (ii) is subject to
propagation in phase space driven by e−i/�LCδt, which affects the densities
Pnm, but leaves the weights Wnm unchanged. As described in Ref. 34, the
stochastic realization of the off-diagonal operator LQC is somewhat more
involved. Causing transitions between the different components of the den-
sity matrix, this operator can be viewed as a branching or hopping term,
which also modifies the weights Wnm(t).

Within the momentum-jump approximation, the algorithm described in
Ref. 34 provides an in principle exact stochastic realization of the QCL equa-
tion. Similar to path-integral136 and semiclassical86 propagation methods,
however, the Monte-Carlo evaluation of the QCL equation is plagued by the
so-called dynamical sign problem, which is caused by exponentially increas-
ing weights accompanied by rapidly varying phases. As a consequence, the
signal-to-noise ratio of the sampling deteriorates in the course of propaga-
tion, or in other words, the sampling effort increases exponentially in time.
A well-known strategy to overcome this fundamental problem is to reorga-
nize the sum over complex paths in a way that facilitates this canceling. In
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our example this effect can be achieved by generating new random walk-
ers at each surface hop: Whenever a hop is requested in the algorithm, a
copy of the random walker is made. While the original walker stays on the
potential-energy surface, the copy starts out on the new surface, whereby its
phase and momenta are updated. Finally, the copy is added to the collection
of random walkers already present, where the weights are adjusted accord-
ingly. Proceeding this way, one may expect that at any time a sufficiently
large number of random walkers is present to yield a reliable description
of the density matrix. We note that the concept of generating new ran-
dom walkers at curve crossings is quite similar to the “spawning” scheme
suggested by Martinez and coworkers.105–107

5.3. Results

Employing the stochastic trajectory scheme outlined above to various
avoided-curve-crossing problems, Ref. 34 has presented detailed numerical
studies on the accuracy and efficiency of the algorithm which appeared to be
quite promising. Because of the divergence of the nonadiabatic couplings,
however, it may be expected that a conical intersection represents a much
more challenging task for the QCL approach. So far, only two groups have
reported first computational results, that is, an explicit phase-space density
propagation of a two-mode model33 and a stochastic trajectory study of the
conical intersection in pyrazine (i.e. our Model I),34 which will be briefly
discussed in the following.

Let us first consider the population probability of the initially excited
adiabatic state as shown in Fig. 6. Within the first 20 fs, the quantum-
mechanical result is seen to decay almost completely to zero. The result of
the QCL calculation matches the quantum data only for about 10 fs and is
then found to oscillate around the quantum result. A closer analysis of the
calculation shows that this flaw of the QCL method is mainly caused by
large momentum shifts associated with the divergence of the nonadiabatic
couplings F

(j)
nm = 〈Φa

n|∂/∂Rj |Φa
m〉. We therefore chose to resort to a simpler

approximation and require that the energy of each individual trajectory is
conserved. Employing this scheme, the corresponding QCL result for the
adiabatic population matches at least qualitatively the quantum data.

Due to the large level density of the lower-lying adiabatic electronic
state, the chances of a back transfer of the adiabatic population are quite
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Fig. 6. Initial decay of the adiabatic population probability obtained for Model I.
Compared are quantum results (thick line) and standard (thin full line) and energy-
conserving (dotted line) quantum-classical Liouville results.

small for a multidimensional molecular system. To a good approximation,
one may therefore assume that subsequent to an electronic transition a
random walker will stay on the lower adiabatic potential-energy surface.125

This observation suggests a physically appealing computational scheme to
calculate the time evolution of the system for longer times. First, the initial
decay of the adiabatic population is calculated within the QCL approach
up to a time t0, when the system is (almost) completely localized in the
lower adiabatic electronic state |Φa

1〉. In a second step, we take the resulting
phase-space distribution ρ11(R,P, t0) as initial state for a standard quasi-
classical trajectory propagation on the lower adiabatic potential-energy sur-
face. While the adiabatic electronic population is constant by construction,
the scheme yields diabatic electronic quantities as well as observables of the
nuclear motion such as the time-dependent mean positions and momenta.

As an example, Fig. 7 shows the diabatic electronic population probabil-
ity for Model I. The quantum-mechanical results (thick line) are reproduced
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Fig. 7. Diabatic electronic population probability obtained for Model I. Compared are
quantum results (thick line) and standard (thin full line) and energy-conserving (dotted
line) quantum-classical Liouville results, as well as results from standard surface-hopping
calculations (dashed line).

well by the QCL calculations, which have assumed a “localization time” of
t0 = 20 fs. The results obtained for the standard QCL (thin full line) and the
energy-conserving QCL (dotted line) are of similar quality, thus indicating
that the phase-space distribution ρ11(R,P) at t0 = 20 fs is similar for the
two schemes. Also shown in Fig. 7 are the results obtained for a standard
surface-hopping calculation (dashed line), which largely fail to match the
beating of the quantum reference.

We conclude that the QCL description represents a promising approach
to the treatment of multidimensional curve-crossing problems. The density-
matrix formulation yields a consistent treatment of electronic populations
and coherences, and the momentum changes associated with an electronic
transition can be directly derived from the formalism without the need of
ad hoc assumptions. Employing a Monte-Carlo sampling scheme of local
classical trajectories, however, we have to face two major complications,
that is, the representation of nonlocal phase-space operators and the sam-
pling problem caused by rapidly varying phases. At the present time, the
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QCL calculations performed for conical intersections cannot yet compete in
accuracy and efficiency with more established methods. Recalling, though,
that all numerical implementations of the QCL equation have been sug-
gested within the last few years,26,29–34 it is clear that the QCL approach
still holds a large potential to be discovered.

6. Mapping Approach

By definition, a mixed quantum-classical method treats the various degrees
of freedom (DoF) of a system on a different dynamical footing, e.g. quantum
mechanics for the electronic DoF and classical mechanics for the nuclear
DoF. As was discussed above, some of the problems with these methods are
related to inconsistencies inherent in this mixed quantum-classical ansatz.
To avoid these problems, recently a conceptually different way to incorpo-
rate quantum mechanical DoF into a semiclassical or quasiclassical theory
has been proposed, the so-called mapping approach.69–71 In this formula-
tion, the problem of a classical treatment of discrete DoF such as electronic
states is bypassed by transforming the discrete quantum variables to con-
tinuous variables. In this section we briefly introduce the general concept
of the mapping approach and discuss the quasiclassical implementation of
this method as well as applications to the three models introduced above.
The semiclassical version of the mapping approach is discussed in Sec. 7.

6.1. Theoretical Formulation

Let us consider a N -level system described by the Hamiltonian

H =
∑
n,m

hnm|Φn〉〈Φm|. (53)

The basic idea of the mapping approach is to change from the discrete
representation employed in Eq. (53) to a continuous representation. There
are several ways to do so, most of them are based on the representation
of spin operators by boson operators.137 Well-known examples of such
mappings are the Holstein–Primakoff transformation,138 which represents
a spin system by a single nonlinear boson DoF, and Schwinger’s theory of
angular momentum,72 which represents a spin system by two independent
boson DoF.

As has been shown in Ref. 69, a general N -state system can be mapped
on N continuous DoF, which are described by the harmonic-oscillator
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creation and annihilation operators an, a†
m with commutation relations

[an, a†
m] = δnm and basis states |n1, . . . , nN 〉. The mapping relations for

the operators and basis states are given by

|Φn〉〈Φm| �→ a†
nam, (54)

|Φn〉 �→ |01 . . . 1n . . . 0N 〉. (55)

According to Eq. (54), the Hamiltonian (53) in the continuous “oscillator
representation” reads

H =
∑
n,m

hnma†
nam. (56)

It is easy to show that the mapping of the operators (54) preserves the
commutation relations and leads to the exact identity of the electronic
matrix elements of the propagator

〈Φn|e−iHt|Φm〉 = 〈01 . . . 1n . . . 0N |e−iHt|01 . . . 1m . . . 0N 〉. (57)

As is stated by Eq. (57), the Hamiltonians (53) and (56) are fully equiv-
alent when used as generators of quantum-mechanical time evolution. It is
noted that the mapping (54) only represents an identity if it is restricted to
the oscillator subspace with a single excitation [Eq. (55)]. In the quantum-
mechanical formulation, this feature does not cause any problems, since it
is clear from Eq. (56) that the system will always remain in this subspace.
As discussed below, however, this virtue does not in general apply for the
classical counterpart of the Hamiltonian (56).

To apply the formalism to vibronically coupled systems, we identify
the |Φn〉 with electronic states and the hnm with operators of the nuclear
dynamics. Hereby, the adiabatic as well as a diabatic electronic representa-
tion may be employed. In a diabatic representation, we have [cf. Eq. (1)]

hnm = T (P)δnm + Wnm(R). (58)

Introducing furthermore “Cartesian” electronic variables xn = (a†
n +

an)/
√

2, pn = i(a†
n − an)/

√
2, the molecular Hamiltonian in the diabatic

oscillator representation can be written as

H = T (P) − 1
2

∑
n

Wnn(R) +
1
2

∑
n,m

(xnxm + pnpm)Wnm(R). (59)

Here, for notational convenience, we have assumed that Wnm = W †
nm. We

would like to emphasize that the mapping to the continuous Hamiltonian
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(59) does not involve any approximation, but merely represents the discrete
Hamiltonian (58) in an extended Hilbert space. The quantum dynamics
generated by both Hamilton operators is thus equivalent. The Hamiltonian
(59) describes a general vibronically coupled molecular system, whereby
both electronic and nuclear DoF are represented by continuous variables.
Contrary to Eq. (53), the quantum-mechanical system described by Eq. (59)
therefore has a well-defined classical analog.

6.2. Classical Dynamics

Since the mapping Hamiltonian (59) has a well defined classical analog, the
semiclassical or quasiclassical evaluation of general nonadiabatic problems
is in principle a straightforward matter. The transition from quantum to
classical mechanics can be performed by changing from the Heisenberg oper-
ators obeying Heisenberg’s equations to the corresponding classical func-
tions obeying Hamilton’s equations

ṗn = − ∂H
∂xn

, ẋn =
∂H
∂pn

, (60)

Ṗj = − ∂H
∂Rj

, Ṙj =
∂H
∂Pj

, (61)

where now H denotes the classical Hamiltonian function corresponding to
the Hamiltonian operator (59).

In addition to the equations of motion one needs to specify a procedure
to evaluate the observables of interest. Within a quasiclassical trajectory
approach, the expectation value of an observable A is given by Eq. (13).
For example, the expression for the electronic population probability, which
is defined as the expectation value of the electronic occupation operator,
reads

Pn(t) =
〈

1
2
(x2

n + p2
n − 1)

〉
C

=
∫

dx
∫

dp
∫

dR
∫

dPρel(x,p)ρvib(R,P)
1
2
(x2

n + p2
n − 1). (62)

As has been discussed in Sec. 3, the initial phase-space distribution ρvib for
the nuclear DoF Rj and Pj may be chosen from the action-angle (15) or the
Wigner (14) distribution of the initial state of the nuclear DoF. To specify
the electronic phase-space distribution ρel, let us assume that the system is
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initially in the electronic state |Φn〉. According to Eq. (55), the electronic
state |Φn〉 is mapped onto Nel harmonic oscillators, whereby the nth oscil-
lator is in its first excited state while the remaining Nel − 1 oscillators are
in their ground state. The initial density operator is thus given by

ρel = |01 . . . 1n . . . 0Nel〉〈01 . . . 1n . . . 0Nel |. (63)

The initial electronic distribution ρel(X,P) thus factorizes in Nel harmonic-
oscillator distributions, which may be sampled, for example, from the
Wigner distribution of ρel. While this is known to work well for the ground
state of the harmonic oscillator, the Wigner distribution pertaining to the
first excited state may become negative, which can give rise to unphysical
results. To avoid this well-known problem, it has proven advantageous to
again change to classical action-angle variables nk, qk [cf. Eq. (15)] and
assume a constant initial action nk for all trajectories.78

6.3. Relation to Other Formulations

The mapping approach outlined above has been designed to furnish a well-
defined classical limit of nonadiabatic quantum dynamics. The formalism
applies in the same way at the quantum-mechanical, semiclassical (see
Sec. 7), and quasiclassical level, respectively. Most important, no additional
assumptions but the standard semiclassical and quasiclassical approxima-
tions are needed to get from one level to another. Most of the established
mixed quantum-classical methods such as the mean-field-trajectory method
or the surface-hopping approach do invoke additional assumptions. The
comparison of the mapping approach to these formulations may therefore
(i) provide insight into the nature of these additional approximation and
(ii) indicate whether the conceptual virtues of the mapping approach may
be expected to result in practical advantages.

Let us first consider the relation to the mean-field trajectory method
discussed in Sec. 3. To make contact to the classical limit of the mapping
formalism, we express the complex electronic variables dn [cf. Eq. (22)] in
terms of their real and imaginary parts, i.e. dn = (xn + ipn)/

√
2. Further-

more, we introduce the mean-field Hamiltonian function HMF, which may
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be defined as

HMF = 〈Ψ(t)|H|Ψ(t)〉
= T (P) +

1
2

∑
n,m

(xnxm + pnpm)Wnm(R). (64)

As first noted by Dirac139 the canonical equations of motion for the real vari-
ables xn, pn with respect to HMF are completely equivalent to Schrödinger’s
equation (22) for the complex variables dn. Moreover, it is clear that the
time evolution of the nuclear DoF [Eq. (26)] can also be written as Hamil-
ton’s equations with respect to HMF. Similarly to the equations of motion
for the mapping formalism [Eqs. (60) and (61)], the mean-field equations of
motion for both electronic and nuclear DoF can thus be written in canonical
form.

There is, however, an important conceptional difference between the
two approaches. On the quasiclassical level, this difference simply mani-
fests itself in the initial conditions chosen for the electronic DoF. Let us
consider an electronic two-level system which is initially assumed to be
in the electronic state |Φ1〉. In the mean-field formulation, the initial con-
ditions are |d1(0)| = 1, |d2(0)| = 0. Changing to action-angle variables
[cf. Eq. (15)], the electronic initial distribution in (62) thus is given by
ρel = δ(n1 − 1)δ(n2). In the mapping formalism, on the other hand, the
initial electronic state |Φ1〉 is represented by the first oscillator being in
its first excited state and the second oscillator being in its ground state
[cf. Eq. (63)]. This corresponds to the electronic action-angle initial distri-
bution ρel = δ

(
n1 − 3

2

)
δ
(
n2 − 1

2

)
, stating that, just like the nuclear DoF,

the electronic DoF hold zero-point energy. Since the two-level system to
be described, of course, does not hold zero-point energy, the zero-point
energy 1

2 (W11 +W22) of the two oscillators needs to be subtracted from the
Hamiltonian. In fact, comparing the corresponding Hamiltonian functions
H [Eq. (59)] and HMF [Eq. (64)], it is found that

H = HMF − 1
2

∑
n

Wnn(R), (65)

thus assuring that the total energy is the same in both formulations.
What is the origin for the difference between the two formulations?

In the mapping approach, we perform a quantum-mechanically exact
transformation and subsequently employ the classical approximation to the
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complete system. As explained above, this results in harmonic-oscillator ini-
tial conditions and in the zero-point energy correction (65), which originates
from nonvanishing commutators [xn, pn] = i�.69,70 As a consequence, the
classical limit of the mapping formalism accounts for the dynamics of both
quantum and classical DoF in a completely equivalent way. The mean-field
trajectory method, on the other hand, is based on a partial classical limit
for the nuclear DoF and, therefore, treats electronic and nuclear DoF differ-
ently with respect to their initial conditions (quantum-like initial conditions
for the electronic DoF, quasiclassical initial conditions for the nuclear DoF).
As shown in Sec. 6.5, this seemingly minor aspect may in fact completely
determine the outcome of the classical modeling of nonadiabatic dynamics.

The general idea of an equivalent classical treatment of electronic and
nuclear DoF was first suggested in the “classical electron-analog” models
of McCurdy, Meyer and Miller.73–76 Exploiting various quantum-classical
analogies, these authors constructed classical-path-like Hamiltonian func-
tions similar to (64), thus treating the dynamics of electrons and nuclei
on the same dynamical footing of classical mechanics. There exists a close
connection between these classical models and the classical limit of the
mapping approach. In particular, the classical electron analog model may
be considered as the classical limit of the mapping formalism. The main
difference between the two theories is of conceptual nature: While the for-
mulation of Meyer and Miller is a classical model, the mapping approach
is an exact quantum-mechanical formulation that allows for a well-defined
classical limit. This difference becomes evident at the semiclassical level
of the theory. Starting from an exact quantum-mechanical formulation,
the mapping approach unambiguously defines the classical Hamiltonian as
well as the boundary (or initial) conditions of the semiclassical propaga-
tor. The classical electron analog model, on the other hand, is based on
a model ansatz and is therefore not unique. For example, the theory does
not determine the boundary conditions of the semiclassical propagator and
“Langer-like modifications” need to be invoked to the off-diagonal elements
of the Hamiltonian function to achieve meaningful semiclassical quanti-
zation conditions.75,77 In recent works on the semiclassical description of
nonadiabatic dynamics,87–89,92,93 Miller and coworkers use a modified for-
mulation of their original model,75 which is identical to the classical limit of
the mapping approach proposed in Ref. 69. For a detailed discussion of the
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common and diverse features of the two formulations, we refer to Refs. 70
and 71.

6.4. Zero-Point Energy Problem

Within the mapping approach, the electronic states are represented by
products of harmonic-oscillator states, where one of the oscillators is in
the first excited state and all others are in the ground state. Quantum-
mechanically, the dynamics is restricted to this subspace with one quantum
of excitation. In the classical limit of the mapping approach, however, this
dynamical constraint is not necessarily fulfilled. The explanation for this
failure of the classical formulation is given by the well-known zero-point
energy (ZPE) problem of classical mechanics.140 In quantum mechanics,
each oscillator mode must hold an amount of energy that is larger or equal
to the ZPE of this mode. In a classical trajectory calculation, on the other
hand, energy can flow among the modes without this restriction. Since
according to Eq. (62) the population probability of an electronic state is
directly proportional to the mean energy content of the corresponding elec-
tronic oscillator, Pn(t) ∝ 〈1

2Wnn(x2
n +p2

n −1)〉, this unphysical flow of ZPE
may result in negative population probabilities. To illustrate the problem,
Fig. 8 shows the adiabatic and diabatic population for Model I obtained
with the mapping approach. It is seen that the overall agreement with the
quantum results is of the same quality for the mean-field trajectory method
and the mapping approach. Due to the ZPE problem, however, the latter
may result in negative values of the adiabatic population.

The problem of an unphysical flow of ZPE is not a specific feature
of the mapping approach, but represents a general flaw of quasiclassical
trajectory methods. Numerous approaches have been proposed to fix the
ZPE problem.140 They include a variety of “active” methods (i.e. the flow
of ZPE is controlled and (if necessary) manipulated during the course of
individual trajectories) and several “passive” methods which, for exam-
ple, discard trajectories not satisfying predefined criteria. However, most of
these techniques share the problem that they manipulate individual trajec-
tories, whereas the conservation of ZPE should correspond to a virtue of
the ensemble average of trajectories.

Recently, Stock and Müller have proposed an alternative strategy to
tackle the ZPE problem.71,78,141 The theory is based on the observation
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Fig. 8. Time-dependent (a) diabatic and (b) adiabatic electronic excited-state popu-
lations and (c) vibrational mean positions as obtained for Model I. Shown are results
of the mean-field trajectory method (dotted lines), the quasiclassical mapping approach
(thin full lines), and exact quantum calculations (thick full lines).

that the unphysical flow of ZPE is a consequence of the fact that the clas-
sical phase-space distribution may enter regions of phase space that corre-
spond to a violation of the uncertainty principle. To restrict the classically
accessible phase space according to the rules of quantum mechanics, it has
been proposed to invoke quantum corrections to the classical calculation.
At the simplest level of the theory, these corrections have been shown to
correspond to including only a fraction γ (0 ≤ γ ≤ 1) of the full ZPE
into the classical calculation. To study the effect of this modification on
the mapping description, we note that in this formalism the electronic ZPE
appears in (i) the quasiclassical description of the initial electronic state,
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e.g. ρel = δ[n1 − (1 + γ/2)]δ(n2 − γ/2), (ii) in the electronic projectors
1
2 (p2

n + x2
n − γ), and (iii) in the Hamiltonian

H = T (P)+
∑

n

1
2
(p2

n+x2
n−γ)Wnn(R)+

∑
n>m

(xnxm+pnpm)Wnm(X). (66)

A value of γ = 1 corresponds to the original mapping formulation which
takes into account the full amount of ZPE. If, on the other hand, all elec-
tronic ZPE is neglected, i.e. γ = 0, the mapping approach becomes equiv-
alent to the mean-field trajectory method.

To determine the optimal value of quantum correction γ, several criteria
have been proposed, which all are based on the idea that an appropriate
classical theory should correctly reproduce long-time limits of the electronic
populations. (Since the populations are proportional to the mean energy of
the corresponding electronic oscillator, this condition also conserves the
ZPE of this oscillator.) Employing phase-space theory, it has been shown
that this requirement leads to the condition that the state-specific level
densities

Nk(E) = Tr{|Φk〉〈Φk|Θ(E − H)} (67)

should be the same for the quantum-mechanical description and its classical
approximation.78,141 Although this is a rigorous criterion, unfortunately, it
is not a very practical one since the quantum-mechanical state-specific level
density in general is not easy to calculate. On a somewhat more approximate
level, one may also require that the total integral level density (or level
number)

N(E) = Tr{Θ(E − H)} (68)

should be equivalent in the classical and quantum-mechanical description.71

While this criterion may not yield the optimal quantum correction, nonethe-
less, it has been shown to cure the ZPE problem. We note in passing that
there also have been several attempts to obtain analytical expressions for
the quantum correction which, however, mostly apply to idealized model
systems.141–143

Considering the practical application of the mapping approach, it is
most important to note that the quantum correction can also be deter-
mined in cases where no reference calculations exist. That is, if we a priori
know the long-time limit of an observable, we can use this information to
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determine the quantum correction. For example, a multidimensional molec-
ular system is for large times expected to completely decay in its adiabatic
ground state, i.e.

P ad
k (∞) = δk0. (69)

Performing several trajectory calculations with varying values of γ, the
optimal quantum correction is thus obtained from the requirement (69).

It is interesting to note that the latter criterion implies that the ground-
state level density completely dominates the total level density, i.e. that
N0(E) ≈ N(E). Hence the assumption (69) of complete decay into the
adiabatic ground state is equivalent to the criterion that the classical and
quantum total level densities should be equivalent. Furthermore, it is clear
that this criterion determines the upper limit of γ. This is because larger
values of the quantum correction would result in ground-state population
larger than one (or negative excited-state populations).

6.5. Results

It is instructive to first consider how the classical approximation of the total
level density, NC(E), depends on the amount of electronic ZPE included.
Figure 9(a) compares NC(E) as obtained for Model I in the limiting cases
γ = 0 and 1 (thin solid lines) to the exact quantum-mechanical density
N(E) (thick line). The classical level density is seen to be either much
higher (for γ = 1) or much lower (for γ = 0) than the quantum result.
Since the integral level density can be considered as a simple measure of
the overall phase-space volume occupied by the system, this finding reflects
directly the ZPE problem: Including no ZPE in the classical calculation,
we have NC(E)  N(E) and therefore insufficient relaxation (see Fig. 8).
Including the full ZPE, we have NC(E) � N(E) and therefore exaggerated
relaxation due to unphysical flow of ZPE. Also shown are two intermediate
cases, γ = 0.44 (dashed line) and γ = 0.68 (dotted line). The latter value of
γ has been chosen to reproduce the quantum level density around E = 5 eV
and indeed provides a quite accurate approximation.

The corresponding normalized state-specific level densities N1(E)/N(E)
are displayed in Fig. 9(b). Again, the limiting cases γ = 0 and 1 under- and
overestimate the quantum data, respectively, while the intermediate value
of γ = 0.44 (dashed line) provides a good approximation of the quantum
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Fig. 9. (a) Total integral level density N(E) and (b) normalized state-specific level den-
sity N1(E)/N(E) as obtained for Model I. Thick lines show exact quantum-mechanical
results, thin lines display classical results for the limiting cases γ = 0, 1 (full lines) and
the intermediate cases γ = 0.44 (dashed lines) and γ = 0.68 (dotted lines).

results. It is noted, however, that requiring optimal agreement of the state-
specific level density results in a lower ZPE correction as requiring optimal
agreement of the total level density.

Let us now study to what extent the ZPE-corrected mapping formula-
tion is able to describe the nonadiabatic relaxation dynamics of our model
problems. Beginning with Model I, Fig. 10 again shows the (a) diabatic and
(b) adiabatic populations as well as (c) the mean position of the totally-
symmetric vibrational modes ν6a. The ZPE-corrected mapping results for
γ = 0.44 (thin solid lines) and the corresponding quantum results (thick
lines) are seen to be in quite good overall agreement. In particular, it is
found that for large times both the classical and the quantum diabatic
population fluctuate around the same value of P dia

2 (∞) ≈ 0.3. This recon-
firms our assertion that the agreement of the classical and the quantum
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Fig. 10. Same as Fig. 8, except ZPE-corrected mapping results are shown for γ = 0.44,
whereby action-angle (full lines) and Wigner (dashed lines) initial conditions have been
employed.

state-specific level densities results in the equivalent long-time values of the
classical and quantum diabatic population. Most importantly, it is seen that
the ZPE-corrected results also reproduce the entire time evolution of the
electronic and vibrational observable under consideration. In particular, the
data nicely match the coherent transients of the diabatic population and
the vibrational motion.

We note in passing that the results above have been obtained with
action-angle initial conditions for the electronic DoF. Employing Wigner
initial conditions with γ = 0.44, similar results are obtained (dashed lines
in Fig. 10), although the coherent beating of the signals is reproduced only
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qualitatively. Within the mapping approach, action-angle initial conditions
generally have been found superior to Wigner initial conditions.78

Employing the alternative criterion that requires the agreement of the
classical and the quantum-mechanical total level density, we have also calcu-
lated the time-dependent observables for the quantum correction γ = 0.68
(data not shown). The overall quality of the data is quite similar to the
data shown above, although the overall relaxation is somewhat exagger-
ated. As expected from the discussion above, we obtained P ad

2 (∞) = 0,
that is, the requirement of a correct total level density coincides with the
criterion (69).

We proceed with the discussion of Model II, representing the C̃ →
B̃ → X̃ internal-conversion process in the benzene cation. Figure 11 shows
quantum mechanical results (a) as well as various mapping results obtained
for different values of the ZPE. As was discussed in Sec. 3, the mean-field
trajectory method, corresponding to the mapping approach without ZPE
(i.e. γ = 0), essentially fails to describe the long-time relaxation of the
population of the electronic C̃ and B̃-states [see panels (b) and (e)]. Taking
into account the full ZPE (i.e. γ = 1) shown in panels (c) and (f), on the
other hand, results in a quite good agreement with the quantum results for
short times. For longer times, however, the overall relaxation is exaggerated
and both the adiabatic and the diabatic population of the C̃ state have
negative values, indicating an unphysical flow of ZPE. It is noted that, due
to the higher number of electronic states and the larger excess energy of the
initial state, the ZPE problem in Model II is considerably more severe than
in Model I. For example, a detailed analysis showed that the mean-field
trajectory method (γ = 0) predicts a level number which is about a factor
of 50 smaller than the corresponding level number of the ZPE-corrected
mapping result.71

In the case of Model II, neither the state-specific nor the total quantum-
mechanical level densities are available. To determine the optimal value
of the ZPE correction, therefore criterion (69) was applied, which yielded
γ = 0.6. The mapping results thus obtained (panels d and g) are seen to
reproduce the quantum result almost quantitatively. It should be noted that
this ZPE adjustment assures that the adiabatic population probabilities
remain within [0, 1] and at the same time also yields the best agreement
with the quantum diabatic populations.
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Fig. 11. Diabatic (left) and adiabatic (right) population probabilities of the C̃ (full
line), B̃ (dotted line), and X̃ (dashed line) electronic states as obtained for Model II
representing a three-state five-mode model of the benzene cation. Shown are (a) exact
quantum calculations of Ref. 119, as well as mean-field-trajectory results [panels (b),(e)],
and quasiclassical mapping results including the full [panels (c),(f)] and 60% [panels
(d),(g)] of the electronic zero-point energy, respectively.

The excellent performance of the mapping formulation for this model
encouraged us to consider an extended model of the benzene cation, for
which no quantum reference calculations are available.144 The model com-
prises 16 vibrational DoF and five coupled potential-energy surfaces, thus
accounting for the degeneracy of the electronic states X̃ and B̃.119 Assuming
again a complete decay into the adiabatic ground state, a ZPE correction
of γ = 0.33 was determined. Figure 12 displays the diabatic and adia-
batic population dynamics of this model. As may be expected, the inclu-
sion of the additional DoF results in a faster dephasing of the coherent



May 26, 2004 15:28 Conical Intersections: Electronic Structure, Dynamics and Spectroscopy chap15

Description of the Dynamics at Conical Intersections 673

0 100 200 300 400
time  [fs]

0

0.5

1

P
ad

0

0.5

1

P
dia

Fig. 12. Diabatic and adiabatic population probabilities of the C̃ (full line), B̃ (dotted
line), and X̃ (dashed line) electronic states as obtained for a five-state 16-mode model
of the benzene cation.

beating and in an even more efficient internal-conversion process. Very
recent quantum-mechanical studies of Köppel and coworkers employing a
refined five-state model including eight vibrational modes reconfirm these
findings.145

Finally, we consider Model III, which describes an ultrafast photoin-
duced isomerization process. Figure 13 shows quantum mechanical results
as well as results of the ZPE-corrected mapping approach for three dif-
ferent observables: the adiabatic and diabatic population of the excited
state, and Pcis, the probability that the system remains in the initially
prepared cis-conformation. A ZPE correction of γ = 0.5 has been used in
the mapping calculation, based on the criterion to reproduce the quantum
mechanical long-time limit of the adiabatic population. It is seen that the
ZPE-corrected mapping approach represents an improvement compared to
the mean-field trajectory method (cf. Fig. 3), in particular for the adia-
batic population. The influence of the ZPE correction on the dynamics of
the observables is, however, not as large as in the two other models.
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Fig. 13. Time-dependent simulations of the nonadiabatic photoisomerization dynam-
ics exhibited by Model III, comparing results of the ZPE-corrected classical mapping
approach (dotted lines) and exact quantum calculations (full lines). Shown are the pop-
ulation probabilities P ad

2 (t), Pdia
2 (t) of the initially prepared adiabatic (a) and diabatic

(b) electronic state, respectively, as well as the probability Pcis(t) that the system remains
in the initially prepared cis conformation (c).

Two further mapping studies of nonadiabatic photoisomerization
dynamics may be mentioned. Coupling the two-state three-mode Model III
considered above to a bath of 100 harmonic modes, the vibrational cooling
of the three-mode system (modeling a “chromophore”) due to the addi-
tional modes (mimicking the solvent) has been studied.133 It was found
that the overall relaxation and the quantum yield of the photoreaction
depends to a large extent on the specific system-bath coupling under con-
sideration. Employing the recently introduced concept of vibronic periodic
orbits of a nonadiabatic system,98–100 a very recent investigation showed
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that coherent features of the nonadiabatic photoisomerization dynamics
may be interpreted in terms of a few quasiperiodic orbits of the classical
mapping system.101

6.6. Discussion

Although the mapping approach provides an in principle consistent classi-
cal description of nonadiabatic dynamics, the formulation has been shown
to suffer seriously from the ZPE problem. This finding should not come
as a surprise, since in the mapping formalism the electronic oscillators are
constrained to the ground and first excited state [cf. Eq. (54)], therefore
representing a hard challenge for a classical description. In contrast to a
semiclassical theory discussed in Sec. 7, there is no rigorous solution to
the ZPE problem on the quasiclassical level. Nevertheless, based on the
phase space theory developed in Refs. 78 and 141 a quantum correction
γ was introduced which affects a reduction of the electronic ZPE included
in the calculation. Employing this correction, the quasiclassical mapping
formulation was shown to provide an accurate description of the electronic
and vibrational relaxation dynamics of all three model problems consid-
ered. Generally speaking, the mapping calculations represent a significant
improvement over the mean-field trajectory results and are of similar qual-
ity as the surface-hopping calculations. Since all these methods in some
sense over-stress the classical limit (e.g. ZPE excitation in the mapping
approach, classically forbidden transitions in surface-hopping calculations),
however, it is not easy to predict which method will perform better for a
given problem.

We have discussed several ways to determine the optimal value of the
quantum correction γ. Apart from the rigorous conditions associated with
the state-specific and total level densities of the system, we have also estab-
lished the quite useful criterion (69), which assumes that a multidimensional
system at large times localizes in its adiabatic ground state. Experience
shows that in most two-state problems associated with a multidimensional
conical intersection a value of γ = 0.5 provides a fairly good description
of the nonadiabatic relaxation dynamics. It is interesting to note that this
rule of the thumb was first established in an empirical analysis of the classi-
cal electron analog model,14 i.e. without knowing anything about the exact
mapping relations or the crucial role of ZPE in this approach.
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7. Semiclassical Description of Nonadiabatic Quantum
Dynamics

All approaches for the description of nonadiabatic dynamics discussed so
far invoke simple quasiclassical approximations to treat the dynamics of
the nuclear degrees of freedom. As a consequence, these methods are in
general not able to describe processes or observables for which quantum
effects of the nuclear degrees of freedom are important. Such processes
include nuclear tunneling, interference effects in wave-packet dynamics as
well as the conservation of zero-point energy. In contrast to purely classical
approximations, semiclassical methods are in principle capable of describing
quantum effects.

A semiclassical description is well established when both the Hamilton
operator of the system and the quantity to be calculated have a well-
defined classical analog. For example, there exist several semiclassical meth-
ods for calculating the vibrational autocorrelation function on a single
excited electronic surface, the Fourier transform of which yields the Franck–
Condon spectrum.83,84,104,146 In particular, semiclassical methods based on
the initial-value representation of the semiclassical propagator,79–86 which
circumvent the cumbersome root-search problem in boundary-value based
semiclassical methods, have been successfully applied to a variety of systems
(see, for example, the reviews Refs. 85, 86 and references therein). These
methods cannot directly be applied to nonadiabatic dynamics, though,
because the Hamilton operator for the vibronic coupling problem [Eq. (1)]
involves discrete degrees of freedom (discrete electronic states) which do
not possess an obvious classical counterpart.

The mapping procedure introduced in Sec. 6 results in a quantum-
mechanical Hamiltonian with a well-defined classical limit, and therefore
extends the applicability of the established semiclassical approaches to
nonadiabatic dynamics. The thus obtained semiclassical version of the map-
ping approach, as well as the equivalent formulation that is obtained by
requantizing the classical electron analog model of Meyer and Miller, have
been applied to a variety of systems with nonadiabatic dynamics in the
recent years.69–71,78,87–97 It appears that this approach is so far the only
fully semiclassical method that allows a numerical treatment of truly mul-
tidimensional nonadiabatic dynamics at conical intersections.

Following a brief introduction of the basic concepts of semiclassical
dynamics, in particular the semiclassical propagator and its initial-value
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representation, we discuss in this section the application of the semiclassical
mapping approach to nonadiabatic dynamics. Based on numerical results
for the S1 − S2 conical intersection in pyrazine, we discuss advantages and
problems of this semiclassical method.

7.1. Semiclassical Propagator

To introduce the basic concept of a semiclassical propagator, let us consider
a n-dimensional quantum system with Hamiltonian H, which is assumed
to possess a well-defined classical analog. In order to obtain the semiclassi-
cal approximation to the transition amplitude Kt(f |i) between the initial
state |i〉 and the final state |f〉, the amplitude is expressed in terms of the
coordinate-dependent propagator Kt(q′|q)

Kt(f |i) ≡ 〈f |e−iHt|i〉
=
∫

dq′
∫

dq〈f |q′〉Kt(q′|q)〈q|i〉, (70)

which then is evaluated within the semiclassical Van Vleck–Gutzwiller
approximation20

KVVG
t (q′|q) =

∑
traj

eiSt−iπν/2√
det(2πi∂q′/∂p)

. (71)

Here the sum runs over all trajectories that start from point q0 = q at time
t = 0 and end up at point qt = q′ at time t, St is the classical action along
such a trajectory, and the monodromy matrix elements ∂q′/∂p account for
the dependency of the trajectory qt with respect to its initial momentum
p0. The Maslov-index ν counts the zeroes of the Van Vleck determinant.
The evaluation of the semiclassical Van Vleck–Gutzwiller propagator (71)
amounts to the solution of a boundary-value problem. That is, given a tra-
jectory characterized by the position q(t) = qt and momentum p(t) = pt,
we need to find the roots of the equation qt = qt(q0,p0). To circum-
vent this cumbersome root-search, one may rewrite the propagator as an
initial-value problem.79–86 As a consequence, the semiclassical propagator
is given as a phase-space integral over the initial conditions q0, p0, which
is amenable to a Monte-Carlo evaluation. For this reason, semiclassical
initial-value representations are regarded as the key to the application of
semiclassical methods to multidimensional systems.
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Most of the applications of initial-value representation methods in recent
years have employed the Herman–Kluk (coherent-state) representation of
the semiclassical propagator,80 which for a general n-dimensional system
can be written as(

e−iHt
)
HK

=
∫

dq0dp0

(2π)n
|qtpt〉Cte

iSt〈q0p0|, (72)

where (p0,q0) are initial momenta and coordinates for classical trajectories,
pt = pt(p0,q0) and qt = qt(p0,q0) are the classically time-evolved phase
space variables and St is the classical action integral along the trajectory.
The pre-exponential factor Ct is given by

Ct(p0,q0)

=

√
det
[
1
2

(
α

1
2

∂qt

∂q0
α− 1

2 + α− 1
2

∂pt

∂p0
α

1
2 − iα

1
2

∂qt

∂p0
α

1
2 + iα− 1

2
∂pt

∂q0
α− 1

2

)]
.

(73)

It involves a combination of the elements of the monodromy matrix

Mt =


∂pt

∂p0

∂pt

∂q0

∂qt

∂p0

∂qt

∂q0

 . (74)

In the above expression α denotes a n-dimensional diagonal matrix, with
element αj being the width parameter for the coherent state of the jth
dimension. The coordinate space representation of an n-dimensional coher-
ent state is the product of n one-dimensional minimum uncertainty wave
packets

〈x|pq〉 =
n∏

j=1

(αj

π

)1/4
e− αj

2 (xj−qj)2+ipj(xj−qj). (75)

Within the applicability of the semiclassical approximation, the propa-
gator (72) is rather insensitive to the particular value of the width param-
eters αj , but this parameter can of course affect the numerical efficiency of
the calculation. In the numerical studies presented below, we have chosen
the width αj as the width of the harmonic ground state of the jth vibra-
tional mode. In the dimensionless units used here this choice corresponds
to αj = 1 for all degrees of freedom.
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The calculation of the Herman–Kluk propagator for multidimensional
nonseparable systems is a challenging task because it involves a multi-
dimensional integral over an oscillating integrand. In addition, the pre-
exponential factor Ct can become large for chaotic trajectories. Therefore,
it is rather difficult to converge the integral for longer times using sim-
ple Monte-Carlo integration schemes. Several smoothing techniques have
been proposed to overcome this well-known problem of semiclassical
propagators.83,84,97,147–150 The basic idea of these techniques is to inte-
grate out the local oscillations analytically, using a linearization of the
integrand over a small phase-space cell. In the numerical results reported
below we have adopted the method of Walton and Manolopoulos.84 This
method combines the Herman–Kluk propagator with the cellular dynamics
algorithm of Heller.81 It is based on the Filinov151,152 or stationary-phase
Monte-Carlo method.153

7.2. Nonadiabatic Dynamics

The mapping procedure introduced in Sec. 6 results in a quantum-
mechanical Hamiltonian with a well-defined classical limit, thus rendering
the semiclassical evaluation a straightforward matter. To illustrate the con-
cept let us consider the transition amplitude 〈Φd

f |〈vf |e−iHt|vi〉|Φd
i 〉. The

semiclassical mapping approach consists of two steps: First, one uses the
quantum mechanical identity between the discrete and the continuous rep-
resentation of the Hamiltonian [cf. Eqs. (53) and (59)]

〈Φd
f |〈vf |e−iHt|vi〉|Φd

i 〉
= 〈01, . . . , 1f , . . . , 0Nel |〈vf |e−iHt|vi〉|01, . . . , 1i, . . . , 0Nel〉. (76)

Subsequently, any of the well-established semiclassical approximations for
the quantum propagator e−iHt can be employed to obtain a semiclassical
approximation for the transition amplitude. Employing, for example, the
Herman–Kluk propagator, the semiclassical approximation for this transi-
tion amplitude is given by

〈Φd
f |〈vf |e−iHt|vi〉|Φd

i 〉HK

=
∫

dx0dp0

(2π)Nel

∫
dR0dP0

(2π)Nvib
〈01, . . . , 1f , . . . , 0Nel |xtpt〉

×〈vf |RtPt〉Cte
iSt〈R0P0|vi〉〈x0p0|01, . . . , 1i, . . . , 0Nel〉. (77)
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In contrast to the quasiclassical approaches discussed in the previous
sections of this review, Eq. (77) represents a description of nonadiabatic
dynamics which is “semiclassically exact” in the sense that it requires
only the basic semiclassical Van Vleck–Gutzwiller approximation20 to the
quantum propagator. Therefore, it allows the description of electronic and
nuclear quantum effects.

An alternative way to obtain a semiclassically exact description for sys-
tems involving discrete quantum degrees of freedom is based on the spin-
coherent state representation. In particular, the spin-coherent state path
integral has been used to investigate the semiclassical description of spin
systems.154–158 As has been discussed in detail in Ref. 70 there exists a
close connection between these approaches and the semiclassical mapping
approach. For example, the mapping approach can be used to derive a
semiclassical spin-coherent state propagator.70

To conclude this section, we would like to mention some technical details
of the semiclassical calculation. The various elements of the semiclassical
expression (77) are obtained in the following way: The phase-space integral
is evaluated using standard importance-sampling Monte-Carlo schemes.
Thereby, as was mentioned above, filtering techniques are employed to
facilitate the integration over the oscillating integrand (for details see
Ref. 92). The classical action and the monodromy matrix for each tra-
jectory (qt,pt) = (xt,Rt,pt,Pt) are obtained by solving the differential
equations

dSt

dt
= pt · q̇t − H, (78)

d

dt
Mt =


− ∂2H

∂q∂p
− ∂2H

∂q∂q

∂2H
∂p∂p

∂2H
∂p∂q

Mt (79)

along the trajectory.159 The calculation of the pre-exponential factor Ct

involves a complex square root, Eq. (73) , the correct branch of which is
determined by requiring continuity of Ct.83 In particular for larger systems,
it is thereby advantageous to combine some of the phase factors of Ct and
eiSt , in order to avoid the calculation of the pre-exponential factor for very
small time intervals.160
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7.3. Results

The semiclassical approach outlined above has been applied to various
nonadiabatic systems with avoided crossings including nonadiabatic bound-
state dynamics of several spin-boson type models with up to three vibra-
tional modes,69,70 a series of scattering-type test problems,87 a model for
laser driven population transfer between two adiabatic potential-energy
surfaces.90 To our knowledge, so far only three applications to systems with
conical intersections have been reported: the photodissociation of ozone89

and ICN,96 and the photoinduced nonadiabatic dynamics of pyrazine at
the S1 − S2 conical intersection.92,97 In this section we will discuss the
results obtained for the latter system. While the simulations of the pyrazine
system discussed in the previous sections of this review have employed a
three-mode model (Model I), the semiclassical simulations we will present
here are based on two different models: a four-mode model and a model
including all 24 normal modes of the pyrazine molecule.

Let us first consider the four-mode model of the S1−S2 conical intersec-
tion in pyrazine which was developed by Domcke and coworkers.161 In addi-
tion to the three modes considered in Model I, it takes into account another
Condon-active mode (ν9a). Figure 14 shows the modulus of the autocorre-
lation function [cf. Eq. (20)] of this model after photoexcitation to the S2

electronic state. The exact quantum results (full line) are compared to the
semiclassical results (dotted line). The autocorrelation function exhibits a
fast initial decay, reflecting the initial displacement of the wave packet on
the S2 surface. The suppression of the ensuing recurrences (which is absent
for the uncoupled system, i.e. W12 = 0)124 reflects the ultrafast electronic
dephasing in the S2 electronic state of pyrazine. This dephasing process is
incomplete due to the limited density of states of the four-mode model. It
is seen that the semiclassical result reproduces all essential features of the
autocorrelation function up to 100 fs. Both the first two recurrences and the
high frequency modulations are well described. Upon closer inspection, one
recognizes that the fine structure of the autocorrelation function is better
reproduced than the overall damping of the amplitude, e.g. the semiclassi-
cal result underestimates the damping of the first reoccurrence and has too
small an amplitude for times t > 80 fs. The former deviation is related to
the nonunitarity of the semiclassical approximation162 and can be corrected
to some extent by normalizing the data (see below). The latter deviation is
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Fig. 14. Modulus of the autocorrelation function for the four-mode model of pyrazine.
The full line is the quantum result and the dotted line is the semiclassical result.

presumably a result of the filtering technique used in the calculation, which
tends to exaggerate the damping of the autocorrelation function for longer
times.

The S2 absorption spectrum is displayed in Fig. 15. Panel (a) compares
the semiclassical and the quantum result and panel (b) shows the exper-
imental data from Ref. 163. Both theoretical results have been obtained
by Fourier transformation of the autocorrelation function. Thereby a phe-
nomenological dephasing constant T2 = 30 fs has been included to repro-
duce the homogeneous width of the experimental spectrum. The absorption
spectrum shows a diffuse S2 band with irregularly spaced structures, which
cannot be assigned in terms of normal modes in the S2 state.122,124 The
weak tail in the energy region of the S1 state represents the well-known
phenomenon of vibronic-intensity borrowing. It is seen that the semiclas-
sical and the exact quantum results are in very good agreement in both
parts of the spectrum. It is interesting to compare this semiclassical result
with a calculation performed by Stock and Miller some time ago for the
same model using a quasiclassical approach (i.e. without semiclassical phase
information) based on the classical electron analog model.164 Although this
classical method was able to reproduce the global features of the absorp-
tion spectrum, it was not capable of reproducing the finer structure. In
contrast, the semiclassical method describes these fine structures very well,
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Fig. 15. Absorption spectrum of pyrazine in the energy region of the S1 − S2 conical
intersection. Shown are (a) quantum mechanical (full line) and semiclassical (dotted
line) results for the four-mode model (including a phenomenological dephasing constant
of T2 = 30 fs), and (b) the experimental data.163

demonstrating that the inclusion of phase information (and hence quan-
tum interference) is important to describe the absorption spectrum in this
system correctly.

The ultrafast initial decay of the population of the diabatic S2 state is
illustrated in Fig. 16 for the first 30 fs. Since the norm of the semiclassical
wave function is only approximately conserved, the semiclassical results are
displayed as rough data (dashed line) and normalized data (dotted line) [i.e.
P norm

2 = P2/(P1 + P2)]. The normalized results for the population are seen
to match the quantum reference data quantitatively. It should be empha-
sized that the deviation of the norm shown in Fig. 16 is not a numerical
problem, but rather confirms the common wisdom that a two-level system
as well as its bosonic representation is a prime example of a quantum system
and therefore difficult to describe within a semiclassical theory. Neverthe-
less, besides the well-known problem of norm conservation, the semiclassical
mapping approach clearly reproduces the nonadiabatic quantum dynamics
of the system. It is noted that the semiclassical results displayed in Fig. 16
have been obtained without using filtering techniques. Due to the highly
chaotic classical dynamics of the system, therefore, a very large number
of trajectories (≈ 2 × 107) is needed to achieve convergence, even over
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Fig. 16. Initial decay of the diabatic population of the S2 state for the four-mode
pyrazine model. Compared are quantum (full line), semiclassical (dashed line) and nor-
malized semiclassical (dotted line) results.

the relatively short timescale of 30 fs. To improve the convergence and to
facilitate the calculation of the population for longer times, effective filter-
ing techniques or more sophisticated semiclassical techniques such as the
forward-backward initial-value representation165–167 need to be employed.

Within the four-mode model, the experimental absorption spectrum
can only be obtained by including a rather large phenomenological dephas-
ing parameter T2 = 30 fs. Recently, Raab et al. have reported multicon-
figuration time-dependent Hartree calculations168,169 based on a model
Hamiltonian which takes into account all the 24 normal modes of the
pyrazine molecule.170 Figure 17 displays the modulus of the autocorrela-
tion function for the 24-mode model. The semiclassical results are compared
with the results of Raab et al.170 The comparison with the 4-mode model
(Fig. 16) shows that the inclusion of the remaining 20 modes leads to a
damping of the recurrences of the autocorrelation function. The semiclassi-
cal result is seen to reproduce the quantum result rather well up to 70 fs. In
particular, the calculation is seen to well reproduce the damping of the first
recurrence due to the inclusion of the additional modes. This is in contrast
to more classical methods, such as the quasiclassical implementation of the
mapping approach. As we have discussed in Sec. 6, this failure to describe
the correct relaxation behaviour is related to an incorrect treatment of the
zero-point energy in the classical implementation. The results in Fig. 17
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Fig. 17. Modulus of the autocorrelation function for the 24-mode pyrazine model. The
full line is the quantum result170 and the dotted line is the semiclassical result.

demonstrate that the semiclassical method is capable of describing this
effect correctly without requiring further zero-point energy modifications.

Finally, Fig. 18 shows the absorption spectrum for the 24-mode model.
As was done by Raab et al.,170 we have included a phenomenological
dephasing time of T2 = 150 fs to model the experimental broadening due to
finite resolution and rotational motion. It can be seen that the inclusion of
all 24 normal modes of the pyrazine molecule leads to a shape of the spec-
trum which is in good agreement with the experimental result [Fig. 15(b)].
The semiclassical result is seen to be in fairly good agreement with the
quantum result. The spurious structure in the semiclassical spectrum is
presumably due to the rather high statistical error.

To conclude, the results presented in this section demonstrate that the
semiclassical implementation of the mapping approach is able to describe
the ultrafast dynamics in the pyrazine system. In particular, it is capable of
describing the correct relaxation dynamics as well as the structures of the
absorption spectrum. The former is related to a correct treatment of the
zero-point energy, the latter reflects the correct inclusion of quantum inter-
ference effects. The ability to describe these quantum effects is in contrast
to the quasiclassical implementation of the mapping approach discussed in
Sec. 6. The semiclassical version of the mapping approach should, therefore,
also be well suited to describe time-resolved nonlinear spectra.
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Fig. 18. Absorption spectrum for the 24-mode pyrazine model. The full line is the
quantum result170 and the dotted line is the semiclassical result. In both spectra a
phenomenological dephasing constant of T2 = 150 fs was used.

Although this result is quite encouraging, it should be mentioned that
the required numerical effort for the semiclassical calculation is rather large.
We have found that even though the required CPU time seems to have a
better scaling (with respect to the number of nuclear degrees of freedom)
in the semiclassical approach then in the quantum multiconfiguration time-
dependent Hartree method, it is still comparable in the case of the 24-
mode model. There are two main reasons for the rather large numerical
effort in the semiclassical calculation: (i) Although we have used an integral
conditioning (filtering) technique, the oscillatory nature of the integrand
still requires a large number (≈107) of trajectories to converge the Monte-
Carlo integration for longer times.171 (ii) Due to the calculation of the pre-
exponential factor, the numerical effort per trajectory has a unfavorable
(2 + Nvib)3 scaling. Both problems need to be addressed further to make
the semiclassical approach a practical method for the treatment of complex
molecular systems.

8. Conclusions

In this review we have considered mixed quantum-classical (MQC) methods
to describe non-Born–Oppenheimer dynamics at conical intersections. We
have started with an attempt to classify existing MQC strategies in formu-
lations resulting from a partial classical limit, from a connection ansatz, and
from a mapping formalism. Focusing on methods that have been applied
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to conical intersections, we have restricted the discussion to the mean-
field trajectory method, the surface-hopping model, the quantum-classical
Liouville equation, as well as the quasiclassical and semiclassical version of
the mapping approach. Since many of the existing works on MQC theory
are closely related, we have tried to point out some of these connections.
In particular, we have discussed the relation of the mean-field trajectory
method with the quantum-mechanical time-dependent self-consistent field
ansatz (Sec. 3.4), the connection of empirical surface-hopping models with
the stochastic implementation of the quantum-classical Liouville equation
(Sec. 5.2), and the relation of the mapping approach with the mean-field
trajectory method and the classical electron analog model (Sec. 6.3).

To obtain a comprehensive picture of the performance of the vari-
ous MQC approaches, we have considered three model problems involv-
ing conical intersections, where each model represents a specific challenge
for an approximate description. The detailed computational studies have
shown that the practical applicability of MQC methods depends largely
on whether the MQC formulation merely requires a simple quasiclassi-
cal average to calculate the observables of interests, or whether phase-
space integrals involving rapidly oscillating phases need to be evaluated for
this purpose. The first group comprises the mean-field trajectory method,
the surface-hopping model, and the quasiclassical version of the map-
ping approach. The second group includes the quantum-classical Liouville
description and the semiclassical mapping formulation. While the latter for-
mulations suffer from the dynamical sign problem, the first group of meth-
ods may employ standard Monte-Carlo sampling techniques. This yields
converged results for typically 102 − 104 trajectories and allows for the
treatment of molecular systems with a large number of degrees of freedom.

At present, the surface-hopping method is the most popular approach to
describe nonadiabatic dynamics at conical intersections. The model employs
the simple and physically appealing picture in which a molecular system
always evolves on a single adiabatic potential-energy surface. Nonadiabatic
transitions are realized in this approach via instantaneous hops of the tra-
jectories between the coupled potential-energy surfaces according to some
hopping criterion. As discussed in Sec. 4.2, there is no algorithm that pro-
vides both a practical and dynamically consistent stochastic realization of
the Schrödinger equation in the classical-path approximation. Neverthe-
less, it has been found that the surface-hopping method gives an at least
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qualitative description of the dynamics in all cases considered. We have
proposed a modified version of Tully’s algorithm which was shown to give
significantly better results than the standard method. In particular, it has
been shown that it is important to use “binned” electronic population prob-
abilities.

The mean-field trajectory method represents the simplest and in general
most widely used MQC approach. Applied to models involving a single
conical intersection, the method has been shown to afford a qualitative
description of the nonadiabatic dynamics. Although the overall quality of
the results deteriorates at longer times, the mean-field trajectory method
appropriately describes the branching of trajectories at a surface crossing
as well as the electronic and vibrational coherences associated with this
process. On the other hand, it was found that the method largely fails to
account for the correct branching of trajectories in the case of multiple
conical intersections. To explain these findings, a detailed discussion has
been given in Secs. 3.4 and 6.3, which also tries to clarify several common
misconceptions concerning the theory and the performance of the mean-
field trajectory method.

The mapping approach consists of (i) a quantum-mechanically exact
transformation of the electronic states of the system to harmonic oscilla-
tors and (ii) a subsequent classical (or semiclassical) approximation to the
complete system. As a consequence, the classical limit of the mapping for-
malism accounts for the dynamics of both quantum and classical degrees of
freedom in a completely equivalent way. The mean-field trajectory method,
on the other hand, is based on a partial classical limit for the nuclear degrees
of freedom. Therefore, it treats electronic and nuclear degrees of freedom
differently with respect to their initial conditions, i.e. quantum-like initial
conditions for the electronic degrees of freedom and quasiclassical initial
conditions for the nuclear degrees of freedom. Correcting for this inconsis-
tency, the mapping formulation is able to describe the nonadiabatic dynam-
ics of all model problems considered rather well. Since the equations of
motion of both methods are quite similar, the mapping formulation fur-
thermore explains some of the failures of the mean-field trajectory method.

Although the mapping approach provides an in principle consistent clas-
sical description of nonadiabatic dynamics, the formulation has been shown
to suffer seriously from the zero-point energy problem. This is because in the
mapping formalism the electronic oscillators are constrained to the ground
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and first excited state, therefore representing a hard challenge for a classical
description. Although on a quasiclassical level there is no rigorous solution
to the zero-point energy problem, a quantum correction was introduced
which affects a reduction of the electronic zero-point energy included in
the calculation. Employing this correction, the quasiclassical mapping for-
mulation was shown to provide an accurate description of the electronic
and vibrational relaxation dynamics of all three model problems consid-
ered. Generally speaking, the zero-point energy-corrected mapping calcu-
lations represent a significant improvement over the mean-field trajectory
results and are of similar quality as the surface-hopping calculations. Since
both methods in some sense over-stress the classical limit (e.g. zero-point
energy excitation in the mapping approach, classically forbidden transitions
in surface-hopping calculations), however, it is not easy to predict which
method will perform better for a given problem.

A conceptually more consistent treatment of nonadiabatic quantum
dynamics can be obtained by either the quantum-classical Liouville for-
mulation or the semiclassical version of the mapping approach. In partic-
ular, it has been shown that the quantum-classical Liouville equation is
actually exact for the linear vibronic-coupling model considered here. The
numerical deviations of this MQC description and the quantum-mechanical
reference calculations therefore merely point out the numerical problems of
a trajectory-based Monte-Carlo implementation of the Liouville equation.
While the quantum-classical Liouville equation is based on a partial clas-
sical limit for the nuclear degrees of freedom, the semiclassical version of
the mapping approach, on the other hand, employs a semiclassical treat-
ment of both nuclear and electronic degrees of freedom. Hence the approach
accounts for electronic and nuclear quantum phenomena in a natural man-
ner, including, e.g. effects of quantum coherence and zero-point energy.
Unlike the quasiclassical version of the mapping approach, its semiclassical
version is therefore not plagued by the zero-point energy problem and is well
suited for the simulation of stationary and time-resolved optical spectra.

At present the practical applicability of the quantum-classical Liouville
description and the semiclassical version of the mapping approach is lim-
ited because of the dynamical sign problem. As both methods have been
proposed only in the last few years, however, they still hold a great poten-
tial for improvement. Finally it is noted that all methods considered in
this review can in principle be interfaced with an “on-the fly” ab initio
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evaluation of the potential energy, thus resulting in a practical scheme to
perform nonadiabatic ab initio molecular-dynamics simulations.
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125. U. Manthe and H. Köppel, J. Chem. Phys. 93, 345, 1658 (1990).



May 26, 2004 15:28 Conical Intersections: Electronic Structure, Dynamics and Spectroscopy chap15

694 Conical Intersections: Electronic Structure, Dynamics and Spectroscopy

126. M. Durga Prasad, Chem. Phys. Lett. 194, 27 (1992).
127. G. Stock and W. Domcke, J. Chem. Phys. 93, 5496 (1990).
128. G. Stock, R. Schneider and W. Domcke, J. Chem. Phys. 90, 7184 (1989).
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1. Introduction

In this chapter, we deal with conical-intersection (CI) effects on continuous-
wave (CW) spectra, i.e. with static molecular properties. Nevertheless,
some overlap with dynamical studies of other chapters will clearly appear,
because time-independent and time-dependent methods are linked by
Fourier transforms.

CIs among adiabatic potential energy surfaces (PES) cause the break-
down of the Born–Oppenheimer (BO) approximation, and have thus a deep
impact on molecular states and CW spectra. In general, the corresponding
nonadiabatic (NA) interactions mix different vibrational manifolds, increase
by far the line density, and in CW spectra they give highly irregular line and
intensity distributions, which do not follow simple vibrational progressions
or approximated selection rules. Besides energy and intensity, also other
observables can be strongly affected. Therefore, CI spectra can be much
more complex than what is expected on the basis of the number of active
vibrational modes.

The BO representation is very useful for understanding CI effects,
because we may know which BO states are mixed by NA couplings and
to what extent. We can thus obtain the energies of the NA states and their
compositions in terms of the BO species, whose properties and features are
clearly understood. In principle, this knowledge enlightens CI effects on any
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molecular property and process, except on those caused by strong external
interactions.

Even without NA interactions, the normal mode approximation breaks
down as the energy increases, because the PES becomes anharmonic and
vibrational mixings do not allow us to assign good vibrational quanta. In
general, the spectrum becomes more and more complex, and regular level
progressions are less and less recognizable. A CI complicates further the
spectrum, perturbing the level spacing and mixing the vibrational states
χ1α and χ2β belonging to two coupled electronic species Φ1 and Φ2. The
mixing of χ1α and χ2β increases when they are nearly degenerate and with
the strength of their NA interaction. When this mixing is strong, electronic
and vibrational quantum numbers are meaningless, and radiative selec-
tion rules hold only in the NA-state representation. Since the energy gap
between the Φ1 and Φ2 PES minima is usually large, NA interactions can
mix very different states χ1α and χ2β , leading to NA states with very com-
plex nodal structures, which further increase the difficulty of assign good
vibrational quanta. The resulting NA spectrum is generally very diffuse,
dense, and complex, and without regular progressions.

CIs can also have an indirect, yet important effect on spectra, giving
radiative access to highly excited, dark vibrational states that per se lack of
regular progressions and reliable assignments. This happens in the common
case of an electronic excitation Φ0 → Φ1, where Φ1 interacts with a third
and dark electronic species Φ2, and the PES minima of the interacting
states have a large energy gap (Emin

2 � Emin
1 ).

2. Theory of CW-Spectra

2.1. Electric-Dipole Transitions

The formulas for the CW absorption, emission and photoelectron spectra
can be directly derived making use of the scattering formalism. The deriva-
tion grounded on the time-dependent formalism is, however, more intuitive
and useful in order to understand the various approximations introduced.
Furthermore, it is naturally related to modern computational techniques
based on the wavepacket propagation, which have revealed very helpful
also in evaluating time-independent observables.

We treat the electromagnetic field in second quantization and adopt the
dipole approximation, which is well suited for molecules whose dimension
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is negligible with respect to the wavelength.1,2 The total Hamiltonian is
then written as (HM and HR are the molecular and the field Hamiltonians,
respectively, V is the interaction and the molecule is placed at the origin):

H = HM + HR + V = H0 + V

where

HR = �ωa+
ω aω; V = −Eµ; E = εiR(aω − a+

ω ); R =
(

2π�ω

L3

)1/2

, (1)

L3 is the quantization volume and ε the polarization. Both the dipole µ

and the electric field E are given in the space-fixed frame and a single
mode has been taken. In order to ensure that at the initial time t0 as well
as at the time t the field is off, we can imagine that the interaction term
is multiplied by a suitable time-dependent switching function. Since we are
interested here in the limits t0 → −∞, t → ∞, we really need an infinitely
slowly varying switching function whose role is then simply that of ensuring
convergence of integrals. In dealing with spontaneous emission we will also
introduce the second quantization representation for the vacuum field.

The mean value of a given observable is computed at the lowest pos-
sible perturbative order in the exciting field. The standard perturbative
expansion can be derived recursively from:

|ψ(0)(t)〉 = U0(t−t0)|ψ(t0)〉; |ψ(n)(t)〉 = − i

�

∫ t

t0

dt′U0(t−t′)V |ψ(n−1)(t′)〉,
(2)

where U0(t) = exp(−iH0t/�).
The first observable we are interested in is the rate of energy absorp-

tion from the external field (nω = a+
ω aω is the number of quanta with

frequency ω):

Wabs(ω) = −�ω
d

dt
〈ψ(t)|nω|ψ(t)〉 = −iω〈ψ(t)|[H,nω]|ψ(t)〉 (3)

which, after evaluating the commutator, becomes:

Wabs(ω) = Rω〈ψ(t)|µε(aω − a+
ω )|ψ(t)〉. (4)

Looking at Eq. (2), one easily realizes that the leading term in the evaluation
of Eq. (4) is first-order (i.e. in Eq. (4) we have to make the replacements
|ψ(t)〉 → |ψ(0)(t)〉 and 〈ψ(t)| → 〈ψ(1)(t)| or the same with the bra for the
zero-order and the ket for the first order term). Assuming that the initial
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molecule ⊗ field state |Ψg; n〉 is an eigenstate of H0, the above translates
into:

Wabs(ω) = −ω
R2

�
cos2(θ)

∫ t

t0

dt1

〈
Ψg; nω

∣∣∣∣ exp
[

i

�
(Eg + n�ω)(t − t1)

]

× µa+
ω U0(t − t1)µaω

∣∣∣∣Ψg; nω

〉
+ c.c. (5)

where µε = µ cos(θ), θ being the angle between the dipole and the field
(we are considering here a non-rotating molecule).

Changing the variable to t′ = t − t1, and performing the integral one
has

Wabs(ω) = −4π�ω2

3L3 (nω + 1) Im[〈Ψg|µGM (Eg + �ω)µ|Ψg〉], (6)

where GM (E) = (E − HM + iη)−1 and η → 0+.
In deriving Eq. (6) we have taken into account that the propagation

from t1 to t happens in the subspace with (nω − 1) photons and have
also performed the average over the molecular orientation (non aligned
molecules), which gives a factor 1/3. Dividing by the photon energy density
nω�ω/L3 and taking account that for any light source (nω + 1) ≈ nω, we
get the following rate of energy absorption per unit radiant energy density
due to 1 molecule:

Wu
abs = −4

3
πω Im[〈Ψg|µGM (Eg + �ω)µ|Ψg〉]. (7)

At this stage, there is no more trace of the field polarization and so no
other average is needed to treat unpolarized sources (i.e. the absorption of
randomly oriented molecules does not depend on the polarization of the
light).

The molar extinction coefficient k, which is related to the decrease of
intensity I when the light travels through an absorbing medium, is given
by k = Wu

abs N/c where N is Avogadro’s number and c the light speed.
The absorbance A simply differs by the use of the logarithm in base 10:
A = Wu

abs · N/(c · ln 10).
The absorption cross section, defined as the rate of photon absorption

per molecule and per unit radiant energy flux, can be obtained from Eq. (7)
taking into account that if nω photons pass through 1 cm2 in 1 sec and they
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are all contained in a volume c · 1 s · 1 cm2, then:

σabs(ω) = −4πω

3c
Im〈Ψg|µGM (Eg + �ω)µ|Ψg〉. (8)

Looking at Eq. (8) and introducing the spectral representation of the resol-
vent, one can see that, if the eigenstates |Ψj〉 of Hm are known, the absorp-
tion spectrum can be computed straightforwardly as a sum of sharp lines,
which may be transformed into lorentzians (gaussians) to simulate homo-
geneous (inhomogeneous) broadening:

σabs(ω) =
4π2ω

3c

∑
j

|µjg|2δ(Eg + �ω − Ej), (9)

where the index j runs over molecular eigenstates.
Alternatively, the absorption spectrum can be computed in an

eigenstate-free context, if one is able to propagate the doorway state, by:

σabs(ω) =
4πω

3�c
Re

[∫ ∞

0
dt〈Ψg|µU0(t)µ|Ψg〉e(i(Eg+�ω)t)/�e−Γ2t2

]
, (10)

which is identical with Eq. (9) if one drops the phenomenological damping
factor resulting in a gaussian line broadening. It is worthwhile to remind
here that if the BO approximation works, then Eq. (10) requires propaga-
tion on a single PES, while in presence of strong nonadiabatic interactions
two (or more) surfaces may be needed. This is just the case of conical
intersections which we discuss in this chapter.

The derived relations for light absorption can also be used to calculate a
photoelectron spectrum under CW excitation, which is the counting rate of
ejected electrons for a given light frequency ω, as a function of their kinetic
energy Ekin = k2/2me (at time t → ∞). We write it as Wω

pe(k) to remember
that it depends on the light frequency ω. It clearly coincides with the rate of
disappearance of photons, i.e. Wω

pe(k) = Wu
abs(ω)/�ω [see Eq. (7)]. It must

be noticed, however, that the emission of electrons instead of photons has
a certain number of advantages and may result in a very high resolution,
as in the zero kinetic energy (ZEKE) photoelectron spectroscopy.3

Let us start from Eq. (8) and take into account that now at the energy
Eg +ω the spectrum is continuous. The continuous eigenstates can be build
up in different ways as far as the asymptotic behavior of the outgoing elec-
tron is concerned. Since we are not concerned here with the problem of the
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angular distribution of photoelectrons, we simply label continuous eigen-
states generically as |Ψn; k〉 to indicate that they give rise to a molecular
ion in the vibronic state |Ψn〉 with energy En and an ejected electron with
energy k2/2me. Neglecting the discrete part of the spectrum (as well as
the continua involving multiple ionizations) one has (the normalization is
〈Ψn; k|Ψn′ ; k′〉 = δnn′δ(k − k′)):

GM (E) �
∑
nv

∫ ∞

0

|Ψn; k〉〈Ψn; k|
E − En − k2/2me + iη

dk, (11)

which gives

σω
pe(k) =

4π2ω

3c

∑
n

|〈Ψg|µ|Ψn; k〉|2 δ(Eg + �ω − En − k2/2me). (12)

Equation (12) shows that the calculation of a photoelectron spectrum may
proceed exactly as that of an absorption spectrum, as far as one is able to
evaluate the required matrix elements or to propagate the doorway state
[Eq. (12) can be recast in a time-dependent formalism proceeding as pre-
viously illustrated for the absorption spectrum]. In passing we notice that
many progresses have been achieved in the last years in the computation
of accurate photoelectron spectra, i.e. of the matrix elements 〈Ψg|µ|Ψn; k〉
with a variety of methods ranging from the Green function approach to the
use of discretized basis to simulate the continuum.4 If one can reasonably
assume that the scattering states can be well described by anti-symmetrized
products of ionic states and continuum orbitals for the ejected electron (as
for high photon energy, in the “sudden limit”) things become much simpler,
as discussed for example in Ref. 5, since, in the time dependent approach,
the problem reduces to the propagation of a vibrational wavepacket for
the ion.

For treating observables involving spontaneously emitted photons, the
Hamiltonian involving the light source and the molecule must be extended
to include the vacuum field:

H = HM + HR + HS + V + VS = H0 + V + VS , (13)

HS = �

∑
εS ,kS

ωSa+
εSkS

aεSkS
,

VS = −i
∑

εS ,kS

µεSRS(aεSkS
− a+

εSkS
). (14)
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Spontaneous Raman scattering involves the counting rate of spontaneously
emitted photons at frequency ωs, after an excitation at frequency ω i.e.,
proceeding as above (nεS ,kS

= a+
εS ,kS

aεS ,kS
):

WRS(ω, ωS) =
d

dt

〈
ψ(t)

∣∣∣∣∣
∑
εSkS

nεSkS

∣∣∣∣∣ ψ(t)

〉
=

i

�

∑
εSkS

RSµεS(aεSkS
−a+

εSkS
),

(15)
where the polarization of the spontaneously emitted photon may differ from
that of the absorbed photon. One may easily check that this time the lowest-
order contribution is third order and involves |ψ(1)(t)〉 and |ψ(2)(t)〉. Writing
down the corresponding integrals and performing integrations in the limit
t0 → −∞ one obtains after some algebra:

WRS(ω, ωS) =
8nωπ3

�ω

L6

∑
εSkS ,p

ωS |χpg(ω)|2δ(Eg + �ω − Eq − �ωS), (16)

where

χqg(ω) =
∑

p

〈Ψq|εSµ|Ψp〉〈Ψp|εµ|Ψg〉[(Eg + �ω − Ep + iΓp)−1

+(Eg − �ω − Ep + iΓp)−1]. (17)

In the derivation we have neglected the possibility of overlapping molecular
resonances6 (i.e. we have assumed that there are not couples of eigenstates
so close in energy that they can emit identical photons). Furthermore, a
width Γp has been attributed to the excited state |Ψp〉, which accounts for
its finite lifetime due to spontaneous emission or other decay mechanisms.
The first term in Eq. (17) is dominant when Eg +�ω ≈ Ep, i.e. for resonant
Raman (RR) scattering.

Let us now put, as above, εkS
µ = µ cos(θS), εµ = µ cos(θ), introduce

the density of photon modes in the cavity by the substitution
∑

kS
→

L3
∫

dωSω2
S/2π2c3, and perform the double average 〈cos2(θ)〉〈cos2(θS)〉

which gives (1/3) · (1/3). The sum over the two independent polarization
vectors gives a further factor 2, leading to the following differential emission
rate for spontaneous photons (no matter for their polarization):

dWRS(ω, ωS)
dωS

=
8nωπ�ωω3

S

9c3L3

∑
q

|χqg(ω)|2 δ(Eg + �ω − Eq − �ωS). (18)
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The differential (with respect to frequency) Raman scattering cross section
is obtained by dividing Eq. (18) by the laser photon flux F = nωc/L3:

dσRS(ω, ωS)
dωS

=
1
F

dW (ω, ωS)
dωS

=
8π�ωω3

S

9c4

∑
q

|χqg(ω)|2 δ(Eg+�ω−Eq−�ωS)

(19)
where dσRS(ω, ωS) is the number of photons spontaneously emitted in the
range ωS , ωS + dωS per unit of time and of laser photon flux. Equation
(19) can be generalized to the case of an initial distribution over molecular
states |Ψj〉, whose population is Pj to give:〈

dσRS(ω, ωS)
dωS

〉
=

8π�ωω3
S

9c4

∑
q,j

Pj |χqj(ω)|2 δ(Ej + �ω − Eq − �ωS). (20)

As for the case of light absorption, Eq. (20) has a time dependent counter-
part which can be exploited by noticing that Eq. (17) can be rewritten as:

χqg(ω) =
∫ ∞

0
dt〈Ψq|εSµe−iHM tεµ|Ψg〉e i

�
(Eg+�ω)t−Γt. (21)

The above means that, albeit we started from a third-order term, we can
practically evaluate the weight of each peak appearing in the Raman scat-
tering and corresponding to a given molecular final state by propagating the
doorway state εµ|Ψg〉 and Fourier transforming its overlap with the state
εSµ|Ψq〉 (notice that the width now must be identical for each intermedi-
ate state |Ψp〉).7 The exponential damping is often replaced by a gaussian
damping for mimicking inhomogeneous broadening.

The Raman scattering (which is called resonance fluorescence when the
final molecular state |Ψq〉 is identical to the initial one |Ψg〉) is not, however,
the only process resulting in spontaneous photon emission. If one repeats
the above treatment in a density matrix formalism8,9 and allows for inter-
mediate state dephasing, one obtains, for resonant excitation, a fluorescence
contribution. In practice, in this case the doorway state is really (not vir-
tually) excited and becomes populated for a significant time interval, as
pointed out by Lee and Heller.7 The system becomes then sensitive to any
phase-disturbing perturbation.10 As a consequence, due to dephasing, the
scattering is no more a purely coherent two-photon process, and the Raman
emission competes with a relaxed component which is usually called fluo-
rescence. The fluorescence is then simply the spontaneous emission from
populated excited states, which have completely lost the memory of the
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way they have been excited. From a spectroscopic point of view, it gives
rise to broader bands, since now the initial state is an excited state, whose
initial energy is not precisely defined, according to the time-energy Heisen-
berg uncertainty, due to various relaxation processes. The fluorescence from
a given state |Ψj〉, whose intensity is proportional to its population, decays
usually exponentially and is characterized by its lifetime τF

j = 1/ΓF
j , where

ΓF
j =

∑
kS

W em(ωS)
�ωS

=
4π2

3L3

∑
l

∑
εSkS

|〈Ψj |µ|Ψl〉|2ωSδ(Ej − �ωS − El) (22)

is the photon emission rate. The second equality in Eq. (22) stands because
W em is essentially the same quantity as W abs in Eq. (6), but instead of
dealing with a single laser mode containing nω photons we have to consider
all the initially empty (nω = 0) cavity modes. The sum over modes and
polarizations can be carried out as described above Eq. (18) to give:

ΓF
j =

∑
l

ΓF
j→l; ΓF

j→l =
4ω3

jl

3�c3 |〈Ψj |µ|Ψl〉|2; ωjl =
Ej − El

�
, (23)

which partitions the emission rate of a given state into contributions due
to transitions to all the lower lying levels.

2.2. Matrix Elements

The eigenstates ΨJMSΣp
n of a spinless molecular Hamiltonian are labeled

by the quantum numbers n for the energy, J and M for the square of the
total angular momentum J and the SF component JSF

z , S and Σ for the
square of the total electronic spin S and the body-fixed (BF) component Sz,
and p = ± for the parity. Employing the Wigner–Eckart theorem and the
symmetry properties of the SF µ components, the general selection rules
for the matrix elements 〈ΨJ′M ′S′Σ′p′

n′ |µ|ΨJMSΣp
n′ 〉 are:11

∆J = 0 (not for J = 0) or ±1,

∆M = 0 (µSF
z ; not for ∆J = M = 0) or ±1 (µSF

x , µSF
y ),

∆S = ∆Σ = 0, and the matrix elements do not depend on Σ,

p′ = −p. (24)

If Φi are adiabatic or diabatic electronic states, the µ matrix elements
in the ΨJMSΣp

n representation depend12 on the BF electronic moments
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µb
i′i(Q) = 〈Φi′ |µb|Φi〉q, where b = x, y, or z, Q are vibrational coordinates,

and we integrate on the electronic coordinates q . These moments fulfill the
point-group selection rules and can be also classified in the permutation-
inversion group,13 thus obtaining further information. If Γir label indeed
the irreducible representations of the latter group, µb

i′i belongs to the rep-
resentation Γi′ ⊗ Γb ⊗ Γi that must contain at least one allowed Γir of an
arbitrary function F (Q), otherwise µb

i′i vanishes identically. For example,
in a triatomic AB2 molecule, the matrix element of µz between A1 and B2

electronic states belongs to B2, i.e. is anti-symmetric under the permuta-
tion of the identical B nuclei. In particular, this symmetry behavior implies
that 〈A1|µz|B2〉 vanishes at C2v point-group geometries.

The inclusion of the molecular rotation often makes CI spectra over-
whelmingly complex. Because most CI effects are fully exploited at a
vibronic level, it is useful to consider experiments on jet-cooled molecu-
lar beams, where the rotational effects are strongly reduced. In this case,
we are interested only in vibronic band origins of a rovibronic spectrum and
we can neglect the molecular rotation altogether. The hypothetical vibronic
spectrum with J = 0 depends on the matrix elements

〈Ψn′ |µb|Ψn〉 ≈
∑
i′

∑
i

∑
α′

∑
α

〈Ψn′ |Φi′χi′α′〉〈χi′α′ |µb
i′i|χiα〉〈Φiχiα|Ψn〉,

(25)

where n labels both the energy and the parity, and χiα are Born–
Oppenheimer (BO) vibrational states belonging to the electronic state Φi.
These matrix elements rule both BO and NA transitions, as those associ-
ated with avoided-crossing, CI, or Jahn–Teller (JT) couplings.

For optical transitions, we omit the very small matrix elements
〈χiα′ |µb

ii|χiα〉, diagonal in the electronic indices, and we employ the Franck–
Condon (FC) approximation for the transition electronic moments,

µb
i′i ≈ constant with respect to Q , any b, i′, and i; i′ 	= i. (26)

Equation (26) implies that all non-vanishing transition electronic moments
µb

i′i (i′ 	= i) belong to the totally symmetric Γir of the molecular symmetry
group, and that we are considering small oscillations or diabatic electronic
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states that depend weakly on Q .14 Within the FC model, Eq. (25) reads

〈Ψn′ |µb|Ψn〉 ≈
∑

i′( �=i)

∑
i

µb
i′i

∑
α′

∑
α

〈Ψn′ |Φi′χi′α′〉〈χi′α′ |χiα〉〈Φiχiα|Ψn〉

=
∑

i′( �=i)

∑
i

µb
i′i

∑
α

〈Ψn′ |Φi′χiα〉〈Φiχiα|Ψn〉. (27)

Equations (25) and (27) explain the intensity borrowing effects of the exact
spectra with respect to the FC ones: the 〈χi′α′ |µb

i′i|χiα〉 selection rules in
Eq. (25) are less demanding than the 〈χi′α′ |χiα〉 ones in Eq. (27), and thus
some weak lines of exact spectra are forbidden in the FC approximation.

Let us consider a FC µb transition between the vibrational states χ1α

of an isolated electronic state Φ1, which fulfills the BO approximation, and
the NA species Ψn′ associated with two interacting electronic states Φ2

and Φ3,

Φ1
µb−→Φ2/Φ3. (28)

The BO species Φ1 may be one of the coupled ones, Φ2 and Φ3, and the
JT theorem implies that Φ1 belongs to a one-dimensional Γir. For example,
we may consider one-photon absorption from, or fluorescence to the lowest
vibrational states of the ground electronic species, which are usually well
below the NA states. Eq. (27) thus becomes

〈Ψn′ |µb|Φ1χ1α〉 ≈
∑

i′( �=1)

µb
i′1〈Ψn′ |Φi′χ1α〉. (29)

We shall now assume that Φ2 and Φ3 undergo a CI in the adiabatic rep-
resentation, that they are not the components of a degenerate JT state, and
that µb induces a selective electronic transition between Φ1 and only one of
the coupled states Φ2 and Φ3. This means that either µb

21 or µb
31 is different

from zero for a given µb component, i.e. that one of the coupled states is
bright, while the other is dark under µb. This is a very common feature of
CI spectra, which is often required by symmetry. It occurs, e.g., in molec-
ular spectra of NO2,15 H2S,16 NH2,17 H2O+,18 SO2,19 and pyrazine,20 and
in photoelectron spectra of HCN,21 C2H4,14 C4H4,14 and five-member ring
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molecules.5 Assuming that Φ2 is the bright state, Eq. (29) then simplifies as

〈Ψn′ |µb|Φ1χ1α〉 ≈ µb
21〈Ψn′ |Φ2χ1α〉

≈ µb
21

∑
α′

〈Ψn′ |Φ2χ2α′〉〈χ2α′ |χ1α〉,

µb couples only Φ1 and Φ2. (30)

This equation shows clearly the well-known FC principle of a vertical tran-
sition of the χ1α vibrational state from the potential surface of Φ1 to the
potential surface of the bright state Φ2. It is interesting to contrast the
matrix element of Eq. (30) with that resulting when the BO approximation
holds also for the state Φ2,

〈Φ2χ2α′ |µb|Φ1χ1α〉 ≈ µb
21〈χ2α′ |χ1α〉. (31)

We see that a band intensity of a BO spectrum depends on the FC fac-
tors |〈χ2α′ |χ1α〉|2, whereas the corresponding intensity of a CI spectrum is
shared by several NA states Ψn′ that have a large |〈Ψn′ |Φ2χ2α′〉|2 weight.
Taking also into account interference effects in the sum of Eq. (30), we may
state the following propensity rules, which are the main signatures of CI
effects in molecular spectra. A CI absorption spectrum is more diffuse, more
irregular, and weaker than a BO spectrum. In general, vibrational progres-
sions are much more irregular in NA spectra and fluorescence lifetimes are
strongly lengthened by NA couplings.

2.3. Methods of Calculation

As we saw in Sec. 2.1, CW spectra can be calculated by time-independent
(TI) or time-dependent (TD) methods. In an adiabatic electronic repre-
sentation, the vibronic couplings diverge along the CI locus. Therefore, a
diabatic electronic representation strongly simplifies the calculations, cou-
pling the electronic species with well-behaved potential terms.

In general, theoretical studies of triatomic16,22–24 and tetra-atomic
molecules employ analytical PESs carefully fitted to large grids of ab ini-
tio data points, and curvilinear vibrational coordinates, to take into
account large-amplitude motions. On the other hand, larger polyatomic
molecules are investigated with simple polynomial PES, whose parame-
ters are obtained from ab initio data, and with normal coordinates, possi-
bly considering only the active ones. Finite basis representations25 (FBR),
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discrete variable representations26 (DVR), or coordinate grids and Fourier
transforms27 are employed.

TI methods calculate the spectrum diagonalizing the Hamiltonian
matrix H, or some matrix derived by H. Because of memory-storage
requirements and the unfavorable scaling with the dimension of the
basis set, conventional tridiagonalizations are only employed in small
molecules and with well-optimized FBRs. The nonorthogonal14,24,28,29

or orthogonalized24,30 Lanczos algorithm is widely employed when the
dimensions are too large for conventional diagonalizations. TD methods
obtain the spectrum by Fourier transforming suitable correlation func-
tions, and hence rely on effective wavepacket propagation.31 The recent
method by Mandelshtam and Taylor,32 based on a low-storage Chebyshev
iteration/filter-diagonalization, can be included among TD approaches.

The assignment of the individual spectral lines requires the knowledge of
the corresponding eigenstates, and TI methods are more directly applicable
to this problem. When the number of states is too large, the main lines of the
spectrum can be identified via TI or TD methods, and only the correspond-
ing states can be calculated by a filter diagonalization.33 An alternative
strategy renounces to assign the single lines of the high-resolution spectrum,
and try to assign the bands of a lower resolution spectrum by small Lanczos
expansions, whose pseudo-eigenstates carry all the required information.24

3. Interpretation of Nonadiabatic Spectra

The interpretation of a NA spectrum can be tackled at several levels. The
theoretical approach has the power to inquire separately the effect of any
particular interaction, by alternatively switching it on and off. On the other
hand, the approximations of the calculations can prevent a one-to-one com-
parison of the theoretical and experimental lines, and theoretical results
must be frequently regarded as models of real systems. Luckily, a rough
experiment-theory agreement is often sufficient. For example, the overall
influence of the CI couplings on a spectrum can be simply proved show-
ing that a NA calculation gives a spectrum that resembles much more the
experimental one than a BO calculation. This has been carried out for many
polyatomic molecules.5,14,34

Detailed interpretations of high-resolution NA spectra follow two main
routes: a level-by-level analysis and a statistical approach. In the following
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two subsections, we present a general description of these approaches and
their application to the X2A′/A2A′ CI in NO2.

3.1. Level-by-Level Analysis

A detailed, level-by-level analysis is the ultimate route for assigning spectra
and investigating NA effects, but it is a very difficult task, both experi-
mentally and theoretically. This analysis relies indeed on the approximate
separation of the rotational, vibrational, and electronic motions, i.e. on the
canonical model of the molecular structure that is based on the Eckart
conditions, on the BO approximation, and on the normal-mode approach.
These models lose progressively their meaning when strong NA interactions
mix the molecular motions as CIs do.

A typical two-state CI increases by about an order of magnitude
the number of bright levels with respect to the BO model, since the
BO selection rules are not longer valid, and NA mixings can mask the
vibrational progressions. Even omitting the rotation, both the electronic
and the vibrational character should be assigned to each NA state.
This task is experimentally solved employing selection rules, expecta-
tion values of some observables, Dunham expansions, and approximate
FC factors. Deviations from the expected BO and Dunham behaviors
hint at NA interactions. On the other hand, theoreticians can assign
the bands calculating both NA states and levels, analyzing their expan-
sion coefficients in the BO basis, and assigning approximate vibrational
quanta from the nodal structure of the wavefunctions and from Dunham
expansions.

The NO2 molecule is probably the best-known CI example. The poten-
tial energy surfaces (PES) of the ground X2A′ and first excited A2A′ adi-
abatic electronic states intersect in C2v symmetry,15 where they belong
to the 2A1 and 2B2 species, respectively. The minimum crossing energy is
8374 cm−1 above the X2A′ vibrationless level.22 Owing to this low intersec-
tion energy, NA effects begin at about 9500 cm−1 and have a deep impact
on bound states and resonances, on optical spectra, and on internal and
collision dynamics, from the near infrared up to and beyond the first disso-
ciation limit at 25 129 cm−1.35 Considering also the small molecular dimen-
sions that allow highly accurate investigations, NO2 has been the subject
of a lot of experimental and theoretical work. For example, Delon et al.36
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have observed absorption and fluorescence spectra of jet cooled NO2, and
Santoro, Petrongolo, et al. (SP)24,37 have calculated these spectra with a
NA formalism. We here review some results by SP who employed a diabatic
electronic representation 2A1/

2B2, an optimized FBR, and conventional or
Lanczos eigensolvers, and refer the reader to the original literature for tech-
nical details. Owing to the symmetry of the vibronic basis, A1 (B2) NA
states are represented in the space of the a1 (b2) and b2 (a1) vibrational
states of the electronic species 2A1 and 2B2, respectively.

We show in Fig. 1 the beginning and development of the NA effects,
plotting the correlations between the vibrational and the NA states up to
∼ 12 000 cm−1. We also report the vibrational quanta for the symmetric
stretch, the bending, and the anti-symmetric stretch, v1, v2, and v3 respec-
tively, the weights of the main vibrational states, and the weight w2n of the
2B2 electronic state. The CI couplings perturb slightly the 2A1 vibrational
states below 9500 cm−1 and then strongly couple the 2A1 (0, 11, 1) and
2B2 (0, 0, 0) states, giving a first strongly mixed B2 NA state at 9534 cm−1.
The 2A1 (0, 11, 1) and 2B2 (0, 0, 0) vibrational weights are equal to 25%
and 51%, respectively, and the w2n is equal to 53%. The NA interactions
are gradual and selective, because they mix close lying vibrational species
of the electronic states, mainly highly excited 2A1 bending states of b2

(a1) symmetry and low lying 2B2 states of a1 (b2) symmetry. The large
∆v2 value of the coupled vibrational states reflects the different equilib-
rium bond angles of the electronic states (≈ 32 degrees).22 Up to about
12 000 cm−1, 8 A1 and 19 B2 NA states are mixed (with w2n > 10%), of
a total of 189 and 140 states for the two symmetries, respectively. Note
that several 2A1 vibrational states are practically unmixed, whereas all the
2B2 vibrational states are strongly coupled with many 2A1 partners. This
result is consistent with the larger 2A1 density of states with respect to the
2B2 one.

Experimental and theoretical energies and band assignments have
already been compared.23,38 We here report only a further comparison
that has been made possible by recent measurements. Biesheuvel et al.39

have estimated the 2A1 electronic character, w1n = 1 − w2n, of 29 rovi-
bronic states Ψn between 11 211 and 13 680 cm−1, by measuring the Fermi-
contact constants σn and obtaining the mean values w1 = 61% and
σ = 86 MHz. Leonardi et al.22 found 24 B2 strongly mixed NA states,
which are nearby the vibronic bands of Ref. 39, and have w1 = 71% and
σ = 102 MHz. The σ value has been obtained from σn ≈ σ1w1n + σ2w2n,
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Fig. 1. Correlation between the BO vibrational and NA NO2 levels. The 2A1 and 2B2
BO levels are labeled by the (v1, v2, v3) vibrational quanta. The NA levels are marked
by the total weight w2n of the 2B2 electronic state. Dashed lines connect a BO and a NA
level and the numbers upon them indicate the contribution of the former to the latter.

with σ1(2A1) = 147.3 MHz and σ2(2B2) = −10 MHz.39 The calculations
overestimate by ∼16% the weight of the electronic ground state and the
Fermi-contact constant in this energy range, where the mean error of the
calculated levels with respect to the observed ones is 73 cm−1.
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3.2. Statistical Approach

A complementary perspective in the analysis of a spectrum is furnished
by a statistical approach, first developed in nuclear physics40 but then
applied also to molecular systems.14,41 There is an interesting connection
between the spectral statistical properties and the classical dynamics of a
system.42 The quantum levels of systems which are classically integrable,
i.e. those having a constant of motion for each degree of freedom, are uncor-
related in the semi-classical limit (with the exception of systems of harmonic
oscillators) and resemble a random sequence.43 These spectra of levels are
called regular. On the other side, the levels of quantum systems which
are the counterparts of classical systems with no good constant of motion,
are strongly correlated, and their spectra are called irregular and are well
reproduced by the eigenvalues of real random matrices42,44,45 (the Gaus-
sian orthogonal ensemble, GOE). Because of these connections with classi-
cal dynamics, spectral statistics has been utilized to come to a definition of
quantum chaos, and irregular spectra are sometimes called chaotic spectra.

Spectral analysis is applied to the complete set of levels Ei of a molecule
in a given energy range which share the same set of good quantum num-
bers (as symmetry and spin). To have results that can be contrasted with
some universal limits, the secular variation, i.e. the average variation of the
integrated density of levels N(E) with the energy E, must be eliminated.
This can be accomplished in several ways,41,46 for example by the map-
ping Ei → εi = N(Ei), which defines the new unfolded energies εi as the
value of a polynomial fit N(E) to N(E) at the energy Ei. Several statistical
measures have been utilized in literature to study spectral characteristics.
Here we discuss only the nearest neighbor spacing distribution (NNSD),40

referring the reader to the literature for a more complete discussion of the
subject.14,40

The normalized NNSD, namely P (S), is the distribution function of
spacings S between adjacent energy levels. It is related to the conditional
probability P2(S)dS to find a level in the interval [ε + S, ε + S + dS] when
there is a level at ε and no level in the interval [ε, ε + S]. For a random,
uncorrelated sequence (regular systems), P2(S) is a constant, and we get
a Poisson distribution P (S) = exp(−S) (from now on the mean spacing
S = 1), while for a linear repulsion of the energy levels, P2(S) ∝ S, and we
get the Wigner distribution P (S) = (πS/2) exp(−πS2/4).
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The levels of a GOE ensemble (and hence those of irregular systems)
have a NNSD distribution very close to the Wigner one. Notice that while
the Poisson distribution is maximal at S = 0 (no level repulsion), the
Wigner distribution vanishes at S = 0 (there is level repulsion). An inter-
mediate behavior can be described in different ways. Considering also a
non-linear repulsion, P2(S) ∝ SqB , Brody40 computed the distribution

PB(qB ; S) = αSqB exp(−βS1+qB ), (32)

where β = Γ[(2 + qB)/(1 + qB)] and α = (1 + qB)β. Berry and Robnik47

obtained a different expression,

PBR(qBR; S) =
[
1 − q2

BR +
πq3

BRS

2
− (1 − qBR)2R(qBRS)

]

· exp
[
−(1 − qBR)S − πq2

BRS2

4

]
, (33)

where R(z) = 1−exp(πz2/4)erfc(2
√

π/2), and qBR is the chaotic fraction of
the total classical phase space domain at the energy E under investigation.
Both in the case of Eqs. (32) and (33), the Poisson and Wigner distributions
are obtained as particular cases for values of the free parameter (qB and
qBR) of 0 and 1 respectively. By fitting Eqs. (32) and (33) to the actual
NNSD of the system under investigation, the best qB and qBR values are
obtained that are quantitative indices of the degree of irregularity of the
spectrum, though with some different physical meaning as reported above,
and some care as qBR approaches very slowly to zero.42

The NNSD deals with short-range correlations. The analysis of long-
range correlations is also very interesting in NA systems and it has been
often performed by the ∆3 statistics, which we do not describe for lack of
space. The theoretical foundations are presented in Refs. 48 and 49, and
Refs. 50 and 51 report some applications to molecular NA systems. Sophis-
ticated techniques based numerical recognition patterns52 and correlation
diagrams53 have been recently reported in literature but, to our knowledge,
they have not yet been applied to spectra with significant NA effects.

To show the statistical approach at work, we discuss the result of the
analysis of 1226 B2 NA levels of NO2 calculated by us from 10 000 cm−1,
where CI effects begin, up to 22 000 cm−1. We employed a diabatic elec-
tronic representation, an optimized FBR, and a nonorthogonal Lanczos
recursion.24 The computed NNSD is shown in Fig. 2, and the qB and qBR
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Fig. 2. NNSD statistics of set of levels of NO2 of B2 symmetry . (a) NA levels NA;
(b) BO levels 2A1; b2 of the 2A1 electronic species; (c) BO levels 2B2; a1 of the 2B2
electronic species; (d) SB-2A1; b2 levels of the 2A1 electronic species obtained neglecting
the stretch-bend couplings.

parameters obtained from a fit of Eqs. (32) and (33), together with the
second 〈S〉2 and third 〈S〉3 moments and the standard deviation σ, are
reported in Table 1. The data point out a behavior very close to the GOE
limit. The analysis of the ∆3 statistics not reported here for lack of space,
agrees with this conclusion.51

To investigate the dependence of the spectrum irregularity with the
energy, we divided the spectrum in half-overlapping sets of 200 levels and
we best fitted the qBR value to the computed NNSD, attributing the result-
ing degree of irregularity to the average energy spanned by the consid-
ered subset: qBR increases monotonically up to 1.0 at 18 500 cm−1, then
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shows a small decrease to 0.9 at about 20 000 cm−1, reaching back 1.0 at
22 000 cm−1.51

The statistical features of the computed levels have been compared with
those of several experimental sets51 from 14 645 cm−1 to 19 360 cm−1 and
the fine agreement suggests they are accurate enough to be used for further
investigation of the causes of the spectrum irregularity. This was possible
by theoretically switching off selectively different coupling terms in the
molecular Hamiltonian, generating new sets of levels and computing the
NNSD of each of them. Table 1 and Fig. 2 compare the statistics of the B2

NA levels with that of the diabatic B2 BO states in both electronic states
(2A1; b2 and 2B2; a1) and with that of the levels obtained by neglecting the
stretch-bend couplings in the 2A1 ground diabatic potential (SB-2A1; b2).
It is shown that the 2A1; b2 set is slightly less irregular than the NA one,
whereas the 2B2; a1 spectrum is more regular. The NNSD of the SB-2A1; b2

levels is, on the contrary, close to the Poisson statistics and hence almost
regular. These findings point out that the spectral chaos is due both to
the vibronic coupling between the two diabatic electronic states and to
the stretch-bend couplings on the ground diabatic surface. It is interesting
to stress that the vibronic coupling acts at several levels: on one hand, it
brings into the spectrum the irregularity due to the stretch-bend couplings
of the highly-excited dark 2A1; b2 vibrational levels, on the other hand, it is
strong enough to oppose the possible decrease of correlation (which would
make the spectrum more regular), due to the overlapping of the two different
2A1; b2 and 2B2; a1 sets, and to cause, on the contrary, an overall increase of

Table 1. NNSD parameters of the B2 levels of NO2 in the
10 000–22 000 cm−1 range. M is the number of levels; 〈S〉2 and 〈S〉3 are the
second and third moment, respectively, in mean spacing units, σ is the stan-
dard deviation, qB and qBR are the Brody and Berry–Robnik parameters as
defined in Eqs. (32) and (33) respectively.

M 〈S〉2 〈S〉3 σ qB qBR

Poisson 2 6 1 0 0
Wigner 1.27 1.91 0.52 1 1

NA 1226 1.32 2.12 0.57 0.85 0.96
2A1; b2 1013 1.37 2.30 0.61 0.68 0.90
2B2; a1 214 1.47 2.69 0.69 0.42 0.74
SB-2A1; b2 766 1.78 4.19 0.88 0.00 0.26
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the spectral irregularity. The conclusions reported here retain their validity,
even when the statistical study is performed after dividing the energy range
in the two sub-ranges 10 000–16 500 cm−1 and 16 500–22 000 cm−1.51

4. Discussion of Selected CW Spectra

The literature on CW spectra deeply affected by the existence of a CI is too
wide to be reviewed in this chapter. Instead of trying a complete exposition
of the literature results, we will pursue a different task, trying to elucidate
the main features of these effects through a discussion of few interesting and
prototypical examples from the literature and our own laboratory research.
The cited works are preferably chosen among the more recent ones to give
the reader a flavor of the great activity in this field and the state-of-the-art
capabilities.

4.1. Absorption Spectra

The main CI effects on an absorption spectrum are an increased density of
the lines and a partial or total loss of regular progressions. The impact of
a CI on a particular absorption spectrum is ruled by several factors, as the
strength of the NA interactions, the location of the CI with respect to the
FC region, and the characteristics of the interacting electronic states. As
an example of the third factor, we cite that when one of the two coupled
states is dark and dissociative, the spectrum shows very diffuse bands, as in
the case of the 1A1 → 1B1/

1A2 absorption of H2S16 and O3,23,54 where the
1B1 state is bound and 1A2 is repulsive. Below, we discuss in some detail
the spectra of NO2 and O3 and of some larger polyatomic molecules.

4.1.1. NO2

In agreement with Eq. (9), the intensities of the NO2 diabatic (NA cou-
pling neglected) or NA cold absorption spectra have been approximated as
ε2α|〈Φ2χ2α|µy|Φ1χ1,0〉|2 or En|〈Ψn|µy|Φ1χ1,0〉|2, respectively.24,55 Here Φ1

and Φ2 are the 2A1 and 2B2 electronic states, ε2α are the 2B2 vibrational
levels and En are NA levels, χ1,0 is the 2A1 vibrational ground state, and
the dipole matrix elements are given in Eqs. (30) and (31) within the FC
approximation with µy

21 = 1 au. For symmetry reasons, only B2 states are
populated. Figure 3 contrasts the calculated diabatic and NA spectra with
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Fig. 3. NO2 absorption spectrum. Comparison of the experimental spectrum with the
theoretical diabatic (NA coupling neglected) and NA spectra. The lines are labeled by
the v1, v2 quantum numbers (v3 = 0). The uncertain assignments are in parentheses.

those observed36 in the 12 000–18 000 cm−1 energy range, and reports the
2B2 (v1, v2, 0) assignments of some bands.

Owing to the Fermi resonance between the 2B2 symmetric stretching
and bending modes,38,56 all the spectra show long 2B2 (v1, v2, 0) vibrational
progressions, which are grouped in polyads with quantum number v =
2v1 + v2. The diabatic and NA parts of Fig. 3 show clearly the CI effects
on the spectrum. The diabatic spectrum is regular and strong, and its 2B2

vibrational progressions and polyads are clearly recognizable up to high
energy. On the contrary, the NA spectrum is much more irregular, diffuse,
and weak. The density of NA bright states is by far larger than that of the
diabatic species, and the intensity of a diabatic band is distributed among
many NA states, with a clear borrowing effect.55
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The NO2 example shows the usefulness of assigning even approximated
electronic and vibrational quanta for understanding CI absorption spectra.
The absorbing NA states are built by a manifold of dark and highly excited
2A1 BO states, which cannot be assigned, and by very few, bright, and low-
lying 2B2 BO states, which can be identified and approximately assigned.
The knowledge of the 2B2 character of the NA states allows us to study the
indirect mixing of the bright 2B2 BO states and polyads, due to the common
coupling to the 2A1 BO species, the intensity borrowing effects, and the
destruction of the regular 2B2 vibrational progressions in the NA spectrum.

Above 17 000 cm−1, the CI effects are so strong that the 2B2 vibrational
progressions and polyads begin to overlap, giving rise to a rather chaotic
NA spectrum.55 Small spectral regularities persist, however, even above
18 000 cm−1. By analyzing the polyad interactions,24 we estimate a max-
imum spectral irregularity in the energy range 17 800–19 700 cm−1 due to
the mixed polyads 12–14, and this is in fine agreement with the results of
the statistical analysis reported in Sec. 3.2.

Figure 3 shows that NA and experimental data agree only qualitatively.
This result is mainly due to the employed PESs, because the removal of the
FC approximation does not improve the calculated spectrum.57 In general,
the theoretical coupling is larger than that inferred from the experimental
data. The calculations thus favor 2B2 v1 −v2 couplings and 2B2 vibrational
mixings at high energy. On the contrary, the model underlying the exper-
imental assignments relies on separated v1 and v2 modes and on a single
2B2 component. The comparison of the six bands, whose 2B2 (v1, v2, 0)
assignments are equal in Refs. 55 and 36, gives a quantitative measure of
the features of the calculations: the mean energy error of the theoretical
bands is 237 cm−1, (∼ 1.5%), and the calculated mean intensity is 14%
smaller than that observed (4.3 vs. 5.0 a.u.).

4.1.2. O3

The absorption spectrum of O3 is characterized by the diffuse Chappuis
band between 14 000 and 24 000 cm−1 that has been attributed to the exis-
tence of the 11A′′/21A′′ (11A2/11B1 in C2v) CI very close to the zero-
point energy of the two surfaces.54 The 11B1 state is bound and carries
most of the oscillator strength, while 11A2 is dissociative. This is the
cause for the diffuse structure of the band. Because of the dissociative
nature of the problem, the theoretical spectrum has been computed through
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time-dependent methods using Jacobi coordinates and expressing the wave-
function on FBR/DVR for the angular coordinate and a grid of points for
the other two coordinates. The very interesting characteristics of the spec-
trum is that the band structure looks irregular at energies <19 000 cm−1,
while at higher energies it shows two regular progressions (v1, 0, 2) and
(v1, 1, 2) respectively, assigned both experimentally54 and theoretically.23

Thus, unlike the case of NO2, the CI effects are localized in the energy
domain. It has been argued that this happens since the upper adiabatic
surface, 21A′′, whose vibrational levels after neglecting the NA coupling
still account for most of the features of the spectrum, is much narrower
than the ground surface along the anti-symmetric stretching coordinate.
Because of that, the optical excitation populates also the high lying vibra-
tional levels of 21A′′ with an excited (even by symmetry) number of quanta
in this mode, prevalently v3 = 2. These states have a small probability
density close to C2v geometries, where the CI takes place, and are hence
little influenced by it, explaining the regularity of the high-energy part of
the band. This is not the case for NO2, whose strongest states in absorption
have v3 = 0, i.e. their maximum probability density is in C2v and they are
strongly perturbed by the CI.

4.1.3. Larger Polyatomic Molecules

While the work on triatomics allows the computation of large ab initio grids
in the full-coordinate space, a different approach must be pursued for larger
polyatomics. Remarkable theoretical success in reproducing experimental
spectra has been obtained with the model first proposed by Köppel et al.,14

where the diabatic PESs of the different states are multi-dimensional
paraboloids shifted along the totally-symmetric tuning modes and lin-
early coupled by the non-totally symmetric modes of the right symmetry
(quadratic terms have been added in some cases). Computations taking
into account a large number of vibrational modes have been recently per-
formed. A well known example is the S0 → S1/S2 spectrum of pyrazine,20

well reproduced by Lanczos calculations with a three-state, four-mode (har-
monic) model.

A recent computation concerns the absorption and Raman spectrum
of trans-butadiene58 computed by a TD approach. The two lowest valence
excited states of trans-butadiene are the 11Bu (HOMO → LUMO), which
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is bright, and the 21Ag (HOMO − 1 → LUMO, HOMO → LUMO + 1,
HOMO2 → LUMO2), which is dark. Their relative position with respect
to a vertical excitation from the ground state has been debated for a long
time (there is some agreement now that the 11Bu state is the lower). The
observation that the absorption spectrum is quite diffuse and there is no
detectable fluorescence, points towards a fast radiationless decay. An accu-
rate theoretical investigation58 performed by help of CASSCF and CASPT2
with respect to the CASSCF reference, resulted in a set of parameters that
characterizes the CI between the 11Bu and the 21Ag states, located not far
from the equilibrium position of the ground state. Only the in-plane modes
were considered, which gives rise to eight coupling modes and nine tuning
modes. The authors computed the absorption spectrum and the resonance
Raman spectrum at 217.9 mm (see Sec. 4.3.4) by wavepacket propagation,
as discussed in Sec. 2. Figure 4 taken from Ref. 58 reports their nice results
which agree well with the experimental one if a very rapid phenomenolog-
ical dephasing time of 15 fs is included, which, according to the authors,
serves also to mimic the role of the missing out-of-plane modes as well as
the 21Ag/11Ag CI.

Very recently, by a three electronic-states eight harmonic-modes model
and time-dependent methods based on a Runge–Kutta–Merson propaga-
tion, the absorption spectrum S0 → S1/S2 of cis-1,3,5-hexatriene (CHT)
has been satisfactorily reproduced.34 Some differences with the analogous
spectrum of the trans-isomer have been rationalized in terms of the strong
NA coupling modes existing in the cis-isomer. The longer dephasing time
T2 for the spectrum of CHT with respect to the analogous spectrum of
pyrazine,20 in contrast with the larger number of coupling modes (3 to be
compared with 1) and an activity coefficient34 for the strongest coupling
mode, larger about two times in CHT than in pyrazine, has been ascribed
to the different location of the S1/S2 CI in the two molecules, in pyrazine
being closer to the minimum of the S2 PES than in CHT.

4.2. Photoelectron Spectra

Many photoelectron (PE) spectra showing clear marks of a CI among the
ionic PESs have been measured and calculated. We mention ethylene,14

butatriene,14 allene,14 BF3,14 and HCN,14 pyrazine,59 and vinylbromide.60

In the next subsections we discuss in some detail an interesting comparison
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Fig. 4. Calculated (a) and experimental (b) UV absorption spectrum of trans-
butadiene, reproduced with permission from Ref. 58.

of the CI effects on the PE spectra of furan, pyrrole, and thiophene, and
the pseudo-JT (PJT) effect on the PE spectrum of allene.

4.2.1. Furan, Pyrrole and Thiophene

The vibronic structure of the valence photoelectron spectra of furan, pyr-
role and tiophene due to π-electrons have been computed in Ref. 5 by
the linear vibronic coupling model14 and compared with high-resolution
spectra. The ab initio calculations were performed utilizing ground-state
geometries and vibrational frequencies optimized at the MP2 level, while
the parameters for the intrastate and interstate coupling, due to totally
symmetric (tuning modes) and non-totally symmetric (coupling modes),
respectively, were evaluated by the outer-valence Green function method.
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The photoionization from the π3 or the π2 MOs leaves the ion in the 2A2

or 2B1 states, respectively. These give rise to a CI that manifests itself in
the lack of a vibrational structure in pyrrole and thiophene (CI near the
minimum of the upper, 2B1 surface) and by line broadening in furan (CI at
higher energy). The agreement between experimental and computed spec-
tra is excellent, as witnessed from Figs. 5 and 6 for furan and thiophene,
taken from Ref. 5 (the figure for pyrrole shows a similar agreement and it
is not reported for lack of space). The analysis of the data concerning the
nontotally symmetric (b2) coupling modes, as well as the tuning modes,
shows that the increasing effectiveness of the CI in perturbing the spectra
with respect to the case of uncoupled surfaces (indicated in Figs. 5 and 6
as Poisson distribution) from furan, to pyrrole, to thiophene is not due to
a different interstate coupling strength. The latter is in fact moderate and
similar for all three. It is instead the role of tuning modes which is promi-
nent, since they are displaced in such a way that the CI moves towards the
bottom of the upper surface, going from furan to thiophene.

4.2.2. Allene

When a molecule has doubly degenerate symmetry species, three adiabatic
electronic states can intersect conically. Three-state CIs can occur e.g. for
Σ and Π states of linear molecules or for non-degenerate and degenerate
states in other point groups, as in the PJT effect.14 These multiple CIs
cause a huge increase of NA effects.

Recently, Mahapatra et al.61 have simultaneously investigated the JT
and PJT effects in the PE spectrum of allene, C3H4, which belongs to the
D2d point group. In the C3H+

4 ion, the A2E JT coupling is due to b1 (v4)
and b2 (v5–v7) vibrational modes, and the A2E/B2B2 PJT interaction is
governed by e modes (v8–v11). These authors have considered FC absorp-
tion from the ground state of C3H4 to the three coupled states of C3H+

4 ,
and have employed a diabatic-electronic and a harmonic-oscillator repre-
sentation of a linear vibronic Hamiltonian. By taking into account eight
normal modes, they have calculated the allene PE spectrum via a TI Lanc-
zos recursion.

The calculated NA PE spectrum is in very good agreement with that
observed between 13.8 and 15.8 eV. The minimum energy crossing among
the A2E and B2B2 states is at ∼15.05 eV, and the NA spectrum below
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(a)

(b)

(c)

Fig. 5. 2B1 photoelectron band in furan: (a) experiment, (b) nonadiabatic calculation,
(c) ideal diabatic case in which the NA couplings are switched off. Reproduced with
permission from Ref. 5.

this energy has rather regular A2E vibrational progressions of the non-
degenerate modes v2 and v7. On the other hand, the spectrum at higher
energies is due to the A2E/B2B2 PJT effect induced by the degenerate
modes v8 and veff , where the latter is an effective mode that merges v9

and v10. This high-energy NA spectrum is by far more diffuse and irregular
than the diabatic spectrum. The huge increase of the spectral density and
the absence of any vibrational progression above 15.05 eV clearly show the
deep impact of this three-state CI on the PE spectrum.
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(a)

(b)

(c)

Fig. 6. 2B1 photoelectron band in tiophene: (a) experiment, (b) nonadiabatic calcu-
lation, (c) ideal diabatic case in which the NA couplings are switched off. Reproduced
with permission from Ref. 5.

4.3. Emission Spectra

The separation between fluorescence and resonance Raman (RR) emission,
as described in Sec. 2.1, is well established theoretically, but it is diffi-
cult to attain experimentally. In most of the papers, total emission spectra
are reported, without an estimate of the importance of the two separate
contributions. Because of that, in this Section we discuss together both
phenomena, enlightening the differences when possible.

CIs strongly affect the emission processes, quenching for example the
quantum yield of fluorescence in pyrazine62 and lengthening the radiative
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lifetimes in NO2.37 The effect of a CI perturbing the final states of the
emission process is seen in JT systems. Emission spectra in cases of (E ×ε)
JT spectra of bound states show a double-humped envelope.63,64 Such an
envelope has been seen also in the emission spectra of Rydberg-excited
H3 radicals,65 even if the lower adiabatic sheet is unstable with respect to
dissociation. The existence of two different maxima, 9600 cm−1 apart, has
been attributed by model calculations66 to the double-sheeted nature of
the ground PES. Very recently, a new theoretical method for the calcula-
tion of the JT spectroscopic parameters have been proposed in literature
and applied with success to the study of the dispersed fluorescence of the
methoxy radical and other CX3Y radicals67 and of the cyclopentadienyl
radical.68

CIs can effectively alter the emission spectra also by perturbing the ini-
tial emitting states of the transition. In the following, we discuss some typi-
cal features of the phenomenon in NO2, pyrazine, H2S and trans-butadiene.

4.3.1. NO2

The NO2 molecule gives us the possibility to discuss in a detailed exam-
ple of the CI effect on laser-induced fluorescence (LIF) and laser-induced
dispersed fluorescence (LIDF) spectra. They have been observed by the
Grenoble group36 and calculated by our group.37 We here discuss some
results of the calculations, comparing diabatic and NA spectra for enlight-
ening CI effects, and contrasting theoretical and experimental results. LIF
lifetimes (τF

n ) and intensities ILIF
n have been calculated assuming a photon

excitation from the ground state, Φ1χ1,0, to B2 NA states, Ψn, which then
radiate down to A1 Ψn′ species. The LIF intensities are equal to

ILIF
n ∝ IABS

n (1 − e−t/τF
n ), (34)

where τF
n are the radiative lifetimes (see Sec. 2.1), IABS

n are the absorption
intensities (see Sec. 4.1.1), and t = 10µs is the acquisition time.

Like the absorption spectrum, CI interactions strongly influence the
NO2 fluorescence properties. As we have seen in Sec. 3.1, the absorp-
tion from Φ1χ1,0 populates preferably NA states Ψn with large 2B2

(v1, v2, 0) character. The vibronic couplings between these bright vibra-
tional states and the dark species 2A1 (v1, v2, v3) lower the Ψn radiative
rates ΓF

n→n′ [Eq. (23)] and therefore increase the lifetimes τF
n . The accu-

rate calculations37 thus confirm that the lifetimes of the intense bands



April 27, 2004 13:46 Conical Intersections: Electronic Structure, Dynamics and Spectroscopy chap16

730 Conical Intersections: Electronic Structure, Dynamics and Spectroscopy

are strongly lengthened by CI couplings, as has been pointed out several
years ago by Douglas69 and Bixon and Jortner.70 On the other hand, and
quite interesting, explicit calculations37 show that 2B2 vibrational mixings
(0, 0, v3)/(v1, v2, 0) decrease τF

n of weak bands with high 2B2 (0, 0, v3) char-
acter, because the bright 2B2 (v1, v2, 0) vibrational states have short life-
times. It is however difficult to observe experimentally this effect, because
these bands are weak in absorption and in LIF spectra.

We compare in Fig. 7 calculated and observed56 LIF spectra between
11 600 and 13 900 cm−1, showing also some 2B2 (v1, v2, 0) assignments.36,37

Similar to the absorption spectrum, the LIF NA bands are about three
times weaker than the diabatic ones. Contrary, however, to the absorption

Fig. 7. NO2 LIF spectrum for a 10 µs acquisition time. Comparison of the experimental
spectrum with the theoretical diabatic (NA coupling neglected) and NA spectra. The
lines are labeled by the v1, v2 quantum numbers (v3 = 0). The uncertain assignments
are in brackets.



April 27, 2004 13:46 Conical Intersections: Electronic Structure, Dynamics and Spectroscopy chap16

Absorption, Emission, and Photoelectron Continuous-Wave Spectra 731

spectrum, the number of bright NA states in LIF is about equal to that
of the diabatic states, because the large τF

n of many NA bands lower the
(1 − e−t/τF

n ) term in Eq. (34). We have calculated 11 diabatic and 107 NA
states in the energy range of Fig. 7: among them, six diabatic species have
medium or large LIF intensities, but only five of the NA states have compa-
rable intensities. The comparison between theory and experiment is good
for the strongest band, but it degrades somewhat for the weaker ones. The
calculated strongest band is at 13 398 cm−1 and has a mixed 2B2 character,
namely (1, 3, 0) + (0, 5, 0) with weights equal to 28% and 5%, respectively.
Probably this result reflects an overestimation of the coupling of the dia-
batic PES. Delon et al.36 assign their observed band at 13 395 cm−1 as 2B2

(0, 5, 0), because their model does not take into account that two different
2B2 vibrational states can contribute to the same vibronic species up to
∼ 17 600 cm−1.

4.3.2. Pyrazine

The S1 and S2 electronic states of pyrazine are coupled by a widely studied
CI. Here we report some results by Stock and Domcke62 as a nice exam-
ple, in which the effect of the CI on fluorescence and resonance Raman
have been analyzed separately. By a three electronic-states three harmonic-
modes model,62 it has been shown that the CI has a clear effect on the
excitation profiles of the molecule, i.e. on spectra which record the total
emission intensity (or the RR contribution alone) as a function of the
exciting frequency, whose envelopes are much more irregular and with
broad and blurred peaks than those obtained switching off the NA cou-
plings. The effect of the CI is evident also considering the dispersed emission
(fluorescence + RR) of the molecule upon monocromatic excitation at the
center of the S2 absorption band. The results are reported in Fig. 8 for
the case of the real system (a) and an ideal diabatic system (b) for which
the NA coupling has been switched off. While the blue part of the spec-
tra is due to Raman-like lines, the red part is due to the fluorescence
and is much more pronounced in the real system than in the uncoupled
one. This happens because NA couplings populate highly excited vibra-
tional states of S1 which, because of the favorable FC factors, make pref-
erential transitions toward excited vibrational states of the S0 surface.
The dashed curve in Fig. 8 shows that the effect is not washed out by
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Fig. 8. Dispersed emission (resonance Raman + fluorescence) of pyrazine after an
excitation at 256 nm (the center of the S2 absorption band): (a) nonadiabatic system,
emission from both S1 and S2 states (full line), and from S2 only (dashed line); (b) ide-
alized diabatic system (NA coupling neglected). Published with permission from Ref. 62.

neglecting the S1 → S0 oscillator strength and this suggests a contri-
bution to the red-shifted fluorescence due to S2 vibrational states popu-
lated by the indirect coupling to the S1 manifold. Similar results have been
reported for the NO2 molecule, showing that the NA coupling causes large
shifts in the dispersed fluorescence.71 In general, in pyrazine the impact
of the S1/S2 CI is larger on fluorescence than on RR emission. Anyway,
it is worth to notice that in other systems, as in the case of the RR
spectrum of cis-1,3,5-hexatriene, a better agreement with experiment has
been obtained by computations which properly describe the strong S1/S2

vibronic coupling.34
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4.3.3. H2S

The emission of H2S upon tunable excitation in the first excitation band
around 200 nm has been measured72 and theoretically investigated16 and
clearly shows how emission spectra can reveal the excited dynamics of a
molecule. At these energies, the vertical excitation accesses the zone of the
inner one of two 11A′′/21A′′ CIs. The system is properly described in a dia-
batic representation with a bright 1B1 and a dark (in C2v) dissociative 1A2

state. Upon excitation, the wavepacket feels a force along the symmetric
stretch on the 1B1 PES. On the contrary, the motion in 1A2 on involves also
the anti-symmetric stretch, due to the dissociative nature of the PES, and
the bending, due to its flatness with respect to this coordinate. The con-
sequence of the NA couplings on the experimental emission spectra of the
molecule excited in the range 199–203 nm are striking.72 The spectra dras-
tically vary also in this short-energy region. They show emission to excited
symmetric-stretch states, due to the motion on the 1B1 PES, but also emis-
sion to excited bending and/or anti-symmetric stretch states, putting into
evidence a motion on the coupled 1A2 PES due to the NA interaction.

4.3.4. trans-Butadiene

The resonance Raman spectrum of trans-butadiene at 217.9 mm has been
computed in Ref. 58 by the TD approach, including the same dephasing
time of 15 fs used for the absorption spectrum. Some details of the calcu-
lation have been presented in the Sec. 4.1.3 devoted to absorption spectra.
In Fig. 9 the comparison between the theoretical and experimental results
shows that nice agreements are now possible also for rather large molecules.
The prominent role of the C=C stretching is evident, while the most impor-
tant coupling mode (vbu

8 ), is not seen due to the dark nature of the 21Ag

state. The remaining lines are due to the fundamentals of the other in-plane
modes (the out-of plane modes have not been considered) as well as some
combination bands.

5. Conclusions

In this chapter, we discussed CI effects on CW spectra, presenting briefly
the theory and some computational methods, stressing the BO model for
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(a)

(b)

Fig. 9. Calculated (a) and experimental (b) resonance Raman spectra of trans-
butadiene excited at 217.9 nm. Published with permission from Ref. 58.

understanding CI spectra, and reporting some typical examples. The inter-
pretation of NA spectra can be performed at four theoretical levels, of
increasing difficulty, which give more and more detailed information.

(1) Calculations without and with NA couplings. They allow to evaluate
the impact of these couplings, to rationalize the differences, and to assign
the gross spectral features also in large molecules that prevent a detailed
analysis.

(2) Low-resolution spectrum analysis and comparison with experiment.
The main BO components are assigned through small Lanczos expansions
when high-resolution studies are impossible.
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(3) High-resolution statistical analysis of the levels. This step is linked
to studies on classical chaos, gives the degree of irregularity of a spectrum,
and points out the couplings that cause that irregularity. It provides a
different perspective from the level-by-level analysis, and is useful when the
level-by-level comparison with experiment is prevented by the inaccuracy
of the calculations.

(4) High-resolution level-by-level analysis. We can assign the main BO
components of NA states corresponding to the strongest spectral bands, and
analyze the interactions among BO states and polyads. This level gives the
ultimate understanding of a spectrum, and is very effective when few low-
excited BO bright states, coupled to many dark BO species, build up the NA
states. However, it is very demanding for its computational costs, because
relies on the calculation of BO vibrational states and on the assignment of
their quanta. Therefore, it is restricted to small molecules.

Both absorption and photoelectron CI spectra show a noticeable
increase of the line density and a partial or total loss of regular progressions.
This has been discussed for NO2, O3, trans-butadiene, furan, pyrrole, thio-
phene, and allene. The role of the CI location has been stressed in the five-
member ring molecules and comparing 1,3,5 cis-hexatriene and pyrazine.
It comes out that a noticeable increase of the NA effects occurs when the
CI is close to the PES minimum of the bright electronic state. The NO2

and O3 cases show that the impact of a CI can extend to all the spectrum
or be confined in an energy domain. CIs show clear marks on the emission
of a molecule, affecting quantum yields and radiative lifetimes. Emission
toward JT states gives a typical double-maximum spectrum, while fluores-
cence from CI states results in complex and irregular spectra and can show
large red-shifts in dispersed spectra as suggested for NO2 and pyrazine.
LIF spectra sum up the CI effects on absorption and emission processes.
Finally, resonance Raman spectra are very useful to study the dynamics of
the excited states, as discussed for H2S.

As the interest of the researchers is shifting toward the role of CIs in
photochemical systems, theoretical developments will be necessary to work
out Hamiltonians and computational techniques to treat multidimensional
systems with large-amplitude motions and dissipative channels. Detailed
interpretations of CI effects in photochemistry will call for more sophisti-
cated and innovative approaches, because the ones utilized up to now are
suitable for small molecules. Whether CW spectra analysis is a suitable tool
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for studying CI effects on these systems and can provide complementary
information to time-resolved studies will be a matter of exploration in the
near future.
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1. Introduction

In the chapters of Part II of this book it has been demonstrated for a vari-
ety of examples that conical intersections can provide the mechanism for
extremely fast chemical processes, e.g. photodissociation, photoisomeriza-
tion and internal conversion to the electronic ground state. Time-dependent
quantum wave-packet calculations have established that radiationless tran-
sitions between electronic states can take place on a time scale of the order
of 10 fs, if a conical intersection is directly accessible after preparation of
the wave packet in the excited state, see, e.g. Chapters 8–11 and 14–15.
In view of these findings and the omnipresence of conical intersections in
polyatomic molecules (cf. Chapter 6), it is now widely accepted that conical
intersections are of fundamental importance for the understanding of the
reaction mechanisms in photochemistry and photobiology.1–7

On the experimental side, dramatic progress has been made during the
last few decades with the generation and shaping of ultrafast light pulses,
see, e.g. Refs. 8 and 9. With the availability of pulses as short as a few
femtoseconds, an ultimate goal has been achieved: Essentially any chemical
process can be resolved in real time by an appropriately designed pump-
probe-type measurement. This applies, in particular, also for ultrafast
internal conversion processes. In fact, the detection of exceptionally fast
radiationless decay processes appears at present to be the only way to estab-
lish by purely experimental means the existence of a conical intersection.
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While femtosecond pump-probe experiments readily yield information
on the time scales of the processes under investigation, the interpretation
of these experiments is a nontrivial problem and is strongly dependent on
theoretical support. Given the experimental data alone, it is generally not
possible to decide how many electronic states and vibrational modes are
involved and what type of dynamics (e.g. intra- or intermolecular dynam-
ics, electronic decay or vibrational relaxation) is observed. Moreover, the
signals usually depend in a complex manner both on the chemical dynam-
ics as well as on laser pulse properties. In order to establish unambiguously
the connection between the experimental signals that are measured and
the molecular dynamics that is to be observed, it is necessary to perform
theoretical simulations which take into account both the dynamics of the
molecular system as well as the properties of the laser fields involved in the
preparation and detection processes.

In principle, the theory of nonlinear spectroscopy with femtosecond laser
pulses is well developed. A comprehensive and up-to-date exposition of non-
linear optical spectroscopy in the femtosecond time domain is provided by
the monograph of Mukamel.10 For additional reviews, see Refs. 7 and 11–14.
While many theoretical papers have dealt with the analysis or prediction
of femtosecond time-resolved spectra, very few of these studies have explic-
itly addressed the dynamics associated with conical intersections. In the
majority of theoretical studies, the description of the chemical dynamics
is based on rather simple models of the system that couples to the laser
fields, usually a few-level system or a set of harmonic oscillators. In the case
of condensed-phase spectroscopy, dissipation is additionally introduced by
coupling the system to a thermal bath, either at a phenomenological level
or in a more microscopic manner via reduced density-matrix theory.15–20

For these simple models of the chemical dynamics, it is straightforward to
evaluate analytically the multi-time response functions and to perform the
numerous time integrations and Fourier transforms required for the calcu-
lation of the signal.10 The description of chemical dynamics associated with
conical intersections, on the other hand, is considerably more challenging,
requiring numerical time-dependent wave-packet or density-matrix prop-
agations involving several (typically at least three) strongly nonseparable
vibrational degrees of freedom and thus very large basis sets. The construc-
tion of multi-time response functions and the evaluation of the multiple time
integrals then becomes a very tedious and time-consuming procedure.21,22
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As will be outlined in more detail below, the much higher complexity of
the dynamics at conical intersections calls for a new strategy for the calcu-
lation of absorption and emission signals, which differs from the established
formalism of nonlinear optics, based on higher-order (typically third-order)
perturbation theory in the laser-matter interaction.10,23 Independently of
the strength of the perturbation, higher-order perturbation theory becomes
unwieldy if the propagator of the unperturbed system (in the present case,
the field-free chemical system) cannot be evaluated in a simple manner.
This is definitely the case for the multi-mode nonadiabatic dynamics at
conical intersections and distinguishes such systems from few-level models
or harmonic oscillators. It has indeed been found that a nonperturbative
formulation, in which the laser-matter interaction is included in the solu-
tion of the time-dependent Schrödinger equation or Liouville–von-Neumann
equation, in the general case becomes computationally more tractable than
the perturbative formalism.24–27

In this chapter we briefly review both the perturbative as well as non-
perturbative formalism for the calculation of femtosecond time-resolved
spectra, focusing on the detection of the photophysical and photochemical
dynamics at conical intersections. To set the stage for a general discussion
of the potential of modern time-resolved spectroscopy, we begin with a brief
overview of the spectroscopic techniques, which are particularly suitable in
the present context.

2. Preparation and Detection of Nonstationary States

There exists a large variety of spectroscopic techniques that employ ultra-
short laser pulses. These methods may differ, for example, in the detection
mechanism and in the number and properties of laser fields, and will in gen-
eral monitor different aspects of the dynamics of the molecular system. Most
of these experiments are of the pump-probe (PP) type, that is, the molec-
ular system is prepared by a first laser pulse (the “pump”) into a nonsta-
tionary state, the time evolution of which is interrogated by a time-delayed
second laser pulse (the “probe”). It is important to distinguish between
resonant and nonresonant electronic excitation of the system. In the latter
case, it is not possible to establish a population in the excited electronic state
which survives the duration of the pump field. As a consequence, nonres-
onant excitation gives only rise to “Raman-like” emission, which is known
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to essentially reflect the dynamics in the electronic ground state.10,23 Being
mainly interested in the observation of excited-state dynamics, we there-
fore focus on resonant excitation of the molecule, which results in both
resonance-Raman as well as stimulated-emission contributions to the over-
all signal. Various aspects of electronic excitation by a pulsed laser field
have been discussed, for example, in Refs. 28 and 29.

While the preparation of the system by an ultrashort laser pulse is
common to most femtosecond experiments, there exists a wealth of dif-
ferent techniques to probe the dynamics initiated by the pump. Let us
consider a standard two-pulse PP experiment and let us assume that at
t = 0 the system has been excited by the first pulse into the nonstation-
ary state |ΨP〉. In order to probe the dynamics of the excited-state wave
function |ΨP(t)〉 = e−iHM t/�|ΨP〉, the second pulse is used to project the
evolving state |ΨP(t)〉 onto a known final state |ψf〉. A major criterion
to distinguish the probe mechanisms is thus given by the kind of final
states |ψf〉 involved in the experiment. Possible choices for the electronic
part of |ψf〉 are the electronic ground state (through time-resolved fluores-
cence spectroscopy30–33), higher-lying electronic states (through excited-
state absorption34), and the cationic ground state as well as high Rydberg
states (through pulsed ionization with ion or photoelectron detection35–46).
Alternatively, one may measure transient infrared absorption or resonance-
Raman spectra of the sample.47,48 In the case of reactive systems, it is often
advantageous to probe the dynamics of the products (instead of the parent
molecule), which may be accomplished, for example, through excited-state
absorption with subsequent detection of the laser-induced fluorescence.34

While experimental considerations are beyond the scope of this chapter
(various PP techniques have been extensively discussed, e.g. in Refs. 34,
43, 46, 49 and 50), we wish to address some theoretical issues concern-
ing the choice of the detection mechanism. First note that, to facilitate a
microscopic interpretation of the PP signals, the final state must be well
known. This is often the case for the electronic and ionic ground states, but
generally not so for the excited states of polyatomic molecules. Second, it
is clear that each final electronic state is associated with different Franck–
Condon factors and selection rules, i.e. depending on the specific system
under consideration, each probe mechanism will monitor different aspects of
the dynamics. Finally, it should be stressed that in general different detec-
tion techniques also monitor different dynamical processes. For example,
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transient transmittance spectroscopy reflects both ground-state dynam-
ics (via impulsive resonance Raman scattering) as well as excited-state
dynamics (via stimulated-emission and excited-state absorption). Time-
resolved fluorescence spectroscopy, on the other hand, exclusively monitors
the dynamics of the initially prepared excited state, thus facilitating the
interpretation of the experimental data.

Besides various detection mechanisms (e.g. stimulated emission or ion-
ization), there exist moreover numerous possible detection schemes. For
example, we may either directly detect the emitted polarization (∝ PP∗,
so-called homodyne detection), thus measuring the decay of the electronic
coherence via the photon-echo effect, or we may employ a heterodyne
detection scheme (∝ EP∗), thus monitoring the time evolution of the
electronic populations in the ground and excited electronic states via res-
onance Raman and stimulated emission processes. Furthermore, one may
use polarization-sensitive detection techniques (transient birefringence and
dichroism spectroscopy51,52), employ frequency-integrated (see, e.g. Ref. 53)
or dispersed (see, e.g. Ref. 54) detection of the emission, and use laser fields
with definite phase relation.55 On top of that, there are modern coher-
ent multi-pulse techniques, which combine several of the above mentioned
options. For example, phase-locked heterodyne-detected four-pulse photon-
echo experiments56 make it possible to monitor all three time evolutions
inherent to the third-order polarization, namely, the electronic coherence
decay induced by the pump field, the dynamics of the system occurring after
the preparation by the pump, and the electronic coherence decay induced
by the probe field. For a theoretical survey of the various spectroscopic
detection schemes, see Ref. 10.

In this chapter, we will focus on the discussion of experiments that
directly monitor the time-evolution of the electronic excited-state dynamics.
In particular, we shall consider transient transmittance, time-resolved flu-
orescence, and time-resolved ionization spectroscopy. This is because these
techniques have the potential to directly observe the ultrafast photochem-
ical excited-state processes triggered by conical intersections.

2.1. Transient Transmittance

We are concerned with the interaction of a molecular system with the pulsed
electric field E(x, t). Within the electric dipole approximation, the response
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of the molecular system to the field E(x, t) is completely described by the
electric polarization P(x, t), which is defined as the expectation value of
the electronic dipole moment of the system.23 E(x, t) is considered as a
classical field

E(x, t) =
∑

i=1,2

Ei(x, t), (1)

Ei(x, t) = Ei(x, t) exp(ikix) + c.c., (2)

Ei(x, t) = εiEi(x, t), (3)

Ei(x, t) = Ei(x, t)e−iωit, (4)

consisting of the pump field E1 and the probe field E2, which are character-
ized by wave vector ki, laser frequency ωi, polarization vector εi, and pulse
envelope function Ei. We use Roman type-setting for real fields (e.g. E, P),
italics for complex fields (E, P ), and calligraphics for the corresponding
envelope functions (E , P).

The experimental PP signal is usually defined as the difference between
the transmittance of the probe pulse with and without the preparation of
the sample by the pump pulse.10 To calculate the electric field of the probe
pulse after passing the sample, we need to consider the propagation of
the probe in the nonlinearly polarized medium. Assuming that the spatial
extent of the pulse is large compared to its wavelength, we may invoke the
slowly varying envelope approximation. This reduces the second-order wave
equation for the probe field E2 to a first-order differential equation for the
corresponding envelope function E2

23(
∂

∂z
+

1
v

∂

∂t

)
E2(z, t) =

2πiω2

nc
P(z, t), (5)

where n = v/c is the refractive index of the medium and it has been assumed
that the pulses propagate along the z-axis. It should be noted that the
nonlinear polarization P(z, t) is itself a function of the local probe field
E2(z, t) in the sample. To properly describe the propagation of the classical
field E2(z, t) through the medium characterized by P(z, t), we thus have to
solve the coupled field-matter equations in a self-consistent way.57

In many practical cases, however, it is justified to neglect pulse-
propagation effects and ignore the time-derivative at the left-hand side of
Eq. (5). The situation furthermore simplifies considerably if one assumes
an optically thin sample, that is, the incident electric field that induces the
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polarization passes, by definition, through the medium unchanged. Hence
the total electric field at the end of the sample (z = l) is simply given as a
sum of the incident field and the polarization

E2(l, t) = E2(0, t) +
2πiω2l

nc
P(0, t). (6)

Note that the first two approximations employed (classical external field
and dipole approximation) are usually well justified in molecular physics,
whereas the slowly varying envelope approximation may approach the limits
of validity in the case of femtosecond pulses with optical frequencies. The
validity of the assumption of an optically thin sample, i.e. the complete
neglect of pulse propagation effects, depends on the specific experiment
under consideration. To simplify the notation, we henceforth suppress the
x-dependence of polarizations and fields, and also drop the prefactor of the
polarization in Eq. (6).

From classical electrodynamics it is well known that the rate of dissi-
pated energy of an electric field E(t) in a medium that is characterized by
its polarization P(t) is given by E(t) · Ṗ(t).23 Assuming a photodetector
at the end of the sample that counts all photons being emitted in k2 direc-
tion, the PP signal is proportional to the total energy dissipated (or gained)
by the probe pulse in the medium

I =
∫ ∞

−∞
dtĖ2(t) · P̃(t). (7)

Here P̃(t) = Ppump on − Ppump off denotes the difference of the polariza-
tions radiating along k2 with and without the preparation of the sample
by the pump pulse, and we have performed a partial integration. The sign
convention is such that the signal is negative for absorption (disappearance
of photons) and positive for emission (creation of photons). The signal (7)
depends on the pulse delay time ∆t as well as on the properties of the laser
pulses (e.g. pulse durations τi and laser frequencies ωi), and may be consid-
ered as a time- and frequency-dependent signal IIn(ω2, ∆t) when recorded
as a function of ∆t and the probe carrier frequency ω2. As (7) is (inherently)
integrated over all emission frequencies, it will be referred to as integral PP
signal. It is instructive to rewrite the integral PP spectrum (7) as

IIn(ω2, ∆t) = 2ω2 Im
∫ ∞

−∞
dtE2(t)P̃

∗
(t), (8)
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where we have employed the slowly-varying envelope approximation and
the rotating-wave approximation,58 thus neglecting Ė2 contributions and
terms with rapidly oscillating (∝ e2iω2t) integrands, respectively. Although
both approximations may approach the limits of validity in the case of
intense femtosecond laser pulses with optical frequencies, it has been found
in numerical studies that deviations between the complete signal (7) and
the approximated signal (8) are usually minor.59

In order to obtain the spectrum of the emitted field, the probe pulse is
frequency resolved by a spectrometer after it has passed the sample (see,
e.g. Ref. 54). Because the PP signal is measured as the time-integrated
energy rate (cf. Eq. (7)), the corresponding spectrum may be considered as
stationary, although it inherently depends on the delay time ∆t. Contrary
to the case of time-resolved fluorescence (see next Section), the effects of
the spectrometer therefore need not to be considered in the theoretical
description, and we may define the dispersed PP signal as the intensity of
the Fourier transform of the total emitted field (6), yielding10,11

ID(ω, ∆t) = 2ω ImE2(ω)P̃∗(ω), (9)

where

E2(ω) =
∫ ∞

−∞
dteiωtE2(t), (10)

P̃(ω) =
∫ ∞

−∞
dteiωtP̃(t) (11)

denote the Fourier transform of the incident probe field and the polariza-
tion, respectively. Combining the definitions (7)–(11), it is easily verified
that integration of the dispersed PP signal (9) over all emission frequen-
cies ω again yields the integral PP signal (7). It should be noted that the
experimental transmittance spectrum is often alternatively defined by nor-
malizing the dispersed PP spectrum (9) to the intensity of the incident
field,11,54 which makes it possible to express the PP spectrum in terms of
an exponential law

ID(ω, ∆t) = |E2(ω)|2e−Γ(ω,∆t)l,

Γ(ω, ∆t) =
4πω

nc
Im P̃(ω)/E2(ω). (12)

It is interesting to note that the simultaneous time and frequency resolution
of the dispersed transmittance spectrum ID(ω, ∆t) is not limited by the well-
known time-frequency uncertainty principle. This is because the frequency
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resolution of this signal is determined by the polarization decay time [cf.
Eq. (11)], which is independent of the pulse duration, which represents
the time resolution. In the case of the integral transmittance spectrum, on
the other hand, time and frequency resolution are Fourier limited. This is
because the duration of the pulses defines the duration of the measurement,
which in turn determines the frequency resolution of the experiment.60

The definitions of the dispersed transmittance spectrum ID(ω, ∆t)
[Eq. (9)] and the integral transmittance spectrum IIn(ω2, ∆t) [Eq. (7)] con-
nect these experimental signals to the macroscopic polarization difference
P̃(t). Because we have neglected all pulse propagation effects, both the inci-
dent electric fields and the polarization are approximated by plane waves in
x-space, i.e. the macroscopic polarization is simply given by an orientational
average over the microscopic polarizations of the individual molecules in a
unit volume. Describing the molecular system as an electronic two-state
system, the orientational averaging of P̃(t) simply amounts to the multipli-
cation with a constant, i.e. the macroscopic and microscopic polarizations
are proportional to each other. Assuming, on the other hand, a model sys-
tem with several (≥3) electronic states with more than one optically allowed
transition, the averaging process in general depends on the relative orienta-
tions of the individual transition dipole moments. In this case it is necessary
to explicitly perform the orientational average.61

2.2. Time-Resolved Fluorescence

With the development of fluorescence upconversion techniques,30 which
nowadays provide femtosecond time resolution,31–33,56 it is also possible
to directly measure the time evolution of the spontaneous emission follow-
ing the excitation of the sample by the pump pulse. In this method, the
fluorescence is collected and focused onto a nonlinear crystal, where it is
superposed with the probe beam in order to perform upconversion. Time
resolution is achieved because the probe pulse creates a “time gate” for
the spontaneous emission, i.e. the fluorescence is only measured within the
duration of the probe. Frequency resolution is achieved by subsequently dis-
persing the upconverted signal in a monochromator. Although fluorescence
detection provides less photon yield than stimulated techniques, it has the
desirable feature to exclusively monitor the time evolution in the initially
excited electronic states (cf. the discussion above).
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There exist two major approaches to the theoretical description of the
time and frequency gated spontaneous emission (TFG SE). In the first
approach, the TFG SE spectrum is defined as the rate of emission of pho-
tons of a certain frequency within a definite time interval. The influence of
the measuring device is not taken into account in this formulation.19,62–65

Starting from this definition, one obtains an ideal (bare) TFG SE spectrum,
which is not guaranteed to be positive, however. For instance, for certain
parameters of the Brownian oscillator model, the spectrum can attain neg-
ative values.66 Moreover, the time and frequency resolutions of this ideal
spectrum are not limited by the fundamental time-frequency uncertainty
principle. This underlines the necessity to develop a more comprehensive
theory, in which both a spectrometer and a time-gating device enter the
description from the outset.

This is the characteristic feature of the second group of approaches, in
which the TFG SE is taken to be proportional to the integrated intensity of
the total emitted field which has passed through a spectrometer and a tem-
poral gating device.67,68 Following the guidelines developed in Ref. 67, the
TFG SE has been investigated by a number of authors.69–72 The explicit
consideration of the TFG process adds, however, additional complexity to
the problem, and it is therefore not surprising that most papers deal with
one-dimensional dissipation-free systems, which allows the description of
the material dynamics in terms of the eigenvalues and eigenfunctions of
the Hamiltonian. Cina and coworkers have formulated a theory which is
intermediate between the two approaches.66 These authors have investi-
gated the influence of the time gate on the intensity and anisotropy of the
spontaneous emission, while the frequency resolution was tacitly assumed
to be perfect. Mukamel and coworkers have developed a general descrip-
tion, which ensures a correct inclusion of the TFG process for any material
system under study.73,74 The passage to an ideal gate also has been briefly
discussed by these authors.

The total intensity of the temporally gated and spectrally filtered field
at the position r in the far-field region is given by the general expression67

Sst(t0, ω0) ∝
∫ ∞

−∞
dt

∫ ∞

−∞
dt′

∫ ∞

−∞
dt′′Et(t′; t0)E∗

t (t′′; t0)

×Fs(t − t′, ω0) F ∗
s (t − t′′, ω0) 〈E(r, t′)E∗(r, t′′)〉. (13)



April 27, 2004 13:50 Conical Intersections: Electronic Structure, Dynamics and Spectroscopy chap17

750 Conical Intersections: Electronic Structure, Dynamics and Spectroscopy

Here Et(t; t0) is the time-gate function which is strongly peaked near the
gating time t ∼ t0, the function Fs(t − t′, ω0) is responsible for the spectral
filtering near the central frequency ω0, and 〈E(r, t′)E∗(r, t′′)〉 is the corre-
lation function of the emitted field. It is clear from this definition that the
TFG SE spectrum is always positive, in contrast to its bare counterpart.

It is straightforward to show that the light emitted by a collection of
independent dipoles in the far-field region is proportional to the second
derivative of the optically induced polarization75

E(r, t) = − 2π

c2r

d2

dt2
P(r, t − τr). (14)

Here c is the speed of light, and τr ≡ r/c is the retardation time. Integrating
the correlation function of the emitted light over a small solid angle on the
sphere of radius r, one arrives at the expression

〈E(r, t′)E(r, t′′)∗〉 ∝ d2

dt′2
d2

dt′′2
〈P(t′ − τr)P(t′′ − τr)〉. (15)

In order to derive the TFG SE signal from this definition, it is standard
practice in the literature to neglect the retardation effects (τr ≡ 0) and to
invoke the slowly-varying-envelope approximation, i.e. ∂2

t P(t) ≈ −ω2P(t),
where ω is the carrier frequency. This is tantamount to the assumption

〈E(r, t′)E(r, t′′)∗〉 ∝ 〈P(t′)P(t′′)〉. (16)

The TFG SE signal is thus expressed in terms of the time-gate and fre-
quency filtering functions and the optically induced polarization.

2.3. Time-Resolved Ionization and Fragment Detection

The majority of femtosecond time-resolved PP experiments is performed
in the condensed phase and is based on the detection of photons. For
these experiments, the calculation of the nonlinear electric polarization
represents the central task of the theoretical description. While femtosec-
ond time-resolved measurements with detection of photons are possible
also in the gas phase, e.g. by the detection of laser-induced fluorescence
(LIF)34,76,77 or with background-free four-wave-mixing schemes,14,78 the
detection of charged particles (i.e. photoelectrons or ions) has the advan-
tage of the extremely high collection efficiency. By mass-selected detec-
tion of the ions, additional information on the photoinduced fragmentation
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processes can be obtained.79,80 Femtosecond time-resolved photoelectron
spectroscopy41–46 has been shown to be a particularly versatile tool for the
exploration of ultrafast excited-state processes in molecules and clusters. It
has been demonstrated that in simple systems such as diatomic molecules
a complete time-resolved mapping of the vibrational wave-packet dynamics
is possible.81,82 Photoelectron-ion coincidence experiments with femtosec-
ond time resolution have opened the field of femtochemistry of size-selected
clusters.83

To model these experiments, one usually identifies the count rate of the
detector with the field-induced populations of the electronic or ionic states
under consideration. To give an example for product detection through the
measurement of the LIF, let us consider the pioneering NaI experiment of
Zewail and coworkers.34,76,77 In this experiment, the photoinduced predis-
sociation of NaI is observed through two-photon excitation and subsequent
monitoring of the LIF of the sodium fragment. Assuming that the LIF emis-
sion is directly proportional to the field-induced population in the excited
electronic state |ψNa∗I〉, the LIF signal is given by84,85

ILIF(∆t) = 〈ΨPP(t)|ψNa∗I〉〈ψNa∗I|ΨPP(t)〉, (17)

where |ΨPP(t)〉 denotes the wave function of the molecular system after the
interaction with the pump and probe fields, and ∆t represents the delay
time between the two pulses. The calculation of the LIF signal via Eq. (17)
depends on the knowledge of the potential-energy surface of the excited
state and, moreover, relies on the assumption that competing excitation
pathways involving different electronic states can be excluded. Although
straightforward in principle, the interpretation of LIF experiments therefore
requires detailed information on the excited states of the molecular system.

The simplest signal to be measured in a time-resolved photoionization
experiment is the total ion yield following the action of pump and probe
pulses. It is given by the integral population of the ionization continua in
the limit t → ∞.24,86

IIon(∆t) =
∑

l

∫ ∞

0
dEk〈Ψ(t → ∞)|ψ(k)

l 〉〈ψ(k)
l |Ψ(t → ∞)〉. (18)

Here |Ψ(t)〉 is the time-dependent wave-function of the system and |ψ(k)
l 〉

denotes a continuum state with a free electron of energy Ek.
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Alternatively, the energy spectrum of the photoelectrons may be mea-
sured. This signal is represented by the population probability density of
the ionization continua24

IIon(Ek, ∆t) =
∑

l

〈Ψ(t → ∞)|ψ(k)
l 〉〈ψ(k)

l |Ψ(t → ∞)〉. (19)

In the limiting case of Ek → 0, Eq. (19) describes the zero-kinetic-
energy (ZEKE) photoelectron signal. ZEKE photoelectron spectroscopy87

is a background-free technique with high frequency-resolution, which
recently has been combined with PP techniques with picosecond37 and
femtosecond41–46 time resolution.

Even more detailed information, in particular on the electronic character
of the excited-state wave function, can be obtained by time, energy and
angle-resolved photoelectron spectroscopy.27,88,97 In this case, the signal can
be expressed in terms of the coefficients of the partial-wave decomposition
of the continuum amplitude 〈ψ(k)

l |Ψ(t → ∞)〉.89

3. Calculation of Spectra: Perturbative Approach

3.1. Absorption and Emission of Photons

Adopting a diabatic electronic representation, the Hamiltonian of a molec-
ular system, which interacts with a time-dependent classical electric field
E(t), can be written as7

H(t) = HM + Hint(t), (20)

HM =
∑

k

|Φd
k〉hk〈Φd

k| +
∑
k �=k′

∣∣Φd
k

〉
Wkk′

〈
Φd

k′
∣∣ , (21)

Hint(t) = −µ · E(t)

= −
∑
k �=k′

|Φd
k〉µkk′ · E(t)〈Φd

k′ | + h.c. (22)

Initially, i.e. before the interaction with the laser field, the molecular sys-
tem is assumed to be in its electronic and vibrational ground state |Ψ0〉
(throughout this section � = 1)

|Ψ(0)(t)〉 = e−iHM t|Ψ0〉. (23)

By solving the time-dependent Schrödinger equation

i
∂

∂t
|Ψ(t)〉 = H(t)|Ψ(t)〉, (24)
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we obtain the overall polarization P(t) as the quantum-mechanical expec-
tation value of the dipole operator

P(t) = 〈Ψ(t)|µ|Ψ(t)〉
= 2 Re

∑
k �=k′

〈Ψ(t)|Φd
k〉µkk′〈Φd

k′ |Ψ(t)〉. (25)

Within the electric dipole approximation, the response of the molecular
system to an electric field is completely described by the electric polariza-
tion P(t), which therefore represents the central quantity of interest for the
calculation of spectroscopic signals. For simplicity, we want to restrict our-
selves to model systems with a single dipole-allowed electronic transition
(say, the |Φd

0〉 − |Φd
2〉 transition).

In this subsection, we employ standard time-dependent perturbation
theory with respect to the laser-matter interaction Hint(t) in the wave-
function formalism.7,11 Time-dependent perturbation theory may alterna-
tively be formulated in the density-matrix formalism.10,90 The latter is more
general in that it allows for the inclusion of finite temperature effects and
a phenomenological description of relaxation phenomena. In this chapter,
we are concerned with the description of the dynamics at conical intersec-
tions in a fully microscopic manner, and temperature effects play a minor
role. The wave-function formalism is therefore appropriate for our purposes.
Writing the time-dependent wave function as

|Ψ(t)〉 =
∞∑

N=0

|Ψ(N)(t)〉, (26)

|Ψ(N)(t)〉 = i

∫ t

−∞
dt′ e−iHM (t−t′)µ · E(t′)|Ψ(N−1)(t′)〉, (27)

we obtain for the polarization

P(t) =
∞∑

N=0

P(2N+1)(t), (28)

P(2N+1)(t) = 2 Re
N∑

i=0

〈Ψ2(N−i)(t)|Φd
0〉µ02〈Φd

2|Ψ(2i+1)(t)〉. (29)

Owing to the initial condition (23), the linear (P(1)) and third-order
(P(3)) polarizations are the first nonvanishing terms of the expansion.
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The total number of nonzero terms occurring in (28) depends crucially
on whether the following conditions are fulfilled:

(i) rotating-wave approximation (RWA): Within the RWA58 only resonant
optical transitions (e.g. ∝ ei(ω−h2)t) are considered, whereas nonres-
onant transitions (e.g. ∝ ei(ω+h2)t) are disregarded. This reduces the
number of terms by a factor of two in each order of the expansion (26).

(ii) weak-field limit: In the case of small laser intensities, it is sufficient to
consider the nonlinear response only to lowest (i.e. third) order.

(iii) nonoverlapping laser pulses: If the laser fields do not overlap in time,
we need to consider only one electric field Ei(t) in each time integration
(27) instead of two. When speaking of nonoverlapping pulses, we will
always assume that the pump field E1 arrives before the probe field E2.

(iv) phase-averaged detection: If the spectral signals [e.g. Eqs. (7) and (9)]
are averaged over many laser shots [as it is the case in common pump-
probe (PP) experiments], only signals proportional to E2n

1 E2m
2 survive

the inherent averaging over the individual phases of the fields. Using
phase-locked pulses,55 however, it is also possible to monitor signals
proportional to E2n+1

1 E2m+1
2 .

An important experimental criterion to discriminate the various spec-
troscopic processes arising in Eq. (28) is the emission direction k of the
polarization. Because the incident electric fields E1, E2 radiate along their
wave vectors k1, k2, the emission directions k of the thus induced polariza-
tion are given as linear combinations of k1 and k2. In the most general case
(i.e. when none of the assumptions above hold) it is clear that we get an
enormous number of contributions and corresponding emission directions
k in the expansion (28). Employing the RWA, however, it has been shown
in Ref. 25 that the polarization of (2N + 1)th order only radiates into the
directions

k = j(k2 − k1) + k2 (30)

where j runs from −(N+1) to N . As a direct consequence of (30), we obtain
in linear response only emission into k1 and k2 directions, while the third-
order polarizations may radiate along the directions k1, k2, 2k2 − k1, and
2k1 − k2. Assuming furthermore nonoverlapping pulses, it is easy to show
that, even in arbitrary order of the radiation field, there is only emission
into the directions k1, k2, and 2k2−k1 (i.e. regardless of N , j = −1, 0, 1).31
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In the following, we want to derive and discuss expressions for the polar-
izations of various important spectroscopic processes. To simplify the nota-
tion, we define

µ̂kk′ =
∣∣Φd

k

〉
εi · µkk′

〈
Φd

k′
∣∣ , (31)

and consider henceforth the projection P of the electric polarization P
onto the polarization vector εi of the field Ei. Due to the initial condition
(23), the third-order polarization P(3)(t) represents the lowest-order nonlin-
ear response of the medium to the electric field. The third-order polariza-
tion in k2 direction consists of resonance Raman and stimulated-emission
contributions10,23

P(3)
k2

(t) = 2 Re{PRA(t) + PSE(t)}. (32)

Inserting the first-order and second-order wave functions (26) into (28) and
arranging the electric fields according to the stimulated-emission process,
we obtain for the stimulated-emission polarization

PSE(t) = 〈Ψ(2)
k1−k2

(t)|µ̂02|Ψ(1)
k1

(t)〉

= ieik2·x
∫ t

−∞
dt′E2(t′)〈Ψ(1)

k1
(t′)|µ̂20e

iHM (t−t′)µ̂02e
−iHM (t−t′)|Ψ(1)

k1
(t′)〉,
(33)

where we have labeled the wave functions by the subscript nk1 − mk2

to indicate the interactions with the electric fields En
1 , E∗m

2 . Note that
Eq. (33) resembles the expression for the linear polarization, except that
the initial ground-state wave function |Φd

0〉 in the linear polarization has
been replaced by the nonstationary excited-state wave function |Ψ(1)

k1
(t)〉

in (33). One may thus interpret the stimulated-emission polarization as
the linear response of a nonstationary system.91 The stimulated-emission
polarization therefore reflects the time evolution of the excited-state wave
function |Ψ(1)

k1
(t)〉.
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Similarly, we obtain for the Raman contribution

PRA(t) = 〈Ψ(0)(t)|µ̂02|Ψ(3)
k2

(t)〉 + 〈Ψ(2)(t)|µ̂02|Ψ(1)
k2

(t)〉

= ieik2·x
∫ t

−∞
dt′E2(t′)

{
〈Ψ(0)(t′)|eiHM (t−t′)µ̂02e

−iHM (t−t′)µ̂20|Ψ(2)(t′)〉

+ 〈Ψ(2)(t′)|eiHM (t−t′)µ̂02e
−iHM (t−t′)µ̂20|Ψ(0)(t′)〉

}
. (34)

Note that |Ψ(2)(t′)〉 represents the nonstationary ground-state wave func-
tion prepared by the pump pulse. The Raman polarization thus reflects the
time evolution of the ground-state wave function |Ψ(2)(t′)〉.91

To make contact with a widely used alternative formulation of nonlinear
spectroscopy, we rewrite, for example, the stimulated-emission polarization
(33) as

PSE(t) = i3eik2·x
∫ t

−∞
dt3

∫ t3

−∞
dt2

∫ t2

−∞
dt1E2(t3)

× {E∗
1 (t2)E1(t1)R1(t − t3, t3 − t2, t2 − t1)

+ E1(t2)E∗
1 (t1)R2(t − t3, t3 − t2, t2 − t1)} . (35)

Here

R1(t3, t2, t1)

= 〈Φd
0|eiHM t1 µ̂02e

iHM t2 µ̂20e
iHM t3 µ̂02e

−iHM (t1+t2+t3)µ̂20|Φd
0〉, (36)

R2(t3, t2, t1)

= 〈Φd
0|µ̂02e

iHM (t1+t2)µ̂20e
iHM t3 µ̂02e

−iHM (t2+t3)µ̂20e
−iHM t1 |Φd

0〉, (37)

are nonlinear dipole response functions, which account for the molec-
ular dynamics associated with excited-state emission processes.10 In a
similar way, it is possible to express any contribution to the polariza-
tion P (N)(t) in terms of the corresponding nonlinear response function
Ri(tN , tN−1, . . . , t2, t1). Because the nonlinear response functions carry
the complete dynamical information of a given spectroscopic process, the
response-function formalism allows us to decompose the computation of
the polarization into the calculation of purely molecular quantities (i.e.
Ri(t3, t2, t1)) and subsequent time integrations. The characterization of
nonlinear optical processes in terms of nonlinear response functions has
been extensively discussed by Mukamel and collaborators.10,13,74
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The perturbative evaluation of the TFG spontaneous emission signal
follows similar lines. Starting from Eq. (13), using the approximation (16),
calculating P(t) to first order in the pump field, and retaining only sequen-
tial contributions in the RWA, one arrives at the result10,72,73

Sst(t0, ω0) ∝ Re
∫ ∞

−∞
dt

∫ ∞

0
dt3

∫ ∞

0
dt2

∫ ∞

0
dt1

× Et(t − t0)Et(t − t3 − t0)EL(t − t3 − t2)EL(t − t3 − t2 − t1)

× e−(γ−iω0)t3
{
R1(t3, t2, t1)eiωLt1 + R2(t3, t2, t1)e−iωLt1

}
.

(38)

Here the frequency ωL and the envelope EL(t) characterize the exci-
tation pulse, and R1, R2 are the third-order nonlinear response functions
defined in Eqs. (36) and (37). Clearly, if there is no time gating (γ =
0, Et = 1), then the TFG spectrum reduces to the frequency-domain fluo-
rescence spectrum. On the other hand, by comparing Eq. (38) with Eqs. (8)
and (35), one realizes that the TFG SE is equivalent to the excited-state
(stimulated-emission) contribution to the integrated pump-probe spectrum
for non-overlapping pulses. The filter thus defines an effective carrier fre-
quency ω0 of the probe, and the temporal gate function represents the probe
envelope centered at t0. The only difference stems from the imperfection of
the frequency filter γ, which controls the spectral resolution of the TFG SE.

The close similarity between the TFG SE and pump-probe spectra
has repeatedly been emphasized in the literature.7,10,65,66 It should be
noted, however, that the equivalence between the TFG SE signal and the
stimulated-emission contribution to the sequential integral pump-probe sig-
nal holds only in the leading (second) order in the pump and probe pulses. In
this case also the “bare” TFG SE spectrum coincides with the stimulated-
emission contribution to the dispersed pump-probe spectrum.92 It is of
importance that both stimulated emission (from the electronically excited
state) and stimulated Raman (from the ground state) processes contribute
to the overall pump-probe signal, even in the case of sequential, nonover-
lapping pump and probe pulses. On the other hand, if the excitation and
gate pulses do not overlap, the spontaneous emission consists solely of the
fluorescence (excited state) component. Experimentally, one cannot easily
separate the ground and excited state contribution to the pump-probe sig-
nal. The TFG fluorescence signal from the excited state is, on the other
hand, free from contributions of the ground state dynamics.
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Finally, it is instructive to discuss the relation of the integral pump-
probe signals derived above from the electronic polarization to the corre-
sponding expressions obtained from the calculation of electronic population
probabilities. To this end, we consider the stimulated-emission polarization
(33) and rewrite the the integral signal (8) in the suggestive form

IIn(ω2, ∆t) ∝ 〈Ψ(2)|Φd
0〉〈Φd

0|Ψ(2)〉, (39)

where |Ψ(2)〉 denotes the second-order wave function (26) accounting for the
interaction of the system with the pump and probe pulses, respectively, and
the operator |Φd

0〉〈Φd
0| affects the projection on the electronic ground state.

We thus obtain the simple and physically appealing result that the inte-
gral stimulated-emission signal is directly proportional to the field-induced
population in the electronic ground state. In complete analogy, the excited-
state absorption spectrum and the ionization spectrum may be written as
the field-induced population in the higher-lying and ionic electronic states,
respectively.

3.2. Photoelectron Spectra

To describe ionization processes, the molecular Hamiltonian, given in
Eq. (21), has to be extended to include ionization continua. As a specific
example, we shall consider a molecular system that comprises the (uncou-
pled) electronic ground state |Φd

0〉, the diabatic excited electronic states
|Φd

1〉, |Φd
2〉, which are vibronically coupled by the matrix element h12 = W12,

and two ionization continua |Φ(k)
1 〉, |Φ(k)

2 〉, which are vibronically coupled
by the matrix element h̃12 = W̃12:

HM =
2∑

n,m=0

|Φd
n〉hnm〈Φd

m| +
2∑

n,m=1

∫ ∞

0
dEk|Φ(k)

n 〉(h̃nm + Ekδnm)〈Φ(k)
m |.

(40)

Here h̃nn represents the vibrational Hamiltonian of the ionic state |Φ(k)
n 〉,

and the index k labels the energy Ek of the continuum electrons. In addition,
we generalize the molecule-field interaction to allow for radiative couplings
between |Φd

0〉 and |Φd
2〉 (for simplicity, it is assumed that |Φd

1〉 is dark in
absorption) and for radiative couplings between the excited states |Φd

1〉,
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|Φd
2〉 and the respective continua |Φ(k)

1 〉, |Φ(k)
2 〉

H(t) = HM + Hint(t), (41)

Hint(t) = −|Φd
2〉µ20 · E(t)〈Φd

0| + h.c.

−
2∑

l=1

∫
dEk|Φ(k)

l 〉µl(Ek) · E(t)〈Φd
l | + h.c. (42)

In Eq. (42) it has been assumed that the excited state |Φd
1〉 can ionize,

because of symmetry or electronic-structure selection rules, only into the
continuum |Φ(k)

1 〉. Correspondingly, |Φd
2〉 can only ionize into the continuum

|Φ(k)
2 〉. It is straightforward to extend the formulation to account for more

general situations.
In atoms and molecules, the photoionization cross section near the ion-

ization threshold is finite and often depends only weakly on the energy Ek

of the continuum electron. It is therefore reasonable to approximate the
ionization cross section near threshold by the Heaviside step function

σl(Ek) ∝ Θ(Ek). (43)

The total (electronic plus nuclear) wave function Ψ(t) is determined
by the time-dependent Schrödinger equation (24) with the initial condition
(23). In direct analogy to the case of photon absorption and emission [cf.
Eq. (39)], the ionization signals defined in Eqs. (18) and (19) are obtained
from the second-order wave function.

Calculations of the ion yield in dependence on the pulse delay time
∆t and on the parameters of the laser pulses have been performed in
Refs. 86 and 93 for simple one-dimensional models of excited-state vibra-
tional motion and vibronic coupling. It has been found that for the vibronic-
coupling examples considered and for suitably chosen pulse parameters,
the ion signal as a function of ∆t maps very well the adiabatic electronic
population probability.93 As an example of a molecular system comprising
conical intersections, Sec. 5.1 presents a calculation of the time-resolved
photoelectron spectrum of pyrazine.

3.3. Computational Aspects

To discuss the computational aspects of the perturbative approach, we focus
on multidimensional systems, where the direct diagonalization of the molec-
ular Hamiltonian HM is in general not feasible. Hence, we need to adopt
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an eigenstate-free representation and compute the three-time correlation
functions Rj(t3, t2, t1) by numerical time-dependent propagation methods.
Although straightforward in principle, this procedure is clearly too time-
consuming in practice. To obtain a computationally more manageable for-
mulation, we restrict ourselves to the case of nonoverlapping laser pulses.
The stimulated-emission polarization can then be expressed in terms of a
two-time (instead of a three-time) correlation function. Dropping unimpor-
tant prefactors, the polarization may be written in the instructive form

PSE(t, ∆t) =
∫ t

−∞
dt′E2(t′)P δ(t, ∆t), (44)

P δ(t, t′) =
〈
ΨP|eiHM t′

µ̂20e
iHM (t−t′)µ̂02e

−iHM t|ΨP

〉
, (45)

|ΨP〉 = i

∫ ∞

−∞
dtE1(t)eiHM tµ̂20e

−HM t|Φd
0〉. (46)

Here |ΨP〉 represents the nonstationary excited-state wave function pre-
pared by the pump pulse and we have introduced the “impulsive polar-
ization” P δ(t, ∆t), that is, the polarization for an an idealized δ-function
probe pulse.

Equation (44) suggests a convenient perturbative evaluation scheme for
transient spectra: One first calculates the impulsive polarization P δ(t, t′),
and subsequently obtains via Eq. (44) the polarization for probe pulses of
arbitrary frequency and duration. Particularly in the case of long probe
pulses or pulses with several carrier frequencies, it is clear that this scheme
provides a substantial saving of computational effort. As shown below, it
also provides a very efficient way to calculate ionization spectra. Since it
is often advantageous to calculate the impulsive polarization P δ(t, t′) in a
nonperturbative manner, the method has also been referred to as “mixed
nonperturbative/perturbative scheme”.94

Note that the application of the convolution scheme in the simple form
(44) requires that the nonlinear polarization contains only a single inter-
action with the probe laser field. Apart from the transient transmittance
spectrum considered above, this condition is also fulfilled for related detec-
tion schemes such as time-resolved fluorescence, ionization, and excited-
state absorption. Coherent spectroscopic signals such as the photon-echo,
on the other hand, contain two interactions with the probe laser field, thus
requiring the calculation of the full three-time response function, followed
by a double convolution.



April 27, 2004 13:50 Conical Intersections: Electronic Structure, Dynamics and Spectroscopy chap17

Time-Resolved Spectroscopy of the Dynamics at Conical Intersections 761

In practice, it turns out to be advantageous to calculate the spectrum
P δ(ω, ∆t) of the impulsive polarization, that is, the Fourier transform of
P δ(t, ∆t) with respect to t. The physically appealing feature of P δ(ω, ∆t) is
that this quantity can be viewed as the generalization of the linear absorp-
tion spectrum of a stationary state to the transient absorption spectrum of
a nonstationary state.11 Inserting (44) into Eq. (9), the dispersed transmit-
tance spectrum for finite probe pulses can be written as60

ID(ω, ∆t) = 2ω Im E2(ω)
∫ ∞

−∞
dtE2(t)P δ(ω, t). (47)

The integral pump-probe signal is then given as integral over all emission
frequencies ω

IIn(ω2, ∆t) = 2ω Im
∫ ∞

0
dωE∗

2 (ω − ω2)
∫ ∞

−∞
dtE2(t)P δ(ω, t). (48)

It is noted that in order to perform a spectral analysis of P δ(t, ∆t) with a
standard fast Fourier transform routine, one needs to assure that the polar-
ization has decayed completely. In practice, this requirement results either
in invoking a phenomenological damping ∝ e−γt of the polarization (which
artificially broadens the spectrum) or in a large propagation time of the
polarization (which is computationally expensive). To avoid this problem,
it has been suggested to employ a filter-diagonalization method95–97 for the
spectral analysis of P δ(t, ∆t).94

It should be stressed that the convolution scheme is particularly advan-
tageous for the calculation of photoelectron spectra. Recalling that both
the photoelectron spectrum [Eq. (19)] and the stimulated emission spec-
trum [Eq. (39)] can be written in terms of the second-order wave function
projected on a detector state, it is clear that the convolution scheme (48)
may also be applied to the calculation of ionic detector states. Hence, we
obtain for the photoelectron spectrum98

IIon(Ek, ∆t) = 2 Im
∫ ∞

0
dωE∗

2 [ω − (ω2 − Ek)]

×
∫ ∞

−∞
dt′E2(t′)e−i(ω2−Ek)t′

P δ(ω, t′). (49)

Denoting the probe frequency used for the excited-state absorption by ωA

and the probe frequency used for photoionization by ωI , a comparison of
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the signals (48) and (49) directly recovers the relation ωA = ωI + Ek. It is
therefore possible to obtain the continuous photoelectron spectrum from a
single transient-absorption calculation, thus circumventing the cumbersome
discretization of the electron continuum.

The perturbative evaluation of pump-probe spectra simplifies further,
if we assume that only the excited electronic states |Φd

1〉 and |Φd
2〉 are cou-

pled through a nonadiabatic coupling W12 in Eq. (21), whereas the cou-
pling to the energetically well-separated electronic ground state |Φd

0〉 may
be neglected to a first approximation. This means that only the dynamics in
the excited electronic states needs to be treated in terms of a eigenstate-free
wave-packet propagation. The nuclear dynamics in the electronic ground
state, on the other hand, may be described in terms of unperturbed basis
functions (e.g. harmonic-oscillator functions), the eigenstates |v〉 and eigen-
values εv of which are known analytically. Inserting the sum over vibra-
tional eigenstates of the electronic ground state

∑
v |v〉〈v| into (45), we

thus obtain99

P δ(t, t′) =
∑
v

Dv(t)D∗
v(t′), (50)

Dv(t) = eiεvt〈v|〈Φd
0|µ̂02e

−iHM t|Φd
P〉. (51)

Owing to the fact that the model Hamiltonian (21) is diagonal as far as
the electronic ground state is concerned, the evaluation of the two-time
correlation function CSE(t, t′) has been reduced to a single propagation of
the excited-state wave function.

While the computational strategies outlined above represent numeri-
cally exact methods, several workers have suggested an approximate cal-
culation of time-resolved pump-probe spectra.10,66,100–104 With this end in
mind, we rewrite the integral stimulated-emission signal (39) as

IIn(ω2, ∆t) ∝ 〈ΨP |P †P |ΨP 〉, (52)

P =
∫ ∞

−∞
dt′E2(t′)e−iHM (∆t−t′)µ̂02e

iHM (∆t−t′), (53)

where we have introduced the operator P , which accounts for the field-
matter interaction in a perturbative manner, while the intramolecular inter-
action is treated to all orders.

Equations (52) and (53) facilitate an highly efficient evaluation of
transient absorption/emission spectra in the spirit of the semiclassical
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Franck–Condon approximation.10,66,100–105 The short-time approximation
e−ih2teih1t ≈ e−i(h2−h1)t inherent to this ansatz can be extended to the
case of nonadiabatically coupled electronic states through the following
approximations106

[hn, hm] = 0, (54)

[hn, Wnm] = 0, (55)

i.e. in addition to Eq. (54) we moreover need to assume that the vibronic
coupling operators Wnm commute with the vibrational Hamiltonians hn.
Since these commutators generally depend on vibrational momenta, this
approximation amounts to neglecting the motion of the vibrational wave
packet during the probe pulse.100 Clearly, this assumption can only be valid
for sufficiently short probe pulses.

Considering various representative model systems of vibronic coupling,
a number of approximative expressions for the operator P have been derived
by Dilthey et al.106 An important example is the so-called “internal case”,
in which the radiation field induces transitions between two vibronically
coupled states |Φd

1〉 and |Φd
2〉. Since both emission and absorption processes

may occur in this case, the measured spectroscopic signal is given as the
difference between absorption and emission signals

IIn(ω2, ∆t) = 〈ΨP |(E†E − A†A)|ΨP 〉, (56)

where E and A are the operators corresponding to the emission and
absorption process, respectively. It turns out that these operators are most
conveniently expressed in the adiabatic electronic representation. Introduc-
ing adiabatic electronic basis states |ψad

n 〉 =
∑

m Snm|Φd
m〉 via the unitary

transformation S = {Snm}, the adiabatic operator is given by P ad = S†PS.
Neglecting, furthermore, off-resonant terms, we obtain the simple result

E†
adEad − A†

adAad =
1
4
|µ12|2 ∆2

W 2 e−2ατ2(ω2−2W )2 (|ψad
2 〉〈ψad

2 | − |ψad
1 〉〈ψad

1 |) ,

(57)
where ∆ = 1

2 (W2 − W1) and W =
√

∆2 + W 2
12 represent the energy differ-

ence between the diabatic and adiabatic electronic states, respectively. As
previously discussed by Meyer and Köppel,107 in the case of internal radia-
tive coupling, the light field induces transitions between adiabatic electronic
states. The intensity of these transitions are weighted by a Gaussian func-
tion reflecting the resonance condition ω2 = 2W = V2 − V1, where τ is the
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duration of the probe pulse and 1/α = 16 ln 2. The prefactor ∆/W = cos 2ϕ

involves the diabatic/adiabatic mixing angle ϕ, thus relating the diabatic
transition dipole matrix element µ12 to its adiabatic counterpart.

In the “external case”, one considers radiative transitions from the cou-
pled states |Φd

1〉, |Φd
2〉 to one (or several) additional “detector state(s)” |ψd〉.

Radiative |Φd
1〉 ↔ |Φd

2〉 transitions between the coupled states |Φd
1〉, |Φd

2〉 are
assumed to be dipole forbidden. Adopting again the adiabatic representa-
tion, a similar analysis yields IIn(ω2, ∆t) = 〈ΨP |P †P |ΨP 〉 with

P †
adPad =

1
4
µ2

∑
n=1,2

e−2ατ2[ω2−(Vn−Wd)]2S2
2n|ψad

n 〉〈ψad
n |. (58)

In the limiting case of an impulsive probe pulse (τ2 = 0), the Gaussian
resonance factors vanish and we obtain the simple result

P †P =
1
4
µ2|Φd

2〉〈Φd
2|, (59)

i.e. in the impulsive limit the diabatic electronic population probability
〈Ψ(t)|Φd

2〉〈Φd
2|Ψ(t)〉 is measured.7,99,107

Let us finally consider the case of ionization detection. In this case, the
approximate description is particularly advantageous.100,101,106 Since ion-
ization formally corresponds to an external absorption process into an ionic
state |ψ(k)〉, we may directly employ the nonadiabatic Franck–Condon for-
malism developed above to calculate the time-resolved photoelectron spec-
trum (19). Hence, the electron continuum needs not to be discretized, but
solely appears in the Gaussian resonance factors, which now read

exp{−2ατ2[ω2 − (Ek + ṼI − Vn)]2}, (60)

i.e. to be resonant, a photon with frequency ω2 must provide the energy
between the adiabatic state |ψad

n 〉 and the ionic state |ψ(k)
I 〉 as well as the

electron energy Ek.
It is noted that the approximations given above virtually reduce the

costs of explicit pump-probe simulations to the costs of a standard time-
dependent wave-packet propagation. Apart from interpretative purposes,
the Franck–Condon formulation therefore cuts the computational effort
considerably. Since the theory requires no explicit discretization of a con-
tinuum of electronic states, this is particularly true for the description of
femtosecond time-resolved photoelectron spectroscopy.
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4. Calculation of Spectra: Nonperturbative Approach

4.1. Absorption and Emission of Photons

Besides the commonly applied perturbative evaluation of spectro-
scopic signals, recently also nonperturbative descriptions have been
considered.25,26,108–110 Assuming, as usual, an optically thin sample, the
only formal difference between the two formulations is whether the electric
polarization P(t) is evaluated in a perturbative or nonperturbative man-
ner. As a consequence, the definitions of time- and frequency-resolved PP
signals are completely equivalent in both formulations. Besides the obvious
point that one needs to propagate the wave function with a time-dependent
Hamiltonian instead of an time-independent one, the calculation of PP sig-
nals appears to be rather similar in both formulations.

The nonperturbative calculation of PP or four-wave mixing spectra
involves, however, an additional problem. As explained above, the overall
polarization consists of several contributions

P(t) = 2 Re
∑
n,m

P nm(t) exp(i(nk1 + mk2)x), (61)

which, experimentally as well as in a perturbative calculation, are easily dis-
tinguished via the direction of the wave vector k = nk1+mk2 of the emitted
radiation. For example, the coherent emission due to the photon-echo effect
is observed in the directions 2k2 −k1 and 2k1 −k2, while the transmission
of the pump and probe pulse due to stimulated emission and resonance
Raman processes is observed in the k1 and k2 direction, respectively.

In a nonperturbative calculation, however, we obtain, by evaluating
Eq. (25), the overall polarization of the system, which is given as sum of all
these processes. Furthermore, for the sake of simplicity, one usually assumes
a coherent electric field in the theoretical description. The pump and probe
pulses are thus phase-locked, giving rise to a number of contributions to the
polarization, which are not observed in standard PP experiments, where the
signal is incoherently averaged over many laser shots. Thus, although we
know that in the weak-field limit the overall polarization reduces to the
results from lowest-order perturbation theory, we still have to distinguish
the different contributions to P(t) in order to calculate a specific experi-
mental PP signal. In most nonperturbative PP calculations this problem
has been circumvented by considering the time evolution of the system
(following pulsed excitation) instead of PP signals,108,109 or by assuming a
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strongly repulsive excited potential-energy surface, and restricting oneself
to the time-dependent dynamics in the electronic ground state.111

In the following, we briefly discuss a general approach to extract
the individual contributions and spectroscopic signals from the overall
polarization,25,110 and discuss the simplifications that arise when the usual
assumptions (i.e. nonoverlapping and weak laser fields, slowly-varying enve-
lope assumption, and RWA) are invoked.

The basic idea how to determine the directional dependence of the non-
linear polarization in a nonperturbative calculation is rather simple and is
most easily demonstrated by an example. Let us first consider nonoverlap-
ping laser fields within the RWA, and let us suppose that we only want to
discriminate the (phase-insensitive) k2 emission from the (phase-sensitive)
k1 and 2k2 − k1 contributions. Rewriting the overall polarization as

P (φ) =
∑

n

P n exp(inφ), (62)

where nφ = nk1x denotes the phase which the polarization acquires
through the interaction with the pump field, it is clear that the terms
P −1,P 0, and P 1 represent the polarization in the 2k2 − k1, k2, and k1

directions, respectively. Performing two separate calculations of the over-
all polarization P(φ) employing the phases φ1 = 0, φ2 = π, it is easy to
see that the polarizations in k2 and k1, 2k2 − k1 are given by the linear
combinations

Pk2 = Re{P (0) + P (π)}, (63)

Pk1,2k2−k1 = Re{P (0) − P (π)}. (64)

As a second example, allow for overlapping laser fields within the RWA
and ask for the polarizations up to third order into all possible directions,
i.e. into k2, k1, 2k2 − k1, and 2k1 − k2. The calculation of the overall
polarization P (φ) for the phases φk = kπ/2 (k = 0, 1, 2, 3) yields a linear
system of four equations for the P n in (62), the solution of which yields
the desired polarizations

Pk2 = 1
2Re{P (0) + P (π/2) + P (π) + P (3π/2)}, (65)

Pk1 = 1
2Re{P (0) − P (π)} + 1

2 Im{P (π/2) − P (3π/2)}, (66)

P2k2−k1 = 1
2Re{P (0) − P (π)} + 1

2 Im{P (3π/2) − P (π/2)}, (67)

P2k1−k2 = 1
2Re{P (0) − P (π/2) + P (π) − P (3π/2)}. (68)
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From the above examples, the generalization of the procedure to cases
including arbitrary nonlinear processes of any order is straightforward. In
Ref. 110 the case of four-wave mixing experiments with three incident laser
fields has been discussed. To calculate the contributions of the polarization
in N directions, one has to perform N calculations of the overall polariza-
tion P (φ) with different phases φ, and solve the resulting linear system of
equations for the P n in (62). Beyond the RWA, however, one needs to gen-
eralize the ansatz (62) and “tag” both the interactions with the pump and
the probe fields with phases φ(1) = k1x and φ(2) = k2x, respectively, thus
performing a two-dimensional Fourier analysis of the overall polarization.

Analogously to experiment, we thus obtain the nonlinear response of
the molecular system resolved in the directions of emission, but summed
up over all contributions in each direction. Assuming nonoverlapping laser
fields within the RWA, it is moreover possible to separate the PP signals
arising from the stimulated Raman and the stimulated emission contribu-
tion, respectively.25 This important feature, which is rather helpful in the
interpretation of complex PP spectra (see below), stems from the fact that
after the interaction with the pump pulse we may separately consider the
electronic ground-state component 〈Φd

0|Ψ(t)〉 or excited-state component
〈Φd

1|Ψ(t)〉 of the total wave function.

4.2. Photoelectron Spectra

In the nonperturbative approach, we transform, as usual, the time-
dependent Schrödinger equation into the interaction picture. The Hamil-
tonians (41) and (42) are separated into an electronically diagonal and
time-independent part Hd and a non-diagonal part W 0 according to

Hd =
2∑

l=0

|Φd
l 〉hl〈Φd

l | +
∑
l=1,2

∫ ∞

0
dEk|Φ(k)

l 〉(h̃l + Ek)〈Φ(k)
l |, (69)

W 0(t) = {|Φd
1〉W12〈Φd

2| − |Φd
2〉µ20 · E(t)〈Φd

0|
−

∑
l=1,2

∫ ∞

0
dEk|Φ(k)

l 〉µlE(t)〈Φd
l |} + h.c. (70)

With the unitary time-evolution operator of the unperturbed system,
Ud(t) = e−iHdt, we obtain the Schrödinger equation in the interaction
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picture

i
∂

∂t
|Φd

I(t)〉 = W 0
I (t)|Φd

I(t)〉, (71)

W 0
I (t) = U†

d(t)W 0(t)Ud(t), (72)

|Φd
I(0)〉 = |Φd

0〉|0〉. (73)

To solve Eq. (71), |ΨI(t)〉 is expanded in a direct-product basis of electronic
and vibrational basis states as

|ΨI(t)〉 =
∑

ν

2∑
l=0

Cν,l(t)|Φd
l 〉|ν〉 +

∑
l=1,2

∫ ∞

0
dEkCν,l(Ek, t)|Φ(k)

l 〉|ν〉. (74)

Insertion of the expansion (74) into Eq. (71) yields a set of coupled first-
order differential equations.

A specific aspect of the ionization problem are the expansion coeffi-
cients Cν,l(Ek, t) related to the electronic continua. Their dependence on
the continuous variable Ek leads to a noncountably infinite set of differ-
ential equations. To arrive at a computationally manageable scheme, the
continua have to be discretized. An ingenious discretization scheme, which
proves particularly efficient in the present context, has been proposed by
Burkey and Cantrell.112 The energy-dependent coefficients are expanded in
terms of polynomials which are orthogonal with respect to the ionization
cross section as weight function (see Ref. 24 for details). It has been shown
that for pulses of short duration only a small number of expansion terms has
to be considered, which renders this scheme very efficient for femtosecond
PP applications.24

With the expansion

Cν,l(Ek, t) =
N∑

n=0

Cν,ln(t)Un(Ek), (75)

where the Un(Ek) are related in a simple manner to Legendre
polynomials,24 we finally arrive at a simple, although possibly very large,
system of ordinary first-order differential equations

iĊ(t) = W(t)C(t). (76)

Due to the sparsity and transparent structure of the matrix W(t), very
efficient strategies can be implemented for the solution of Eq. (76). Since
the elements of W(t) are time-dependent, it is advantageous to employ
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a numerical propagator with automatic step-size control. In Refs. 24 and
113 it has been shown that the Bulirsch–Stoer algorithm114 is particularly
useful for these purposes. Obviously, it is possible to investigate strong-field
effects in pump-probe ionization with this formalism.

In terms of the expansion coefficients Cν,ln(t), the time and energy
resolved photoelectron signal (19) is given by24

Iion(Ek, ∆t) =
∑
l=1,2

∑
ν

∑
n

|Cν,ln(t)Un(Ek)|2. (77)

The ion yield signal (18) is given by

Iion∆t) =
∫ ∞

0
dEkIion(Ek, ∆t) =

∑
l=1,2

∑
ν

∑
n

|Cν,ln(t)|2. (78)

Simulations of femtosecond time-resolved photoelectron spectra have
first been performed with this formalism for a three-mode model of the
S1-S2 conical intersection in pyrazine24 (see below). With the same tech-
nique, Schön and Köppel have explored the real-time detection of pseudo-
rotational motion due to Jahn–Teller and pseudo-Jahn–Teller couplings in
Na3.113 The same problem has been addressed within the perturbational
formalism by Dobbyn and Hutson.115 Charron and Suzor–Weiner have
treated the femtosecond photoionization dynamics of NaI within the non-
perturbative approach, considering also passive control scenarios to influ-
ence the fragmentation pattern of NaI.116

When considering the femtosecond photoionization dynamics of complex
systems, a completely exact evaluation of the time and energy resolved pho-
toelectron spectrum is often not really necessary. Approximative schemes
which require significantly lower computational effort are valuable in such
cases. Within the nonperturbative formalism, Meier et al. have proposed an
efficient computational scheme which incorporates the multi-configuration
time-dependent Hartree method.117 An approximate method which is based
on a classical-trajectory description of the nuclear dynamics has been elab-
orated by Hartmann, Heidenreich, Bonacic–Koutecky and coworkers118 and
applied, among other systems,119 to the time-resolved photoionization spec-
troscopy of conical intersections in sodium fluoride clusters.120

For a discussion of the calculation of time and angle resolved pho-
toelectron spectra, we refer to the recent papers of Seideman and
collaborators27,89,121,122 and Takatsuka, McKoy and collaborators.88,123 As
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shown for an interesting example (photophysics of octatetraene) in Ref. 122,
the photoelectron angular distribution can, in suitable cases, provide a clear
signature of the electronic character of the transient intermediate state. The
change of the electronic wave function during the internal-conversion pro-
cess can thus be followed in real time. Very recently, the first calculation of
the time-resolved photoelectron angular distribution of an internally con-
verting molecule (S2 → S1 decay in pyrazine) has been reported by Suzuki
et al.124

5. Representative Applications

The conical intersection between the S1(nπ∗) and S2(ππ∗) excited states of
pyrazine probably represents the most extensively and carefully investigated
example of dynamical effects associated with a conical intersection in a
polyatomic molecule,7,24,99,125–137 see also Chapters 7, 9, 14 and 15. This
system therefore is well suited as a testbed for the development of the
theory and of computational techniques for the calculation of time-resolved
spectra associated with conical intersections. The pioneering calculations
on the real-time detection of ultrafast nonadiabatic dynamics via transient
transmittance, time and frequency gated fluorescence and time-resolved
photoelectron spectroscopy have been performed for this example.7,24,99

Other applications, where femtosecond time-resolved spectra have
been calculated for systems with conical intersections, include time- and
frequency-resolved spontaneous emission spectra for NO2,71 transient trans-
mittance spectra for models of polyene photochemistry,7,25,92 femtosecond
ion yield and photoelectron spectra of Jahn–Teller and pseudo-Jahn–Teller
coupled states of Na3

113,115 and femtosecond ion yield signals for conical
intersections in sodium fluoride clusters.120 Furthermore, Chapter 18 of this
book considers the theoretical description of laser control of photochemical
reactions mediated by a conical intersection.138,139 In the following, we give
a brief review of selected calculations of transmittance and photoelectron
spectra to illustrate the practical applications of the theoretical formalism
described in Secs. 3 and 4 above.

5.1. The S1–S2 Conical Intersection in Pyrazine

Due to the prominent vibronic coupling between the S1(nπ∗) and S2(ππ∗)
excited states as well as I0(n−1) and I1(π−1) cation states, respectively,
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pyrazine has served as a prototype example to study ultrafast internal-
conversion processes in polyatomic molecules.7,24,99,125–137 In a series of
high-level ab initio investigations, Domcke and coworkers have character-
ized low-lying conical intersections of the adiabatic potential-energy sur-
faces of these states.7,125–129 Adopting a diabatic electronic representation,
they furthermore have constructed a model Hamiltonian using the vibra-
tional normal coordinates pertaining to the electronic ground state. Most
dynamical studies have focused on the S2 → S1 internal conversion pro-
cess and the associated nonadiabatic wave-packet motion on a femtosecond
time scale.130–134 Simulations of time- and frequency resolved pump-probe
experiments have suggested that it should be possible to observe this ultra-
fast electronic and vibrational relaxation dynamics in real time.7,24,59,135

As representative examples, we present in the following calculations of the
time-resolved transmittance and the photoelectron spectrum of pyrazine.

5.1.1. Transmittance Spectra

The calculated integral transient transmittance spectrum in the energy
range of the S2(ππ∗) state of pyrazine, plotted as a function of the delay
time ∆t and the carrier frequency ω2 of the probe pulse, is shown in
Fig. 1. Gaussian laser pulses of low intensity and 20 fs duration have been
assumed.7 The S0–S1 transition dipole moment has been set to zero for
simplicity (the oscillator strength of the S0–S1(nπ∗) transition is at least
a factor of ten smaller than the S0–S2(ππ∗) oscillator strength). Possible
absorption into higher excited states has been neglected. The pump-probe
signal has been calculated numerically exactly through nonperturbative
evaluation of the electronic polarization, thus taking explicitly into account
overlapping laser fields, non-rotating-wave contributions and higher-order
corrections. Within the limits of the three-mode model of pyrazine,130 the
pump-probe signal shown in Fig. 1 may therefore be regarded as direct
simulation of a possible experiment.

After an initial peak at delay times where the pump and the probe fields
overlap, the pump-probe signal is seen to split up into two components; a
dominant, slightly oscillating feature centered at the electronic gap ∆ of
the S0–S2 transition (ω2 ≈ 4.8 eV), and a weaker red-shifted contribution,
centered at ω2 ≈ 3.4 eV. As is shown below, the first component at ω2 ≈ ∆
is mostly due to stimulated resonance Raman scattering, thus reflecting
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Fig. 1. The integral transient transmittance spectrum of pyrazine, calculated for a
three-mode model of the S1–S2 conical intersection.7 Gaussian laser pulses of 20 fs dura-
tion have been assumed.

coherent harmonic motion in the electronic ground state. The red-shifted
component, on the other hand, represents the stimulated-emission contri-
bution to the signal. It exhibits complex oscillatory structures and reflects
the nonadiabatic wave-packet dynamics in the coupled excited electronic
states.

To distinguish ground-state and excited-state dynamics, one would like
to separately consider the Raman and the stimulated-emission contribution.
Experimentally, this can be done by either considering the time-resolved
fluorescence spectrum, or by using a polarization-sensitive detection
scheme, that suppresses the ground-state contribution to the transmit-
tance spectrum.140 To calculate individual contributions to the total pump-
probe signal, the perturbative evaluation of the electronic polarization often
is advantageous. Figure 2 shows (a) the Raman and (b) the stimulated-
emission contribution to the transient transmittance spectrum. The stimu-
lated Raman contribution is seen to manifest itself as broad, only slightly
oscillating background emission located at the CW absorption bands of
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pyrazine. It is interesting to note that, although we have exclusively con-
sidered the S0–S2 transition dipole moment in the calculation, there is a
weak Raman emission centered at the S1 absorption band (ω2 ≈ 4 eV)
due to intensity borrowing induced by vibronic coupling. In contrast to
the quasistationary appearance of the Raman contribution, the stimulated-
emission spectrum (b) exhibits an irreversible initial decay on a time scale
of about 20 fs, accompanied by a significant red-shift of the emission. As
discussed below, the dynamical red-shift and the coherent oscillations of
the stimulated emission reflect the ultrafast S2 → S1 internal-conversion
process in pyrazine.

Being mainly interested in the dynamics associated with the conical
intersection of the S1 and S2 excited electronic states, we focus in the follow-
ing on the excited-state contribution to the pump-probe spectrum. Figures 2
and 3 compare three different excited-state pump-probe signals, namely the
integral stimulated-emission spectrum (2b), the time-resolved fluorescence
spectrum (3a), and the dispersed stimulated-emission spectrum (3b). As
has been discussed above, the integral stimulated-emission spectrum and
the time-resolved fluorescence spectrum are rather similar. Because of the
ω3 prefactor, though, the spontaneous emission for low frequencies is some-
what weaker than the stimulated emission. It should be noted that the
time-resolved fluorescence spectrum requires only probe pulses of a sin-
gle color (to clock the upconversion process), while the frequency resolu-
tion of the integral transmittance spectrum is given by using probe pulses
with different carrier frequencies ω2. The dispersed transmittance spectrum
Fig. 3(b) has been evaluated for two probe carrier frequencies, ω2 = 4.8 eV
and ω2 = 3.4 eV. For emission frequencies ω ≈ ω2, the dispersed spectrum
closely resembles the integral and the fluorescence spectra. Owing to the
limited spectral width of 20 fs laser pulses, however, the dispersed transmit-
tance spectrum for a single probe frequency ω2 reveals only a small fraction
of the total emission spectrum. In other words, even when dispersing the
transient transmittance spectrum, one still needs probe pulses of several
colors to probe the complete emission spectrum. From Figs. 2 and 3 one
can conclude that, for the model under consideration, the three different
excited-state pump-probe spectra yield essentially equivalent information
on the molecular dynamics.

In what follows, we wish to investigate in some more detail the monitor-
ing of the ultrafast excited-state relaxation dynamics, which is exhibited, for
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(a)

(b)

Fig. 2. Decomposition of the integral transient transmittance spectrum into the
stimulated-Raman (a) and stimulated-emission (b) contributions.

example, in the stimulated-emission spectrum [Fig. 2b]. After a rapid initial
decay within ≈ 20fs, the pump-probe spectrum splits up into a dominant
red-shifted component and a weaker blue part of the emission. The red-shift
of the emission signal reflects the transition from the initially prepared S2

levels to high vibrational levels of the S1 surface, from which, according to
the Condon principle, emission can be stimulated only to correspondingly
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(a)

(b)

Fig. 3. Time and frequency resolved fluorescence signal (a) and dispersed stimulated-
emission spectra (for two probe carrier frequencies, ω2 = 4.8 eV and ω2 = 3.4 eV) (b).
Gaussian laser pulses of 20 fs duration have been assumed.7
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high levels of S0.99 The blue part of the spectrum, on the other hand,
reflects the recurrences of the excited-state wave packet to its initial posi-
tion. This is most easily seen from Eq. (33), which shows that blue probe
wavelengths favor stimulated emission into the initial vibrational state |0〉.
For a blue-shifted probe laser, the autocorrelation function thus gives the
main contribution to the stimulated-emission signal.

It has been shown that in the limit of ultrashort laser pulses the
stimulated-emission pump-probe signal is proportional to the popula-
tion probability of the initially excited diabatic state |Φd

2〉, see Eq. (59)
and Refs. 7, 99 and 141. As has been emphasized in Chapter 9, the
electronic population probability P2(t) represents a key quantity in the
discussion of internal-conversion processes, as it directly reflects the non-
Born–Oppenheimer dynamics (in the absence of vibronic coupling, P2(t) =
const.). It is therefore interesting to investigate to what extent this
intramolecular quantity can be measured in a realistic pump-probe experi-
ment with finite laser pulses. It is clear from Eq. (33) that the detection of
P2(t) is facilitated if a probe pulse is employed that stimulates a major part
of the excited-state vibrational levels into the electronic ground state, that
is, the probe laser should be tuned to the maximum of the emission band.
Figure 4(a) compares the diabatic population probability P2(t) with a cut
of the stimulated-emission spectrum for ω2 ≈ 3.4 eV, i.e. at the center of
the red-shifted emission band. Apart from the first 20 fs, where the probe
laser is not resonant with the emission [cf. Fig. 2(b)], the pump-probe sig-
nal is seen to capture the overall time evolution of electronic population
probability. Pump-probe experiments thus have the potential to directly
monitor electronic populations and thus non-Born–Oppenheimer dynamics
in real time.7,99

Figure 4(a) also demonstrates that laser pulses of finite duration tend
to smooth out the details of molecular time-dependent observables. To give
a representative example of the dependence of the pump-probe signals on
the pulse duration, Fig. 4 compares pump-probe signals obtained for pulse
durations (a) τ1 = τ2 = 20 fs, (b) τ1 = 0, τ2 = 20 fs, and (c) τ1 = τ2 = 40 fs.
It is interesting to note that impulsive preparation of the molecular system
with a δ-function pulse (b) results only in minor changes of the pump-probe
signal. This indicates that in the present case the impulsive limit is virtually
achieved by resonant 20 fs pulses, as the pulse duration is shorter than the
characteristic (e.g. vibrational) time scales of the molecular system. The
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(a)

(b)

(c)

Fig. 4. Integral stimulated-emission signals for the three-mode model of pyrazine (full
lines), obtained for pulse durations (a) τ1 = τ2 = 20 fs, (b) τ1 = 0, τ2 = 20 fs, and
(c) τ1 = τ2 = 40 fs. It is seen that laser pulses of 20 fs duration are sufficiently short
to monitor the time evolution of the diabatic electronic population probability (dotted
lines).

time resolution achieved with pulses of 40 fs duration (c) starts to become
inadequate to monitor the quantum beats of the electronic population in
real time. Nevertheless, the very existence of partial recurrences of the elec-
tronic population can still be observed.

5.1.2. Photoelectron Spectra

The first numerically exact simulation of a time-resolved photoelectron
spectrum for a multidimensional vibronic-coupling system was reported
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more than ten years ago by Seel and Domcke.24 Employing the nonper-
turbative methodology outlined in Sec. 4.2, these authors performed a non-
separable three-mode model calculation of pyrazine, including the S2–S1

vibronic interaction, the I0, I1 ionization continua, and the field-matter
interaction. Furthermore, they discussed in some detail which electronic
and vibrational observables of the molecular system may be monitored by
the time-resolved photoelectron spectrum, depending on the selection rules
of the model, the energy of the photoelectrons, and the properties of the
laser fields. As a representative example from this study, Fig. 5 shows the
total ionization yield calculated for a pump-probe experiment employing an
ultrashort pump pulse that is resonant to the S0–S2 transition and time-
delayed probe pulses which are resonant to the S1–I0 transition. In this
case, the ionization signal reflects the time-dependent population proba-
bility of the diabatic S1 state (see Fig. 4), thus monitoring directly the
S2 → S1 internal-conversion process.

Also shown in Fig. 5 are results for the total ionization yield obtained by
the semiclassical Franck–Condon approximation106 introduced in Eqs. (60)
and (58). As discussed above, this theory is only valid for sufficiently short
probe pulses. While this condition is well satisfied for probe pulse up to
≈20 fs duration [panels (a) and (b)], the approximation is seen to introduce
spurious structures in the case of 32 fs pulses [panel (c)]. Since the Franck–
Condon approximation reduces the cost of explicit pump-probe simulations
to the cost of a standard time-dependent wave-packet propagation, one
obtains an overall computational speed-up of about two orders of magnitude
compared to the full nonperturbative calculation.

Recent experimental studies on pyrazine by Radloff and coworkers142

have renewed the interest in a theoretical description of the photoelectron
spectroscopy of this system. In the following, we present representative
results from an exact quantum-mechanical study92 that extends the work
of Seel and Domcke in several points: (i) New high-level ab initio data127,129

are employed to parameterize the model Hamiltonian. (ii) An additional
vibrational mode (ν9a) is included which is known to be important for the
S2 → S1 internal conversion process. (iii) The vibronic coupling between
the I0 and I1 cation states is explicitly taken into account. (iv) To account
for the relatively long probe laser pulses used in the experiment, the con-
volution scheme presented in Eq. (49) is employed.

Figure 6 shows the energy diagram of the electronic states of pyrazine
and the laser excitation scheme. In the experiment of Radloff and
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Fig. 5. Total ionization yield as obtained for a three-mode model of pyrazine. Com-
pared are exact results (dotted lines), obtained from a nonperturbative calculation,24

and approximate results (solid lines), obtained by the classical Franck–Condon
approximation.106 The duration of the probe pulses is (a) τ = 4 fs, (b) τ = 16 fs, and (c)
τ = 32 fs.

coworkers,142 the pump pulse resonantly (ω1 = 4.66 eV) excites the S2

state of pyrazine, while the probe pulse with frequency ω2 = 6.2 eV ionizes
the molecule. Since the probe laser is not resonant with any electronic tran-
sition of ground-state pyrazine, photoinduced ionization is only achieved if
the probe follows the pump. Within the approximation of independent elec-
trons, photoionization of the S1[1B3u(nπ∗)] state leads to the ion ground
state I0[2Ag(n−1)], while the first excited ion state I1[2B1g(π−1)] results
from ionization of the S2[1B2u(ππ∗)] state.

Applying Eq. (39) to this case, the time-resolved photoelectron spectrum
can be written as92

IIon(Ek, ∆t) = I11 + I22 + I12 + I21, (79)

Inm = 〈Ψ(2)
n |Ψ(2)

m 〉, (80)

|Ψ(2)
n 〉 = i

∫ t

−∞
dt′E2(t′)e−iHM (t−t′)µ̂neiHM (t−t′)|ΨP 〉, (81)
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Fig. 6. Energy diagram of the electronic states of pyrazine and laser excitation scheme
of the pump-probe experiment considered.

where |Ψ(2)
n 〉 denotes the second-order wave function describing the ioniza-

tion of the electronic state |Φd
n〉 (n = 1, 2), and µ̂n = |ψ(k)

n 〉µ̂〈Φd
n| denotes

the corresponding transition dipole operator. The photoelectron spectrum
consists of four contributions: The terms I11 and I22 describe the ionization
of the S1 or the S2 state of pyrazine, respectively. Furthermore, there are
cross terms I12 and I21 involving both dipole transitions µ̂1 and µ̂2. These
contributions appear as a consequence of the vibronic coupling of the ionic
states I0 and I1.

Assuming Gaussian laser pulses of 40 fs duration, Fig. 7 displays the
time-resolved photoelectron spectrum as obtained for the four-mode model
of pyrazine. Shown are the contributions (a) I22(Ek, ∆t) and (b) I11(Ek, ∆t)
stemming from the ionization of the S2 and S1 states of pyrazine, respec-
tively, as well as (c) the total spectrum defined in Eq. (79). The S2 signal
exhibits a pulse-limited onset at ∆t = 0, which is followed by a rapid ini-
tial decay on a 20 fs time scale. Within the same time, the S1 signal is
seen to rise. The time-resolved ionization signals therefore clearly moni-
tor the ultrafast S2 → S1 internal-conversion due to the low-lying coni-
cal intersection of these states. The total spectrum, on the other hand, is
quite complex and requires a careful analysis. This is because the spec-
tra of all contributions overlap and due to the occurrence of the cross-
term signals I12 and I21. Furthermore, the time-resolved photoelectron
spectrum exhibits various frequency-dependent recurrences of the signal,
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(a)

(b)

(c)

Fig. 7. Time-resolved photoelectron spectrum as obtained for the four-mode model
of pyrazine, assuming 40 fs pump and probe pulses. Shown are the contributions
(a) I22(Ek, ∆t) and (b) I11(Ek, ∆t), stemming from the ionization of the S2 and S1
states of pyrazine, respectively, as well as (c) the total spectrum, defined in Eq. (79).
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reflecting multidimensional coherent wave-packet motion on the coupled
S1–S2 potential-energy surfaces.7,24,130,131

In order to compare to the experimental data reported by Radloff and
coworkers,142 a duration of 100 fs has been chosen for the probe pulse. At
this time resolution, the coherent features of the ionization signal are aver-
aged out. Therefore it is more instructive to consider cuts of the spectrum
as shown in Fig. 8 for the delay times (a) 0 fs, (b) 50 fs, and (c) 300 fs.
Shown are the contributions pertaining to the S1 (long dashed lines), the
S2 (short dashed lines), and the cross terms (thin full lines), respectively,
as well as the total spectrum (thick full lines). Again, the decay of the
S2 signal and the increase of the S1 signal can be seen clearly. Moreover,
the S1 signal is seen to undergo a significant red-shift, thus reflecting the
vibrational relaxation of the highly excited states in the S1-state. Interest-
ingly, the cross terms are seen to considerably contribute to the spectral
features of the total spectrum, thereby complicating the interpretation of
the photoelectron spectrum.

The location of the central peaks of the spectrum as well as the sharp
decrease at larger energies is found to be in qualitative agreement with
experimental data142 shown in Fig. 8(d). Furthermore, the 20 fs time scale
of the initial S2 → S1 decay found in the simulation can also be deduced
from the experimental data. However, the experimental spectrum shows a
considerable contribution of photoelectrons with low energy, which is absent
in the calculation. Since the inclusion of additional vibrational modes in
the calculation is expected to lead to only a slight increase of low-energy
electrons, the calculation seems to miss a reaction channel that is present in
experiment. A possible explanation for the discrepancy between experiment
and theory is the occurrence of auto-ionizing Rydberg states. Multi-photon
ionization experiments performed by Ito and coworkers indeed indicate that
highly excited Rydberg states and their autoionization may significantly
contribute to the ionization spectrum of pyrazine.143

Although in the case of pyrazine the interpretation is complicated by
cross-term signals and auto-ionizing Rydberg states, the experimental and
theoretical investigations nevertheless demonstrate the considerable poten-
tial of femtosecond time-resolved photoelectron spectroscopy. As a beautiful
example of a more favorable case, Stolow and coworkers have recently pre-
sented time-resolved ionization studies on decatetraene.144 In direct analogy
to the discussion presented above, they managed to monitor the S2 → S1

internal conversion associated with a conical intersection in real time.
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Fig. 8. Cuts of the calculated photoelectron spectrum at delay times (a) 0 fs, (b) 50 fs,
and (c) 300 fs, assuming probe pulses of 100 fs duration. Shown are the contributions
pertaining to the S1 (long dashed lines), the S2 (short dashed lines), and the cross terms
(thin full lines), respectively, as well as the total spectrum (thick full lines). (d) The
experimental photoelectron spectra at delay times 0 fs (full line) and 300 fs (short dashed
line).142

5.2. Time-Resolved Fluorescence for the X̃–Ã Conical
Intersection in NO2

In a series of papers, Hirsch, Buenker, Petrongolo and collaborators have
determined accurate three-dimensional diabatic potential-energy functions
for the conically intersecting X̃2A1 and Ã2B2 states of NO2, see Refs. 145
and 146 and references therein. Santoro and Petrongolo have elaborated a
detailed picture of the time-dependent wave-packet dynamics of this sys-
tem initiated by ultrafast excitation of the Ã2B2 state.147 The station-
ary absorption and emission spectra of NO2 are discussed in Chapter 16
(see also Chapter 7 and Refs. 7 and 99 for a brief discussion of the
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Fig. 9. Time and frequency resolved spontaneous emission spectrum for the X̃2A1–
Ã2B2 conical intersection in NO2.71 A duration of 14 fs has been assumed for the pump
and gate pulses.

photodetachment spectrum of NO−
2 ). The time- and frequency-resolved

spontaneous emission of NO2 has recently been analyzed by Santoro et
al.71 within the theoretical framework obtained in Secs. 2.2 and 3.1 above.

A representative result of this work is shown in Fig. 9. A duration of 14 fs
has been assumed for both pump pulse and time gate, which is appropri-
ate to resolve the time evolution of the electronic and vibrational dynamics
(primary the NO2 bending mode). The emission is seen to be red-shifted by
about 2000 cm−1 compared to the absorption maximum (at �16 000 cm−1).
Figure 10 shows, for comparison, the diabatic (dotted line) and adiabatic
(dashed line) populations of the Ã2B2 state. It is seen that the time depen-
dence of the TFG SE spectrum correlates very well with the adiabatic
population PA(t) in this example.

For the example of the S1–S2 conical intersection in pyrazine it has
been found (see above) that the spontaneous and stimulated emission spec-
tra reflect the population probability of the diabatic S2(ππ∗) state to a good
approximation. In NO2, on the other hand, the population probability of
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Fig. 10. Diabatic (P2, dotted line) and adiabatic (PA, dashed line) electronic popula-
tion probabilities of the Ã state for the X̃2A1–Ã2B2 conical intersection in NO2.71 PI

(full line) represents the population probability of the initially-prepared Franck–Condon
state.

the adiabatic Ã2B2 state is detected. The difference arises from the fact that
in pyrazine both nonadiabatically coupled excited states can radiate to the
ground state, whereas in NO2 the lower of the nonadiabatically coupled
states is the electronic ground state, which cannot emit fluorescence. These
findings are in agreement with an earlier analysis by Meyer and Köppel107

and our results (57) and (59), which show that the frequency-integrated
time-resolved fluorescence should reflect the diabatic excited-state popula-
tion in the so-called external case (both of the coupled states can fluoresce
to the ground state), while it should reflect the adiabatic excited-state pop-
ulation probability in the so-called internal case (the fluorescence occurs
within nonadiabatically coupled states).

5.3. A Simple Model of the Photoisomerization of Retinal
in Rhodopsin

As emphasized throughout this book, an important aspect of the ultrafast
photodynamics via conical intersections is the fact that only a few degrees
of freedom are involved in the process. This finding suggests that, on a sub-
picosecond time scale, even complex molecular systems may be described in
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terms of a highly reduced model system. As an example of this idea, Seidner
et al. have proposed a simple model of nonadiabatic cis-trans photoisomer-
ization which includes the vibronic coupling of the lowest singlet states
(S0, S1), a large-amplitude torsional mode, as well as one or two accepting
modes for the radiationless transition. 25,148 Exact time-dependent wave-
packet calculations have been reported, including up to four nuclear degrees
of freedom, showing that these models are suitable to reveal basic features
of photoisomerization and internal-conversion dynamics.

As an application of this approach, it has recently been suggested to
use a vibronically coupled two-mode two-state system to model the pho-
toisomerization of retinal in rhodopsin.98 Due to its importance for the
first step in vision, there has been considerable effort to understand this
photoreaction.149,150 The matrix elements of the molecular Hamiltonian
(21) of the model read98

T = − 1
2m

∂2

∂ϕ2 − ω

2
∂2

∂q2 , (82)

Wnn = WR
n (ϕ) + 1

2ωq2 + δ1nκq, (83)

W01 = W10 = λq, (84)

where m is the effective mass of the reaction coordinate, while ω and λ

denote the frequency and the interstate-coupling of the coupling mode,
respectively. According to quantum-chemical calculations151,152 and reso-
nance Raman experiments,153,154 it can be assumed that the coupling coor-
dinate mainly reflects the ethylenic stretch mode of the polyene chain. Due
to the low symmetry of retinal, this coordinate also exhibits a nonvanishing
excited-state gradient κ. The chemical aspects of the model are reflected
by the reaction-mode potentials148

WR
0 (ϕ) = 1

2V0(1 − cos ϕ),

WR
1 (ϕ) = E1 − 1

2V1(1 − cos ϕ), (85)

which are drawn in Fig. 11(a) (see also the cover illustration of this book).
Note that the excited-state potential WR

1 (ϕ) is inverted, i.e. the upper
diabatic electronic state for ϕ = 0 (cis configuration) becomes the lower
one for ϕ = π (trans configuration). The isomerization potentials (85) are
parameterized such that the experimentally measured energy relations of
the photoreaction are reproduced, that is, the energy storage of the pho-
toreaction (∆E = 32 kcal/mol) and the center wavelengths of the cis and
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Fig. 11. Adiabatic potential-energy surfaces (PESs) of the two-state model of the cis–
trans isomerization in rhodopsin. (a) Cut of the PESs along the reaction coordinate ϕ.
Upon vertical excitation by a laser of frequency ωl, a vibrational wave packet is prepared
which gives rise to transient emission of frequency ωs. (b) Schematic representation of
the multidimensional PESs as a function of the reaction coordinate ϕ and a collective
Condon-active coordinate x.

trans absorption bands λcis = 500 nm and λtrans = 570 nm.155 The effec-
tive mass m pertaining to the motion along ϕ can be obtained by requiring
that isomerization takes place within 200 fs as observed in time-resolved
experiments. It should be stressed that the thus defined reaction coordi-
nate does not necessarily correspond to a specific internal coordinate of
retinal (e.g. the C11=C12 torsional mode) but collectively accounts for the
energy relations of the reaction. The effect of the protein environment is
thereby included in the parameters m, E1, V0, V1 of the model.

5.3.1. Transmittance Spectra

Employing the nonperturbative methodology outlined in Sec. 4.1, numer-
ically exact simulations of the photoinduced dynamics and various optical
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Fig. 12. Simulated transient absorption spectrum as obtained for the two-mode model
of the cis-trans isomerization in rhodopsin. The spectral band at 500 nm reflects the
dynamics of the reactants, while the 570 nm band reflects the absorbance of the photo-
products.

spectra have been reported for this two-state two-mode model.98 The most
challenging application of the model is the explanation of the transient
absorption experiments on rhodopsin.156,157 In the experiment of Wang
et al.,157 rhodopsin was excited by a 35 fs pump pulse at 500 nm and tran-
sient changes in absorption were measured from 450–640 nm by employ-
ing 10 fs probe pulses. Figure 12 shows the theoretical simulation of this
experiment, as obtained for the proposed model of the cis-trans isomer-
ization in rhodopsin. In agreement with the experiment, the time- and
frequency-resolved spectrum consists of two spectral bands centered at 500
and 570 nm. For early times (t ≈ 0), the signal at 500 nm is dominated by
a strong (positive-going) excited-state absorption feature at 500 nm which
changes into a (negative-going) bleach signal after t �50 fs. For larger times,
ground-state bleach, stimulated emission, as well as excited-state absorp-
tion contribute to the 500 nm band, which therefore mainly reflects the
dynamics of the cis reactant. The signal at 570 nm, on the other hand,
reaches its first maximum at ≈200 fs, thus reflecting the onset of the trans
photoproduct absorbance. Both parts of the spectrum are seen to exhibit a
pronounced beating with a period of ≈ 500 fs, corresponding to a frequency
of ≈ 60 cm−1.

As a comparison of experiment and theory, Fig. 13 shows cuts of
the transient absorption spectrum at (a) 500 nm and (b) 570 nm. The
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simulations clearly reproduce the 60 cm−1 oscillations, which are seen to
be shifted in phase by 180◦ for the two signals. This beating is superim-
posed by high-frequency oscillations which are qualitatively matched by the
calculation, e.g. the simulation for 570 nm reproduces the two intermediate
maxima at t ≈ 400 and 1000 fs. The deviations between experiment and the-
ory observed for t � 1500 fs indicate that at these times additional degrees
of freedom not considered in the model need to be included. To explain the
femtosecond spectra in terms of the isomerization dynamics of the molec-
ular model employed, Fig. 13(c) shows the time-dependent probability of
the system to be in the cis configuration of the upper adiabatic electronic
state [P cis

1 (t)] and in the trans configuration of the lower adiabatic state
[P trans

0 (t)], respectively. The similarity between the intramolecular quan-
tities and the simulated spectra clearly suggests that the 500 and 570 nm
signals monitor the dynamics of the reactants and photoproducts, respec-
tively. In particular, the analysis shows that the 60 cm−1 oscillations of
the transient absorption signal can be attributed to quasiperiodic motion
along the diabatic reaction potential curve WR

1 . Hereby the traveling wave
packet causes photoproduct-absorbance in the S0 trans configuration and
an excited-state absorption from the S1 cis configuration that is shifted in
phase by 180o. Furthermore, the theory reproduces the high-frequency (170
and 240 cm−1) components of the transient signals, which are a consequence
of the bifurcations of the wave packet. It should be stressed that the vibra-
tional frequencies thus established have not been assumed beforehand, but
are merely a consequence of the (independently determined) parameters
of the reaction potentials. In conclusion, it has been shown that — even
for a complex biophysical system such as rhodopsin — the subpicosecond
dynamics associated with a conical intersection can be modeled in terms of
a simple low-dimensional system.

5.3.2. Fluorescence Spectra

Although the model described above has been found to qualitatively repro-
duce femtosecond transient transmittance experiments on rhodopsin,157 it
cannot reproduce the experimental fluorescence and resonance Raman spec-
tra of rhodopsin.153,154,158 This is because the Raman spectra exhibit a
number of vibrational modes that are not included in the model. While
these modes may not directly be involved in the photochemical reaction
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Fig. 13. Comparison of calculated and experimental (full lines, adopted from Ref. 157)
transient absorbance of rhodopsin at (a) 500 nm and (b) 570 nm. An exponential compo-
nent has been subtracted from the 500 nm signals in order to facilitate the representation
of the oscillations. (c) Time-dependent probability of the system to be in the cis configu-
ration of the upper adiabatic electronic state (dotted line) and in the trans configuration
of the lower adiabatic state (dashed line), respectively. The vertical dashed lines mark
the prominent beating with a period of ≈ 500 fs.

monitored in the time-resolved experiments, they obviously contribute to
the Raman spectra and therefore also to the fluorescence emission. In order
to account for these effects, the Condon-active vibrational modes need to
be included in an appropriate theory of secondary emission. To this end,
we adopt the harmonic ansatz

HB =
∑

n=0,1

|Φd
n〉〈Φd

n|
∑

j

1
2ωj(p2

j + x2
j ) + δn1cjxj , (86)

whereby the frequencies ωj and excited-state gradients cj are chosen to
reproduce the 23 additional resonance Raman excitations observed in
experiment. Since about twenty Raman-active modes of retinal should
be considered and because of the nonseparability of the vibronic-coupling
Hamiltonian HM , it is clear that the resulting total problem H = HM +HB

cannot be treated quantum-mechanically exactly. Therefore, we pursue the
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following strategy. The isomerization Hamiltonian HM is meant to account
for the strongest interactions in the system which predominantly determine
the initial nonadiabatic photochemical reaction. The dynamics of these
degrees of freedom is therefore treated exactly, while the effects due to
weakly coupled vibrational modes of the Hamiltonian HB may be taken
into account in an approximate manner via a time-dependent Hartree (or
time-dependent self-consistent-field) ansatz.159–161 Although it is clear that
this quite simple approximation breaks down for large coupling and propa-
gation times, it may be expected to provide a qualitative description of the
short-time dynamics of the system.162 Alternatively, it has been suggested
to account for the additional degrees of freedom within a Redfield-type
theory133,134,163 and by various mixed quantum-classical methods.164,165

Employing this extended model, the experimental CW absorption
and resonance Raman spectra of rhodopsin have qualitatively been
reproduced.162 Being interested in the time evolution of the excited-state
dynamics, however, it is of particular interest to consider the time- and
frequency-resolved fluorescence spectrum of the system. In the following
we restrict ourselves to the discussion of the impulsive emission spectrum
∝ P δ(ω, ∆t), defined in Eq. (45). Neglecting the specific effects of the detec-
tor, this idealized time- and frequency-resolved spectrum is independent of
laser-field properties and therefore reflects directly the excited-state dynam-
ics of the system. Figure 14 shows the impulsive emission spectrum as
obtained for (a) the two-mode and (b) the 25-mode model of rhodopsin.
Both signals exhibit an ultrafast initial decay within 200 fs which is followed
by prominent recurrences of the emission with a period of ≈500 fs. As dis-
cussed above, these recurrences reflect coherent wave-packet motion along
the reaction-mode potential WR

1 (ϕ). Compared to the two-mode model, the
recurrences of the 25-mode model are somewhat shifted in time and decay
on a picosecond time scale. In particular, the emission of spectrum (b) is
red-shifted to spectrum (a) by ≈1000 cm−1, which reflects the reorganiza-
tion energy ER =

∑
j c2

j/2ωj = 1200 cm−1 of the additional Condon-active
modes.

It is noted, however, that the experimental CW fluorescence spectrum
exhibits a still larger Stokes shift of ≈4500 cm−1.166 This finding indi-
cates that an appropriate theoretical description of the femtosecond iso-
merization in rhodopsin needs to account for the interaction of retinal
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(a)

(b)

Fig. 14. Impulsive time- and frequency resolved fluorescence spectra as obtained for
(a) the two-mode model and (b) the 25-mode model of rhodopsin. The prominent recur-
rences of the emission reflect quasiperiodic wave-packet motion on coupled adiabatic
potential-energy surfaces.
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with the protein environment in a microscopic manner. Ab initio molecular-
dynamics simulations of organic chromophores in polar solvents have shown
that excited-state energies of the solvated chromophore can be signifi-
cantly shifted compared to isolated-molecule conditions.167,168 Hence the
averaging over solvent conformations does not only lead to a significant
inhomogeneous broadening of the spectra, but may also result in a large
solvent-induced Stokes shift. To account for these effects, we assume that
the low-frequency protein motion can also be modeled by the harmonic
ansatz (86). Frequencies ωj and coupling constants cj are chosen accord-
ing to the distribution for an Ohmic bath with a overall chromophore-bath
coupling α = 16.3 and a cut-off frequency ωC = 400 cm−1. Employing this
“spectroscopic model” of the photoisomerization of retinal in rhodopsin, we
have calculated various absorption and emission spectra.162 As a represen-
tative example, Fig. 15 shows the impulsive time- and frequency-resolved
fluorescence spectrum. Again, the signal exhibits a rapid initial decay within
≈100 fs which is followed by recurrences of the emission. Compared to the
case of the two- and 25-mode models shown in Fig. 14, however, the emis-
sion exhibits a much larger Stokes shift of about 4000 cm−1. Furthermore,
the overall emission decays faster due to the larger level density of the
spectroscopic model.

To illustrate the initial time evolution exhibited by the multidimensional
model of rhodopsin, Fig. 11(b) shows a two-dimensional representation of
the potential-energy surfaces consisting of the reaction coordinate ϕ and the
coordinate x = {xj} which collectively represents all Condon-active modes.
The coupling coordinate q is set to zero, i.e. the two-dimensional adiabatic
potential-energy surfaces of the ground and excited electronic state inter-
sect via an one-dimensional crossing seam. Apart from the optical transi-
tions indicated by bold arrows, the figure also displays the minimum-energy
path of the photoisomerization reaction. Starting out in the Franck–Condon
region, the minimum-energy path follows the slope on the upper adiabatic
potential-energy surface. Since the descent is flat along ϕ and steep along x,
the minimum-energy path first follows the direction of the Condon-active
modes, before it continues along the isomerization coordinate. This indi-
cates that the red-shifted maximum of the fluorescence spectrum is caused
by the energy lowering of

∑
j c2

j/2ωj due to the Condon-active modes.
It is interesting to compare this “static” picture of over-damped nuclear

motion along the minimum-energy path with the true dynamical time
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Fig. 15. Impulsive time- and frequency resolved fluorescence spectra as obtained for
the 25-mode model of rhodopsin coupled to a harmonic bath.

evolution of the molecular system. Explicit calculations of the time-
dependent excited-state wave function (data not shown) reveal that the
wave packet is hardly ever found on the minimum-energy path.169 Fol-
lowing excitation to the Franck–Condon region, it rather performs sev-
eral pronounced oscillations along the x coordinate on the upper adiabatic
potential-energy surface, before it disappears in the photochemical funnel
of the intersecting potential-energy surfaces. Similar results have also been
obtained in ab initio molecular-dynamics simulations of stilbene.170 Due to
the highly idealized topology of the potential-energy surfaces in our model,
nevertheless, the wave packet follows the minimum-energy path at least on
the average.

6. Conclusions

We have outlined the theoretical description of femtosecond time-resolved
spectroscopy of the photophysical and photochemical dynamics at conical
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intersections. Because of their potential to directly observe the ultrafast
excited-state processes, we have focused on transient transmittance, time-
resolved fluorescence, and time-resolved ionization spectroscopy.

A molecular system with a conical intersection represents a multidimen-
sional nonseparable problem, which hampers the calculation of nonlinear
spectra when using the established formalism of multi-time correlation func-
tions. To calculate femtosecond time-resolved spectra for these systems, we
have discussed several strategies, employing both the perturbative as well as
the nonperturbative approach. In the general case of complicated spectro-
scopic processes with several, possibly overlapping, laser fields, it has proven
advantageous to employ the nonperturbative formalism for the calculation
of femtosecond time-resolved spectra. The nonperturbative approach allows
us to directly simulate a given spectroscopic experiment. Considering sim-
ple spectroscopic processes, such as transient absorption, emission, or ion-
ization with nonoverlapping and low-intensity laser pulses, a perturbative
calculation is often advantageous. The perturbative formulation allows us
to first calculate the impulsive response of the system, and subsequently
evaluate spectroscopic signals for various probe pulse properties via con-
volution techniques. In particular, it has been shown that the convolution
scheme also allows us to circumvent the cumbersome discretization of the
electron continuum, thus providing an efficient way to calculate photoelec-
tron spectra. Furthermore, an approximate evaluation of the perturbative
formulation using the semiclassical Franck–Condon formulation has been
shown to afford a computationally inexpensive and often accurate calcula-
tion of femtosecond pump-probe spectra.

To illustrate the practical application of the theoretical formalism, we
have discussed several representative examples that demonstrate the poten-
tial of femtosecond time-resolved spectroscopy. Since typically only a few
degrees of freedom (say, 2–4) are involved in the ultrafast photodynamics
via a conical intersection, explicit simulations of spectroscopic experiments
for polyatomic molecules are nowadays possible on a routine basis. As an
example of a state-of-the-art simulation of a femtosecond experiment on
a polyatomic system, we have presented “first-principles” calculations of
the time-resolved photoelectron spectra of pyrazine. Although in this case
the interpretation was found to be quite complicated, the investigations
nevertheless demonstrated the considerable potential of a joint experimen-
tal/theoretical study of the dynamics at conical intersections. Employing
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collective coordinates, moreover, it has been shown that — even for a com-
plex biophysical system such as rhodopsin — the femtosecond dynamics
and spectra associated with a conical intersection can be modeled in terms
of a simple low-dimensional system.
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1. Introduction

Observation of molecular processes in real time1 and coherent control of the
underlying quantum phenomena by means of external laser fields constitute
the modern field of femtoscience2. The dynamics of chemical and physical
processes can be monitored using ultrashort laser pulses and a variety of

803
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molecular systems ranging from dimers to large biomolecules are studied
in gas as well as in condensed phase.3–9 In combination with quantum
dynamical calculations, a detailed microscopic understanding of the reac-
tion mechanisms can be achieved. Based on this knowledge, it is promising
to design concepts for the control of molecular processes.

Theoretical control schemes were first proposed in the 1980s, working
either in the frequency10 or in the time domain.11,12 Soon after, they could
be realized experimentally by the groups of Gerber13 and Zewail.14 The
applied pump-dump approach influences the system by varying the pump
pulse parameters or the delay time between the pump and the probe pulse.
An extension and combination of both concepts is the so called self-learning
control, relying on closed-loop learning algorithms to optimize the laser
fields. This leads to the concepts of optimal control theory (OCT) pro-
posed and developed by the groups of Rabitz15,16 and Tannor, Rice and
Kosloff.17,18 In contrast to the above mentioned schemes, the whole shape
of the laser field is now optimized to guide the chemical reaction from
the initial to the final state. First experimental implementations were real-
ized using ultrafast pulse shaping techniques in combination with genetic
algorithms,19–21 followed by many experiments controlling more complex
chemical reactions22,23 and even biomolecules.24

In general, the optimal control strategies are designed to allow the con-
trol of a molecular system without previous knowledge of its properties.
However, we prefer to base our control attempts on a previously obtained
microscopic understanding of the underlying molecular mechanisms. This
allows us to choose more subtle control targets and increase the efficiency
of the overall process.

The capability to understand chemical reactions on the atomic scale
and subsequently to design control strategies will be illustrated for pho-
toinduced reactions via conical intersections. The ultrafast photochem-
ical ring opening of cyclohexadiene,25–28 which occurs within 200 fs in
gas as well as in condensed phase, is taken as an example. This reac-
tion has been studied quantum chemically,29,34 by resonance-Raman
spectroscopy35,36 and by femtosecond spectroscopy25–28 offering already
a wealth of information. After photoexcitation to the S2 state, the
molecule decays within a few femtoseconds to the S1 state, from where
the relaxation to the ground state is mediated by at least two conical
intersections.
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To handle the complex reactive process, we first focus on the dynam-
ics on the S1 surface to study how the system evolves towards the conical
intersections. Therefore we introduce a reduced set of reactive coordinates,
develop the corresponding Hamiltonian and study the time evolution of the
system by means of wavepacket propagations on the calculated ab initio
potential reaction surface. In the following steps, we include the nonadia-
batic coupling elements as well as the laser-molecule interaction to describe
the complete relaxation process. The final aim is to drive the reaction sys-
tematically through either one or the other of the two conical intersections
and thus to influence the resulting product distribution.

2. Laser-Molecule Interaction and Optimal Control Theory

To deal with photoinduced chemical processes involving several potential
surfaces, we need to incorporate the interaction between the molecule and
the incident light pulses into the quantum mechanical description. In the
semiclassical dipole approximation, the time-dependent Schrödinger equa-
tion for two potential energy surfaces V1 and V2 coupled by the laser field
reads as:

ih
∂

∂t
Ψ(t) =

{(
T + V1 V12

V21 T + V2

)
− ε(t)

(
0 µ12

µ21 0

)}
Ψ(t) (1)

where T is the kinetic energy operator of the nuclei, V12 a possible time-
independent coupling, and µ12 the transition dipole moment. In princi-
ple, the laser field ε(t) can be varied in frequency, phase, and amplitude.
In bound state problems, the prepared wavepacket consists of a coherent
superposition of vibrational eigenstates:

|Ψ(t)〉 = c1|χ1〉eiω1t + c2|χ2〉eiω2t + · · ·
|Ψ(t)|2 = |c1χ1|2 + |c2χ2|2 + c∗

1c2 cos[(ω1 − ω2)t]χ∗
1χ2 + · · · . (2)

The coherence is reflected in the third term of the density function which is
therefore called interference term. In our context we use the term “passive”
control, if particular wavepackets are prepared in the Franck–Condon (FC)
region by specific pump laser pulses which are then turned off. In this case,
the weight of the partial waves does no longer change after the excitation,
the further change is only due to the time-dependent phases, while the
wavepackets evolve under the influence of the potential surfaces. The term
“active” control is used, if the laser field remains turned on during the
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intended reaction. In this case, the laser field guides the system from the
initial state out of the FC region to the final outcome, which means that the
coefficients ci remain time-dependent during the whole reaction, allowing
for a more direct control. Reactive systems complicate the situation, as
they involve reactive coordinates without any periodicity. From experiment
alone, it can often not be decided with certainty whether the observed signal
coincides with the reaction path or just represents a movement orthogonal
to it. Therefore theoretical investigations are extremely important to clarify
the mechanisms.

Shapeable ultrashort laser pulses simultaneously provide many param-
eters to communicate with the internal motion and to achieve different
objectives. Their optimal shape can be found by applying optimal control
algorithms. Possible control objectives are complete population transfer
between stable initial and final states, as well as maximization of expec-
tation values, i.e. the preparation of a specially shaped wavepacket at a
preselected area on the reaction surface.

The optimization of a laser field ε(t) driving the system from an ini-
tial state Ψi(0) at time t = 0 to the selected target area (defined by the
projection operator X) at time t = T can be reduced to maximizing the
functional L given by:16,37,38

L[Ψi(t), Ψf (t), ε(t)]

= |〈Ψi(T )|X|Ψi(T )〉|2 − α0

∫ T

0

|ε(t)|2
s(t)

dt

− 4 Re

{
〈Ψi(T )|X|Ψi(T )〉 ·

∫ T

0
〈Ψf (t)| i

h
[H − µε(t)] +

∂

∂t
|Ψi(t)〉dt

}
(3)

with the auxiliary wavefunction Ψf being a Lagrange multiplier. Variation
of this functional leads to the following set of coupled differential equations:

ε(t) = −s(t)
hα0

· Im{〈Ψi(T )|X|Ψi(T )〉〈Ψf (t)|µ|Ψi(t)〉},

ih
∂

∂t
Ψi(t) = [H − µε(t)]Ψi(t) with Ψi(0) = Φi,

ih
∂

∂t
Ψf (t) = [H − µε(t)]Ψf (t) with Ψf (T ) = XΦi(T ). (4)
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The first one determines the optimal electric field in terms of the evolving
wavepackets Ψi and Ψf , while the next two equations guarantee their com-
pliance with the Schrödinger equation under the influence of the laser field
ε(t). To satisfy the demand of a smooth switch on and off behavior of the
laserfield, the shape function s(t) is introduced. The penalty factor α0 limits
the time-averaged laser intensity and T denotes the overall pulse duration.
Solving this set of nonlinear differential equations iteratively, leads to a
laser field which is optimized for the given task.

3. Choice of Dynamical Coordinates and Reduced
Hamiltonian

In order to treat high-dimensional problems like the ring opening reaction
of cyclohexadiene (CHD) quantum mechanically, the system under consid-
eration has to be reduced. Instead of using a reaction path formalism,39,40

we want to construct reaction surfaces for a reduced number of degrees
of freedom. Therefore, we first need to select process-adapted coordinates
which should describe the relevant structural changes and contain all modes
active on the intrinsic timescale of the reaction, namely the femtosecond
time regime.

The first step of our investigation mostly concentrates on the S1 dynam-
ics. As the molecular geometry continuously changes during the reaction, a
large number of normal modes is involved, thus making the often used nor-
mal mode expansion unattractive. Instead we reduce the present system to
reactive coordinates, each of which includes projections on several normal
modes.

The selection procedure is based on a thorough analysis of the geomet-
rical structures which are known to be important in the relevant region
of the full coordinate space (e.g. the ground state geometry, the geometry
of the conical intersections and intermediate structures involved).29,31,32

We found the modes depicted in Fig. 1(a) to fulfill our requirements most
appropriately.

Three C2-symmetric modes are involved: The torsions β and γ as well as
R, which denotes the length of the σ-bond where the ring opening occurs.
The remaining asymmetric motion is represented by the angle α. These
coordinates are suitable to describe the molecular geometries. However, for
the dynamical description of the system, we transfer them into a set of only
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(a) (b)

Fig. 1. Reduced set of coordinates for the ring opening of CHD.

three coordinates [see Fig. 1(b)], eliminating at the same time some of the
derivative couplings in the kinetic part of the Hamiltonian.

The asymmetric coordinate is then represented by the length of the
diagonal r, using a linear approximation for the angle α, whereas the second
diagonal r̃ is kept constant. The C2-symmetric angle ϑ describes a scissors-
like motion leading to a stretching of the σ-bond. Finally, the remaining
symmetric coordinate ϕ distorts the molecule further away from planarity,
comprising both the torsions β and γ.

Starting with the full nuclear kinetic energy operator, a reduced
Hamiltonian suitable for our reactive coordinates shall be derived. For this
purpose, all H-atoms are assigned to the corresponding C-atoms. Then the
masses of the remaining six atoms are contracted to four points of mass
according to the broken lines in Fig. 1(b).

The mass of the C-atom located between m1 and m4 in the ring struc-
ture is split between these two (accordingly for m2 and m3). By eliminating
the center of mass motion and transforming to mass-weighted Cartesian
Jacobi coordinates, one is left with nine degrees of freedom, which are then
transformed to the previously selected reactive coordinates. Considering the
aforementioned assumptions, we finally arrive at a reduced Hamiltonian in
three dimensionsa:

T = −1
2

{
B

r
∂2

rr +

(
B

r2 +
B̃

r̃

)(
1

sin2 ϑ
∂2

ϕ + ∂2
ϑ + cot ϑ∂ϑ

)}
(5)

a
(

∂x =
∂

∂x

)
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where the inverse reduced masses B and B̃ are given by

B =
1

m2
+

1
m4

, B̃ =
1

m1
+

1
m3

. (6)

4. Reaction Surfaces

As we describe the dynamics of a reactive chemical process, we do not
use a harmonic expansion approach for the potential energy surface (PES),
but instead we rely on ab initio calculations. The PES are determined for
the relevant region of the coordinate space spanned by our selected coordi-
nates, fully optimized with respect to the remaining internal coordinates.
Subsequently, the data points are projected onto the reduced set of reactive
coordinates, which can for the dynamical calculations be further restricted
to (r, ϕ).

In the case of the CHD ring opening, we could benefit from previous
calculations of ground and excited states29,31,32,41,42 which were performed
with GAUSSIAN9443 on the CASSCF level. Stationary points like minima
and transition states as well as the minimum energy path were evaluated in
the complete coordinate space. For some single points, electron correlation
corrections were performed on the CASPT2 level. According to Refs. 30 and
31, the influence of the electron correlation results in an overall decrease in
energy and does not change the topology of the interacting surfaces.

All available ab initio data points are incorporated in our studies
and additional calculations were performed to complete the reactive sur-
faces. After the projection onto the (r, ϕ)-coordinate space, the Thin-Plate-
Spline method44 is used to interpolate the 2D-surfaces. This allows their
representation on arbitrary grids, which is necessary for the wavepacket
propagations.

The resulting PES for ground and first excited state are shown in Fig. 2.
The depicted area includes the equilibrium geometries of educt (cyclohexa-
diene) and product (cZc-hexatriene) states on the ground state, the Franck–
Condon (FC) region, the transition region from the S2 to the S1 surface, and
two conical intersections (CoIns) with the ground state, marked by circles.
The intersection CoInmin is located at the energetically lowest point in the
intersection space, slightly above the pericyclic minimum of the S1 state,
whereas the C2-symmetric intersection C2-CoIn lies energetically higher.
The third circle marks the position where the transition from the S2 to the
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hν

Fig. 2. Interpolated PES for the ground and excited state. The S2 surface in the FC
region is merged with the S1 surface for the subsequent dynamics to form the shown
excited state (see Sec. 3).

S1 surface takes place and where our investigations of the S1 dynamics start.
Molecular orbitals mirroring the change in electron density are presented
for the equilibrium geometries and the two S1/S0 CoIns. The molecular
orbital, which mainly constitutes the σ-bond in CHD, contributes to the
π-system in hexatriene and changes in between to form a three-center bond
at CoInmin, involving three C-atoms, respectively a four-center bond at
C2-CoIn formed by four C-atoms (Fig. 2).

The two conical intersections are the final points of a recently found
crossing seam34 which is expected to lie in the energetically accessible
region. As this crossing seam is not yet included in our calculations, its
possible effects will be discussed in the context of the dynamics.

5. Quantum Dynamics on the S1 Surface

The propagations start in the region of the S2/S1 crossing with several
initial wavepackets of different widths. All of them are chosen to be of the
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order of magnitude of the width of a ground state wavepacket of CHD for
the following reasons:

Photoexcitation of cyclohexadiene by ultrashort laser pulses transfers
the ground state wavepacket to the 1B state. Starting from the FC region,
the system is initially accelerated towards a conical intersection where it
changes rapidly to the 2A state. This S2/S1-CoIn is reached after a barri-
erless evolution within in a very short time. Therefore one may expect that
the wavepacket is not altered too much up to this point and the widths for
an initial Gaussian wavepacket (located at S2/S1-CoIn) can be assumed to
be comparable to the width of the ground state wavepacket. (For the same
reason, it seems to be appropriate to merge the S2 and S1 PES in this
region.) A possible influence of the S2/S1-CoIn is taken into account by
exploring a large range of widths with different ratios ∆r/∆ϕ, representing
different initial shapes. At the same time, this gives us a first estimate to
what extent the dynamics can be influenced by initial state preparation.

The wavepacket is prepared far away from the S1 equilibrium and
instantaneously starts to oscillate with a period of about 15 fs along the
coordinate ϕ. This oscillation period is in good agreement with the pre-
dicted S1 frequency given in Ref. 39. Simultaneously, a kind of breathing
mode starts to evolve in r-direction (with a “period” of about 10 fs) which
first results in an additional broadening of the wavepacket along this direc-
tion. Due to the interference of both motions the wavepacket bifurcates
(Fig. 3), with the result that both conical intersections with the ground state
are reached. Although the high-energy parts of the wavepacket always have
enough energy to reach C2-CoIn, we note the different evolution depending
on the initial preparation.

In a next step we now want to simulate the complete transfer to the
ground state, for which both S1 and S0 potential surfaces together with
their nonadiabatic coupling elements are needed.

6. Nonadiabatic Coupling Elements

The complete Hamiltonian including the nonadiabatic coupling between
the two degenerate states reads:

H =
(

Tn K12

−K12 Tn

)
+

(
V1 0
0 V2

)
, (7)
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Fig. 3. Evolution of the wavepacket on the S1 surface for two sets of initial widths.
After 20 fs both conical intersections are reached and the wavepacket has started to
bifurcate. The arrows denote the locations of the two conical intersections (left: CoInmin,
right: C2-CoIn).

where Tn denotes the kinetic energy of the nuclei and V1,2 the adiabatic
potentials. K12 is the nonadiabatic coupling term

K12 = −
∑

j

1
mj

(
f

(j)
12 ∂xj

+
1
2
g
(j)
12

)
(8)
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with mj the mass of the jth atom and xj Cartesian nuclear coordinates.
This coupling would be neglected in Born–Oppenheimer approximation,
but plays a crucial role in the vicinity of conical intersections.45 The first-
and second-order derivative (nonadiabatic) coupling elements for the elec-
tronic wavefunctions Φ1,2 are given by

f
(j)
12 = 〈Φ1|∂xj

Φ2〉 and g
(j)
12 = 〈Φ1|∂2

xj
Φ2〉. (9)

Quantum mechanical calculations in the vicinity of conical intersections
usually adopt the diabatic picture, where the derivative couplings need not
be included directly (see, e.g. Ref. 46 and references therein). However, in
our case this approach is not well suited. First of all, we need to consider
large parts of both reaction surfaces, excited and ground state, to moni-
tor the complete relaxation process. The coordinates adequate to describe
the whole dynamics are most certainly not identical with those suitable
for a diabatization around a single CoIn. Even worse, at least two sepa-
rate conical intersections must be included.47 In general, different CoIns
in many dimensions (in our case 36) cannot be expected to join the same
diabatic representation. Even if it were possible to construct a common
diabatic description (which need not necessarily exist), we believe attempts
in this direction are not promising. Besides ignoring the dynamical needs
far away from the CoIns, they would most certainly be too cumbersome for
dynamical calculations, whereby the difficulties increase with the number
of dimensions and accessible intersections.

Thus, we are forced to stick to the adiabatic representation, which raises
other problems. As the complete nuclear Schrödinger equation is solved for
both coupled states, all quantum effects like interferences or phase effects
are included (see Sec. 7), but one needs to keep track of the phases of
the electronic wavefunctions while computing the nonadiabatic coupling
elements (NAC). Additionally, we are faced with the strong localization of
the NACs, which requires many grid points for the wavepacket propagation
and makes the calculations quite time consuming.

The NACs were calculated at the CASSCF-level using MOLPRO48 and
then transformed to the reactive coordinates. As the coupling is large in
some degrees of freedom not explicitly included in our wavepacket prop-
agation, we project them onto our subspace spanned by r and ϕ. This is
done for 9 additional coordinates which exhibit large coupling elements
but are — apart from the coupling — not crucial for the dynamics. The
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ϕ

r

Fig. 4. Nonadiabatic coupling elements f̃r
12(top) and f̃ϕ

12(bottom) in the vicinity of
CoInmin. The plots extend over ∆r = 0.02 Å, ∆ϕ = 0.42◦.

projection method is roughly similar to the procedure which was already
employed for the PES;47 it leads to a consistent description of the PES and
NACs, which includes the “static” aspects and neglects only the “dynamic”
contributions of the coordinates outside our subspace. The resulting NACs
f̃r
12 and f̃ϕ

12 (already including the masses) in the vicinity of both CoIns are
shown in Figs. 4 and 5. They exhibit the typical spiky behaviour; the cou-
pling is even more localized around CoInmin (Fig. 4) in comparison with the
symmetric intersection (Fig. 5). The smaller peaks present in f̃r

12 (CoInmin )
originate from the projection and constitute contributions of the additional
dimensions.
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ϕ

r

Fig. 5. Nonadiabatic coupling elements f̃r
12(top) and f̃ϕ

12 (bottom) around C2-CoIn
spanning a region of ∆r = 0.06 Å, ∆ϕ = 1◦.

The second derivative terms gj
12 of the nonadiabatic coupling are mostly

much smaller than the first derivative terms and hence are usually believed
to be negligible. However, their omission will lead to a non-hermitian
Hamiltonian due to a non-hermitian coupling

K(j) = f̃
(j)
12 ∂qj

(
0 1

−1 0

)
(10)

in the adiabatic description. This can be easily seen noting that the her-
miticity of K(j) requires

K
(j)
12 = f̃

(j)
12 ∂qj

!= −(Kj
12)

† (11)
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and taking

(f̃ (j)
12 )† = f̃

(j)
12 ,

(∂qj
)† = −∂qj

(12)

into account.
As for an operator A = BC with B† = B and C† = −C

A† = −BC + [B, C] (13)

holds, requiring A to be anti-hermitian (A = −A†) is equivalent to

[B, C] = 0. (14)

In the actual case B = f̃
(j)
12 and C = ∂qj do not commute, thus K

(j)
12 is

not anti-hermitian and therefore the total Hamiltonian is not hermitian.
To avoid this artifact, the non-hermitian part must be compensated which
can be achieved by anti-symmetrizing A = f̃

(j)
12 ∂qj

:

Ã =
A − A†

2
= A − 1

2
[B, C]

⇒ Ã = −Ã (15)

In the present case

[f, ∂q]Ψ = f∂qΨ − (∂qf)Ψ − f∂qΨ

= −(∂qf)Ψ (16)

holds and we arrive at the following extension

f̃
(j)
12 ∂qj → f̃

(j)
12 ∂qj + 1

2∂qj f̃
(j)
12 (17)

leading to

K̃
(j)
12 ≈

∑
j

(
f̃

(j)
12 ∂qj +

1
2
∂qj f̃

(j)
12

)
. (18)

Identifying (6.11) to be the first part of the decomposition

g
(j)
12 = ∂xj

f
(j)
12 + h

(j)
12 ; (19)

we now only neglect the hermitian part h
(j)
12 = 〈∂xj

Φ1|∂xj
Φ2〉 of g

(j)
12 .

A detailed analysis reveals that boundary effects of the finite grid also
play an important role. The derivative operator ∂qj on a finite grid is not
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anti-hermitian and therefore the arising boundary effects have to be com-
pensated to guarantee the hermiticity of the Hamiltonian.49 Taking into
account all these points, one can finally perform wavepacket propagations
in the adiabatic representation. As the adiabatic description is sometimes
questioned referring to the issue of geometrical phases and the need for
ad hoc vector potentials, we will allow for a short excursion to clarify these
questions.

7. Conical Intersections and Geometric Phases

In the context of conical intersections, the concept of the geometrical or
Berry phase is often discussed with the claim that an adiabatic wavefunction
would change its sign circulating around a conical intersection. However,
the generality of this phase change is not given; it is a possible, but not a
mandatory feature.

Following the line of arguments in Ref. 50, we will therefore illustrate
the conditions for the occurrence of such a phase jump, going back to the
transformation between diabatic and adiabatic wavefunctions:(

Φadiab
1

Φadiab
2

)
=

(
cos θ sin θ

− sin θ cos θ

) (
Φdiab

1
Φdiab

2

)
. (20)

The angle θ is given by

cos 2θ =
∆Hdiab

D

sin 2θ =
Hdiab

12

D
(21)

with

∆Hdiab =
Hdiab

11 − Hdiab
22

2
, D =

√
(∆Hdiab)2 + (Hdiab

12 )2. (22)

If the electronic wavefunction is chosen to be real, the two conditions for
degeneracy, ∆Hdiab = 0 and Hdiab

12 = 0, define two F -1-dimensional hyper-
surfaces whose F -2-dimensional intersection surface represents the space of
degeneracy.

Equations (20) and (22) lead to two statements:

• The adiabatic wavefunction is dominated by different diabatic states in
the two subspaces separated by the hypersurface ∆Hdiab = 0.
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Fig. 6. Example of closed pathways around a conical intersection. In two dimensions
(left), the space of degeneracy reduces to a single point and a phase jump is observed for
the corresponding adiabatic wavefunction. In the three-dimensional example (right) the
space of degeneracy of the two hypersurfaces Hdiab

12 = 0 (sphere) and ∆Hdiab = 0 (plane)
is a line; a tangential plane (gray) will touch the sphere and therefore the crossing seam
in only one single point. In this plane a closed path around the conical intersection will
pass the surface ∆Hdiab = 0 twice, but the Hdiab

12 = 0 sphere not at all, and therefore
no phase jump will take place.

• The smaller of the two diabatic coefficients changes sign at Hdiab
12 = 0.

In summary, the following phase theorem holds:50

Along an arbitrarily shaped closed path around a conical intersection,
the adiabatic wavefunction only changes sign if the hypersurface Hdiab

12 = 0
is passed an odd number of times on each side of ∆Hdiab = 0.

In the easiest case of a zero-dimensional space of degeneracy in a two-
dimensional coordinate space — often referred to in the literature — this
condition is always fulfilled (see Fig. 6). On the contrary, it is not possible for
higher dimensional problems to make a prediction concerning the resulting
phase without detailed knowledge of the two hypersurfaces Hdiab

12 = 0 and
∆Hdiab = 0. To illustrate this statement, a three-dimensional example
without phase jump is shown in Fig. 6.

We want to point out that the CHD model outlined in Sec. 3 is not
a truly two-dimensional case. Instead, it is a 36 dimensional problem pro-
jected onto two dimensions which do not coincide with the diabatic branch-
ing space of the conical intersections. For this reason, it remains unclear
whether to expect a phase jump or not.

Controversial opinions can be found whether or not an ad hoc vector
potential has to be introduced into the Schrödinger equation to account
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for the geometric phase. Therefore we will shortly present the essentials
according to Ref. 51.

First of all, the nonadiabatic coupling terms themselves can be regarded
as such a vector potential. With the decomposition of Eq. (18), the coupled
Born–Oppenheimer equations becomeb:

− 1
2m

∇2Ψ +
(

V − 1
2m

f2 − E

)
Ψ − 1

2m
(2f · ∇ + ∇f)Ψ = 0 (23)

which can also be written as
1

2m
(p − if)2Ψ + (V − E)Ψ = 0. (24)

From Eq. (24) it becomes immediately clear that if can be regarded as a
SU(2)-vector potential.

Another source of confusion is based on the fact that often only one
Born–Oppenheimer surface is used for the adiabatic approach. This ansatz
is justified either in the absence of conical intersections or if the degeneracy
occurs at inaccessibly high energies and one is only interested in low-energy
dynamics encircling but not crossing it (e.g. pseudorotation). Following
this adiabatic approach, the off-diagonal nonadiabatic coupling elements
shall be transformed into diagonal elements. For this purpose, the unitary
transformation matrix G must diagonalize the matrix f ; in this case the
coupled equations for the resulting wavefunction χ = G−1Ψ (see Ref. 50)
read as(

− 1
2m

∇2 + Ṽ1 − E ± i

2m
(2f12 · ∇ + ∇f12)

)
χ1 − 1

2
(Ṽ2 − Ṽ1)(χ1 −χ2) = 0

(25)
where Ṽk = Vk − 1

2mf2
12. If the energy of the system is low enough, such

that the excited state is nearly unpopulated, then |χ1 − χ2| = |Ψ2| can be
neglected and Eq. (25) becomes nearly decoupled:(

1
2m

(p ± f12)2 + (V1 − E)
)

χj = 0, j = 1, 2. (26)

Now it is easy to show that both equations give the same solution and it is
thus sufficient to consider only one of them. In this single surface approx-
imation, f12 represents the vector potential which is necessary to include

bFor the sake of simplicity, all masses are taken to be equal, f is the matrix of the cou-
pling vectors fkl, and hkl = 〈∇Φk|∇Φl〉 =

∑
m〈∇Φk|Φm〉〈Φm|∇Φk〉 =

∑
m f∗

mkfml =
(f2)kl.
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phase effects due to the actually coupled higher-lying potential surface.
In contrast, we treat the complete coupled nuclear Schrödinger equations
and thus possible phase effects are included naturally without additional
approximations (see also Ref. 52).

8. Wavepacket Dynamics on the Coupled S1/S0 Potential
Surfaces

The propagation on the non-adiabatically coupled PES starts at the S2/S1

CoIn with a Gaussian wavepacket roughly simulating the situation after
instantaneous excitation (widths: ∆r = 0.07 au, ∆ϕ = 0.014 au, for the
choice of initial conditions, see Ref. 47). By the time the system enters
the S1 surface, it has already gained momentum along ϕ, according to the
energy gap between the FC point and the S2/S1 CoIn. Therefore, our initial
wavepacket is provided with the corresponding amount of momentum.

Figure 7 shows several snapshots of the excited and ground state wave-
function. For the chosen initial conditions, the crossover to the ground state
already starts after approx. 10 fs. While the wavepacket is oscillating back
and forth in the excited state, it drips through both CoIns to the S0 state
(the snapshots at 14 and 20 fs show for both CoIns the largest peak appear-
ing on the ground state surface).

The resulting depopulation of the excited state is depicted in Fig. 8
(bottom, full line). To study the effect of each CoIn separately, the same
initial wavepacket is propagated again, but this time with only one or the
other CoIn active (the NAC in the vicinity of the other CoIn is set to
zero). As can be seen in Fig. 8, the return to the ground state proceeds
predominantly via the C2-CoIn with the width of the steps corresponding
to the oscillation in the excited state. This dominance is also reflected in the
“peak size” of the wavepacket appearing in the ground state after passing
the CoIns, see Fig. 7.

Closing artificially the symmetric intersection reveals that the crossover
to the ground state at the CoInmin also takes place in a stepwise manner,
but with a much smaller coupling efficiency (Fig. 8 top). Consequently,
the return to the ground state is very slow. This behavior is due to the
fact that the nonadiabatic coupling region around the CoInmin is roughly
ten times smaller compared to the vicinity of the C2-CoIn. The integral∫

r2drdϕf̃r,ϕ
12 is 20–30 times larger for the symmetric intersection, although
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t = 0 fs

excited state

ground state

t = 14 fs

t = 14 fs

t = 20 fs  
 

Fig. 7. Snapshots of the wavepacket dynamics passing the CoIns. The upper row shows
the probability density in the excited state, the lower one in the ground state (z-scale
constant in each row).

the absolute value of the NAC is larger in the vicinity of the asymmetric
CoIn. In consequence, most of the transfer to the ground state proceeds via
the C2-CoIn, whereas CoInmin plays only a minor role.

The wavepacket propagation on the coupled surfaces was performed for
80 fs. During that time, more than 20% of the excited-state wavepacket
have returned to the electronic ground state. Thus the timescale lies in the
same order of magnitude as several experiments which reported relaxation
times around 250 fs.25,28

After returning to the ground state, the wavepacket bifurcates again.
From both conical intersections, pathways lead to CHD as well as to
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Fig. 8. Norm of the excited state. The full line in the lower panel shows the full
calculation; for the dashed line the CoInmin channel has artificially been closed. The
upper plot stems from a run where the transition was only allowed at the asymmetric
intersection. The steps are due to the oscillation of the excited state wavepacket.

hexatriene, however the product ratio differs. The resulting product yield
is estimated by gathering all the parts of the hot ground state wavepacket
which reach one or the other equilibrium geometry. For the chosen initial
conditions, we find a ratio of 60 : 40 (CHD : HT) after 80 fs. Artificially clos-
ing CoInmin has no effect, whereas closing the dominant C2-CoIn slows
down the reaction velocity and changes the ratio to 70 : 30. The calculated
rate as well as the ratio 60 : 40 agree very well with the experimental findings
of 40% hexatriene (see Refs. 27, 28 and 35 and references therein).

Recent quantum chemical calculations proved the existence of a whole
crossing seam between CoInmin and C2-CoIn.41 However, as the character-
istic features of the excited state surface are not altered, the branching of
the excited wavepacket will probably remain the dominant feature and the
main effect of the crossing seam will be an enhancement of the transfer rate
and therefore an acceleration of the relaxation process.
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9. Inclusion of the Laser Pulse and Control Strategies

After understanding the S1/S0 dynamics, we extend our investigations
towards the FC-region to directly study the effect of the laser excitation.

Two pulses with a FWHM of 11 and 180 fs were selected for excita-
tion. As expected from the previous S1/S0 studies, the prepared excited
wavepackets show different subsequent time evolutions. The longer pulse
results in a broader wavepacket distribution on the S1 surface, spreading
over large areas of the reaction surface, whereas the short fs-pulse exci-
tation results in a more localized wavepacket, dominantly accelerated and
focused into the C2-CoIn. Following the relaxation transfer of this local-
ized wavepacket reveals that nearly the complete transfer occurs through
the symmetric conical intersection. Thus the influence of changing only one
parameter, the pump-pulse duration, points to the possibility to control the
molecular dynamics and thereby enhance the transfer through one of the
conical intersections.

To gain more — in our sense “active” — control over molecular systems,
we can employ OCT for the control of expectation values [Eq. (3)]. As
a performance test we arbitrarily selected three different positions on a
bound 2D potential surface (Fig. 9) with a projection operator X defining
ellipsoidal areas (broken line). The objective is to localize a wavepacket at
these selected positions. The resulting final wavepackets and corresponding
optimized pulse shapes show that it is possible to localize wavepackets at
nearly any desired position using specific optimal pulses. This concept was
already applied to the NaH2 collision complex to focus an excited state
wavepacket to a conical intersection and to control the transfer through
it.53 In the future we intend to apply the same concept of active control to
drive the cyclohexadiene-hexatriene system selectively through either one
of its conical intersections and to control thereby the distribution of product
states and the velocity of the relaxation process.

10. Conclusion

The photoinduced electrocyclic ring opening reaction of cyclohexadiene pro-
vides an interesting example of a complex ultrafast reaction mediated by
multiple conical intersections. For the short time domain, we derived a
realistic dynamical model and performed quantum dynamical calculations.
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0 12000

0 14000
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T = 290 fs

T = 340 fs

T = 240 fs

Fig. 9. Demonstration of the capability of the OCT to create wavepackets localized in
nearly arbitrary regions.

Thereby it became evident that the description of such a reactive sys-
tem absolutely needs ab initio ingredients such as reaction surfaces and
nonadiabatic coupling elements to set a realistic stage for the subsequent
wavepacket propagation. Furthermore, it was necessary to adapt the adia-
batic approach for the coupled dynamics in order to describe simultaneously
the transfer through multiple conical intersections. On this basis it was pos-
sible to obtain a microscopic understanding of the relaxation process.

The return to the ground state takes place dominantly through the
symmetric conical intersection, contrarily to the predictions solely based
on potential energy arguments which would prefer the energetically more
favourable CoInmin. Artificially closing either one of them allowed a detailed
analysis of the final product yield. As expected from the topology of the
ground state potential surface, the product distribution as well as the reac-
tion velocity are sensitive to the conical intersection passed.

These findings open the possibility to control the final product yield
and the reaction rate by guiding the wavepacket selectively through one
of the conical intersections. Thus the analysis of the reaction mechanism
allows us to define intermediate control objectives in contrast to taking a



May 26, 2004 15:28 Conical Intersections: Electronic Structure, Dynamics and Spectroscopy chap18

Nonadiabatic Quantum Dynamics and Control Strategies 825

final product as the target. The possibility to define intermediate control
objectives may reduce the complexity of the optimal control field.

Including the laser pulse excitation and varying its pulse duration, we
could underline our first assumption that coherent control should be possi-
ble. A short femtosecond pulse nearly drives the whole wavepacket through
the symmetric C2-CoIn. Though multiple reactive coordinates are included,
the coherence of the initially prepared wavepacket survives to refocus again
and again at the C2-CoIn. For a model system we could show that it is
possible to localize an arbitrarily shaped wavepacket at nearly any desired
position of a potential hypersurface and that control of the product yield
through a conical intersection can be achieved. In a future step we will
transfer this OCT concept to the ring opening of CHD and its derivatives
to actively control the product yield and the reaction velocity.
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Σ-Π vibronic coupling, 448

[1,2]-sigmatropic shift, 286, 296
[1,3]-sigmatropic shift, 286, 296
[18]annulene, 306
[2+2], [4+2] and [4+4]

cycloadditions, 296
4-Z-nona-2,4,6,8-tetraeniminium

cation, 277

Ag3, 449
Al3, 449
Au3, 449
absorption cross section, 473, 509, 703
absorption spectrum, 347, 353, 354,

358, 359, 361, 478, 490, 720
accidental symmetry-allowed, 44
acetylene cation, 408
acrolein, 303, 311, 312
action-angle variables, 629
adenine, 308
adiabatic ansatz, 10
adiabatic approximation, 11, 31

generalized, 212
group-, 14
proper, 210

adiabatic correction, 131
adiabatic electronic basis, 20
adiabatic electronic state, 175
adiabatic electronic wavefunction, 179
adiabatic population, 378, 784
adiabatic potential, 210

adiabatic potential energy surfaces,
178

adiabatic traversal, 438
adiabatic-to-diabatic angle, 216
ADT matrix, 180, 195
allene, 351, 596, 726
angular momentum, 28
annulene, 301
approximation momentum-jump, 654
asymmetric top, 34
asymmetry, 46, 52, 92
ATD angle, 184
ATD mixing angle, 180
autocorrelation function, 342, 359,

477, 479, 490, 494, 500, 509, 596,
776

avoided crossing, 272
azabenzene, 301
azoalkane, 275, 287, 290
azulene, 292, 297

BF+
3 , 450

benzene, 285, 297, 301, 303, 304, 306,
451

benzene cation, 632
benzene radical cation, 448
benzenoid cations, 451
benzopyran, 312
Berry phase effect, 211, 523
bicyclo[2.2.1]hept-2-ene (norbornene),

284
bilinear coupling terms, 441
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block diagonalization, 177, 188, 189
block diagonalization of the electronic

Hamiltonian, 22
body-frame, 531
bond formation, 303
bond-breaking, 284, 286
bond-making, 284, 285, 300
Born–Huang expansion, 209
Born–Huang, 47
Born–Oppenheimer, 131

adiabatic approximation, 11
approximation, 10, 13, 211, 522
approximation for continuum

electronic states, 35
approximation in magnetic fields,

30
complex approximation, 10
diagonal correction, 167
expansion, 6
generalized approximation, 212
generalized equation, 524
group- adiabatic approximation, 14
group- approximation, 12, 27, 30
partially-screened approximation,

32
potential energy surface, 593

Bose statistic, 535
branching of trajectories, 641
branching plane, 278, 285–287, 291,

299
branching plane vector, 278, 289, 292,

303, 313
branching space, 44, 73, 314, 467
Bulirsch–Stoer algorithm, 769
Bulirsch–Stoer method, 344
buta-1,3-diene, 299
butatriene, 596

–(CH)3– kink intersection, 299, 301,
302

C2H+
2 , 448

CH2, 506
CH3I, 483

Cu3, 449
carbocyanine dye, 289
CAS-DFT, 314
CASSCF method, 274, 275, 294
Chappuis band, 493, 495
charge transfer, 287, 289, 291, 296
charge-transfer process, 281
Chebychev, 344
chemical reaction dynamics, 521
CI coupling, 189
CIO method, 294
cis-1,3,5-hexatriene, 724, 732
cis-trans photoisomerization, 786
cis-trans isomerization, 296, 303, 788
classical electron analog model, 623,

664
classical initial conditions, 629
classical limit, 621
classical-path approximation, 621,

635
classically forbidden electronic

transitions, 645
complex functions, 9
complex phase factor, 213
complex potential, 36
Condon approximation, 596
configurational change, 177, 187, 188
configurational uniformity, 188
confluence, 53, 77, 92, 94
conical intersection, 20, 27, 30, 32, 37,

211, 463, 522, 584
accidental, 466
in diatomic molecules, 32
singularity, 21
symmetry-allowed, 466
symmetry-enforced, 466

coupled continuum states, 35
coupled-perturbed CI equations, 158,

163
coupled-perturbed SA-MCSCF

equations, 150, 152
coupling mode, 334, 371, 404, 587
cross-correlation function, 479
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crossing seam, 210
crude adiabatic basis, 66, 181
crude adiabatic function, 17
crude-adiabatic electronic

wavefunction, 179
cumulene, 450
curl-condition, 181
cyanine, 297
cyclization, 304
cyclo-1,3,5,7-octatetraene, 301
cyclobutadiene, 450
cyclobutane, 450
cyclohexa-1,3-diene, 282, 285, 303
cyclooctatetraene, 301, 302
cyclopentadienyl radical, 451
cyclopropane, 451
cytosine, 310

deazetization, 296
density matrix

generalized, 133, 145
reduced, 418, 419

derivative coupling, 17, 18, 21, 22, 25,
26, 46, 57, 158, 176, 185, 279

matrix of, 8, 16
nonadiabatic, 7
nonremovable, 185
residual, 189, 190, 192
singular, 20, 182, 192, 197
terms, 210

destructive interference, 446
di-π-methane rearrangement, 296
diabatic coupling, 372
diabatic electronic basis, 16
diabatic electronic state, 175, 178,

180, 432
diabatic population, 378
diabatic potential energy, 586
diabatic potential matrix, 192
diabatic potentials, 19
diabatic representation, 326

diabatic state, 17
methods to construct, 22
regularized, 177, 192, 197, 200

diabatic-adiabatic transformation,
380

diagonal correction, 131
differential cross section, 524
diffuse structure, 490, 494, 495, 500
DIM, 221
direct-dynamics methods, 362
discrete variable representation, 531
DMBE, 219, 221, 225
dodeca-1,3,5,7,9,11-hexaene, 300
doorway state, 379
double group, 98
double-valued behavior, 437
double-valued function, 522
dressed kinetic energy operator, 8, 9,

12
dressed potential, 15
dressed potential matrix, 13
Duschinsky rotation, 587
dynamical optical potential, 36
dynamical sign problem, 652

Eckart singularity, 531
effective Hamiltonian, 188
effective Hamiltonian for the

rotational motion, 34
EHFACE2, 244, 260
EHFACE2U, 244, 260
Ehrenfest

classical limit, 622
model, 638
trajectories, 294

electric polarization, 745, 753
electron (and charge) transfer, 284
electron transfer, 287, 310
electron-translation factor, 187
electronic absorption spectra, 435
electronic dephasing time, 359, 361
electronic eigenfunction, 525
electronic Hamiltonian, 526
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electronic population, 342
electronic population probability, 400,

410
electronic spectra, 431
electronic-vibrational coupling

constants, 328
emission direction of the polarization,

754
emission spectra, 728
ES, 229
Euler angle, 524
excited-state reaction path, 275, 283

Fermi statistic, 536
Fermi’s golden rule, 596
fewest switches algorithm, 643
finite differencing techniques, 344
fluorescence, 707, 728
fluorescent proteins, 314
fluxional, 459
Fokker–Planck equation, 390
four-wave mixing experiment, 767
Fourier transformation, 342
Franck–Condon

approximation, 709
point, 474, 585
zone, 330, 346, 359

fs pump-probe signals, 457
fullerene, 451
fulvene, 297
funnel, 273
furan, 725

g, h plane, 278
g, h plane vector, 279
g–h space, 44
gauge field tensor, 18, 20
gauge invariance, 15, 533
gauge invariant, 18
gauge invariant approximation, 15
gauge potentials, 14
gauge transformation, 15, 16, 528
gaussian damping, 375

geometric phase, 84, 431, 437, 452,
523

geometric phase effect, 55, 211, 446
glancing intersection, 445
gradient difference vector, 279
group (and atom) exchange, 284
group transfer, 286

HCN+, 448
HD2, 239
HNCO, 514
HNO, 507, 510
H2O, 497
H2S, 199, 486, 733
H3, 199, 235, 452, 513
H3O, 255
H-detachment, 307, 308
harmonic approximation, 327
Hellmann–Feynman theorem, 179
Helmholtz theorem, 185
Herman–Kluk propagator, 678
hexa-1,3,5-triene, 300
Holstein–Primakoff transformation,

659
hopping criterion, 642
hydrogen transfer, 296, 309
hydrogen-atom transfer, 287, 288
hyperspherical coordinates, 530

ICN, 479
icosahedral systems, 451
implicitly restarted Lanzcos method,

531
impulsive limit, 776
impulsive polarization, 760, 761
indacene, 297
indole, 307, 309
inelastic scattering, 532
initial conditions and the geometric

setup of surfaces, 385
initial-value representation, 678
inter-state coupling constant, 335
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internal conversion, 95, 290, 292, 342,
360, 395, 396, 412, 415, 421, 475,
771

internal conversion processes, 454,
461

internal displacement coordinates,
327

intersection space, 282–284, 292, 306,
314

intersection-adapted coordinates, 70
intersystem crossing, 475
intra-state coupling constant, 334
IRD method, 294
irreducible representation, 586
irreversibility, 388

Jahn–Teller, 180, 196
E ⊗ β, 602
E ⊗ b Hamiltonian, 442
E ⊗ e effect, 433
E ⊗ e problem, 195
E × B effect, 351
E × E Hamiltonian, 331
active, 430
activity, 459
coupling constant, 331
effect, 34, 324, 330, 351
intersection, 430, 435, 455
seams of intersections, 467
stabilization, 443
theorem, 333, 430
unstable, 449

Kramers’ degeneracy, 105

Li3, 449, 623
L-matrix, 327
Lanczos algorithm, 338, 346, 459
Lanczos iteration, 338
Lanczos propagation scheme, 372
Landau–Zener formula, 370
Landau–Zener–Stückelberg model,

396

laser induced fluorescence, 729
LEPS, 235
level density, 667
level-by-level analysis, 713
linear coupling model, 346
linear vibronic coupling, 183, 201
linear vibronic-coupling model, 348,

357
log-derivative propagation, 531
Lorentz gauge, 19, 21, 22

magnetic field, 9
magnetic solenoid, 523
mapping approach, 623, 659
mass polarization, 28
MATI spectra, 458
matrix coupling elements, 210
matrix potential, 8
MCTDH contraction effect, 464
MCTDH method, 464
mean-field Hamiltonian, 662
mean-field trajectory method, 622,

635, 638
mean-field, 591
methane radical cation, 451
methoxy radical, 442, 450
mexican hat, 331, 434
microreversibility, 641
minimum energy pathway, 523
minimum-energy path, 272, 276
mixed quantum-classical, 620
mixed quantum-classical methods,

791
mixing angle, 488
MMVB method, 294
mode combination, 594
mode-specificity, 454
model systems, 370
molecular Aharonov–Bohm effect,

211, 523
molecular rotations, 32
molecular wave function, 526
molecule-fixed coordinate system, 28
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momentum adjustment, 643
mono-dimensional time-dependent

model (MTDM), 377
monodromy matrix, 678
moving least squares, 232
multi-configuration time-dependent

Hartree (MCTDH), 584, 589
multi-configurational SCF, 135
multi-mode dynamics, 584
multi-mode Jahn–Teller effect, 332
multi-mode vibronic secular matrix,

439
multi-set formulation, 593
multi-state vibronic dynamics, 466
multivalued functions, 226

Na3, 449, 455
NH3, 504
NH+

3 , 449
NO2, 242, 505, 720, 729
NO3, 450
NO−

2 , 199
nearest neighbor spacing distribution,

716
non-adiabatic process, 522
non-analytic coordinates, 217
non-crossing rule, 45, 273
non-separability, 439
non-singular coupling term, 199
nonadiabatic coupling, 6, 10, 31, 178,

279, 431
first derivative, 158
second derivative, 160

nonlinear polarization, 745
nonlinear response function, 756
nonradiative transition, 461
nonremovable part, 19, 20
norbornene, 286
normal coordinates, 327
normal–mode, 586
nuclear inertia tensor, 28
nuclear motion wave function, 525

nuclear parameter space, 526
nuclear spin, 534

O3, 197, 493, 722
octa-1,3,5,7-tetraene, 300
one-dimensional time-dependent

model, 370
optimal quasidiabatic states, 19, 22
organic chromophore, 275, 293, 296,

314
orthogonal intersection adapted

coordinates, 85
oxadi-π-methane rearrangement, 296

partial Wigner transformation, 653
Paterno–Büchi, 296
Pauli matrices, 106
penta-2,4-dienimminium cation, 283
phase factor for each electronic

state, 9
phase-space representation, 629
photochemical dynamics, 362, 406,

421
photochemical electrocyclization of

buta-1,3-diene, 274
photochemical funnel, 276
photochemical reaction path, 272,

276, 290, 294
photochemical reaction pathway, 291
photochemical/photophysical

behavior of large molecules, 372
photodetachment spectrum, 347
photodissociation, 197, 473
photodissociation dynamics,

396, 417
photodissociation spectrum, 198
photoelectron spectrum, 349, 351,

357, 704, 724, 758, 767
photoinduced cycloaddition of two

ethylene molecules, 275
photoinduced redox reaction, 287
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photoisomerization, 395, 422, 635
model studies of via a CI, 386
of retinal, 785

photon emission rate, 708
photophysical dynamics, 402
photophysical relaxation dynamics,

362
pitch, 46, 52
Poisson differential equation, 186
Poisson distribution, 443
polyene, 275, 297, 299, 303, 305
polyene radicals, 300
polyene Schiff base, 297, 301
polyeniminium cation, 276
polysilane fragmentation, 296
population probability, 401, 402, 776
potential energy surface, 473, 527

multi-sheeted, 216
predictor-corrector, 344
prefulvenic intersection, 306, 311
product state distribution, 474, 479
prop-2-eniminium cation, 281
propagative block diagonalization

procedure, 22
protonated polyene Schiff base, 289
pseudo-Jahn–Teller, 602

active mode, 448
(E + A) ⊗ e effect, 444
effect, 431
intersection, 456
problem, 332

pseudorotational angle, 434
pump-probe experiment, 742
pump-probe interferometry, 457
pump-probe signal, 745, 757, 771, 776

dispersed, 747
integral, 746, 761

purely linear coupling, 375
pyrazine, 192, 353, 401, 418, 596, 631,

723, 731, 770, 779
pyrazoline, 287, 291, 292
pyrrole, 301, 308, 725

QM/MM, 314
quantitative criterion for

quasidiabaticity, 19
quantum correction, 667
quantum flux operator, 559, 566
quantum-classical bracket, 651
quantum-classical Liouville

description, 622, 650
quasi-degenerate perturbation theory,

183, 188
quasi-rigid vibrations, 23
quasiclassical approximation, 621
quasiclassical average, 629
quasidiabatic, 17
quasidiabatic basis, 21
quasidiabatic states in ab initio

computations, 23
quasidiabatic state, 177, 182
quenching, 290, 291, 310

radiationless decay, 401
radiationless electronic transitions,

399
radiationless transition, 786
Raman cross section, 474
Raman scattering cross section, 707
Raman spectrum, 493
rate of energy absorption, 703
reaction coordinate, 277, 418
reaction paths, 272
reaction probability, 524
reactive channel, 372
reactive scattering, 534
recurrence, 478, 490, 509
Redfield equation, 400
Redfield tensor, 399
Redfield theory, 410
Redfield-type theory, 791
reduced probability density, 418
reduced-density-matrix formalism,

398
reference state, 189
removable derivative coupling, 187
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removable part, 19
Renner effect, 333
Renner–Teller, 497, 507
Renner–Teller effect, 445
repulsive model, 497
residual coupling terms, 201
residual coupling, 19, 188
resonance, 478, 509
resonance fluorescence, 707
resonance Raman, 728

contribution, 755
spectrum, 356

resonance spectrum, 524
resonant electronic states, 35
retinal protonated Schiff base

chromophore, 283
rhodopsin, 314, 785, 786, 788, 793
rigid coordinates, 24, 25, 28
ring opening, 286, 296, 304, 312, 313
RKHS, 227
rotating-wave approximation, 747,

754
rotational distribution, 538
rotational motion, 29
rotational spectra, 32
rovibrational motion, 32
rovibronic motion, 32
Runge–Kutta method, 344
Rydberg emission spectra, 452

s-cis-acrolein, 303
s-cis-buta-1,3-diene, 299
s-trans-buta-1,3-diene, 299
s-cis/s-trans isomerization, 301
scalar coupling, 25

matrix of, 8
nonadiabatic, 7, 26

Schwinger’s theory of angular
momentum, 659

screening of nuclear charges, 31
seam, 101
seam curvature, 104
seam of intersection, 282

selection rules, 708
self-consistent classical-path method,

638
semi-classical surface hopping

trajectories, 294
semiclassical description, 621
semiclassical Franck–Condon

approximation, 763, 778
semiclassical nonadiabatic dynamics,

676
semiclassical propagator, 677
sequence of ultrafast IC processes,

464
Shepard interpolation, 230, 232
short-time dynamics, 585
short-time iterative Lanczos

integrators, 344
single valuedness, 18
single-particle function, 589
single-set formulation, 593
singularities, 532
Slonczewski resonances, 435, 454
slowly varying envelope

approximation, 745, 747
soft coordinates, 24
space-frame, 531
spectra, 356
spectral function, 411
spectral intensity, 338
spectral intensity distribution, 336
spectral statistical properties, 716
spectroscopic accuracy, 229
spin-coherent state, 680
spin-orbit coupling, 178, 183
split-operator method, 344
spontaneous emission signal, 757
spontaneous Raman scattering, 706
state-averaged-MCSCF, 135, 146
stilbene, 301
stimulated Raman contribution, 772
stimulated-emission contribution,

757, 772
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stimulated-emission polarization, 755,
760

strictly diabatic, 17
strictly diabatic basis, 21
strictly diabatic states, 17
structured sparsity, 337
styrene, 297, 301
surface-hopping, 622, 642
survival probability, 342
symmetry-required, 44
symplectic, 345
system/bath, 613

T -adapted, 117
Taylor expansion, 613
Taylor series, 190
TD-DFT, 314
theory of rovibronic coupling, 33
thermal reaction path, 272
thermal reaction pathways, 277
thiophene, 725
third-order polarization, 754, 755
three-state intersection, 104, 132
tilt, 45, 46, 52, 92
time and frequency gated

spontaneous emission, 749
time reversal adapted basis, 106
time reversal operator, 65, 136
time- and frequency-resolved

fluorescence, 791, 792
time-dependent Hartree (TDH), 589,

791
time-dependent Schrödinger equation,

343, 398, 406, 477, 752
time-dependent self-consistent-field

(TDSCF), 640, 791
time-resolved fluorescence, 748, 783
time-resolved fluorescence spectrum,

773
time-resolved photoelectron

spectroscopy, 751
time-resolved photoelectron

spectrum, 764, 769, 777, 779, 781

topological phase, 216
trans-butadiene, 358, 723, 733
trans-hexatriene, 358, 361
transformation from adiabatic to

diabatic basis, 21
transient transmittance, 744
transition dipole moments, 329
transition state, 272, 288
transition structure, 277
transmittance spectrum

dispersed, 761
integral, 771

triatomic molecule, 524
triple conical intersection, 445
triple intersections, 431
tryptophan, 308
tuning mode, 334, 359, 371, 401, 404,

587
two intersection points, 37

ultrafast electronic population decay,
461

valence isomerization of aromatics,
296

Van der Lugt–Oosterhoff model, 274
Van Vleck–Gutzwiller propagator,

677
vector matrix, 7, 17
vector potential, 523
vector potential term, 438
vertical excitation, 370
vertical transition, 711
vibrational dephasing, 343, 414
vibrational energy redistribution, 395,

396, 410
vibrational energy relaxation, 412,

415
vibronic angular momentum, 331, 436
vibronic coupling, 32, 324, 556
vibronic coupling model, 585
vibronic interactions, 458
vibronic model, 372
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vibronic periodic orbits, 674
vibronic secular matrix, 337

wave packet propagation, 588
wave-packet method, 396
weak-field limit, 754
Wigner distribution, 629

Z/E isomerization, 276, 277, 301,
304

Z/E photoisomerization, 277
Z/E photoisomerization process, 289
ZEKE spectra, 458
Zero-Point Energy Problem, 665


